1
|
Hu H, Wang J, Xu M, Li C, Xu J, Li L. Direct Assembly of Grooved Micro/Nanofibrous Aerogel for High-Performance Thermal Insulation via Electrospinning. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10087-10096. [PMID: 39879522 DOI: 10.1021/acsami.4c19048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning. The grooved micro/nanofibrous aerogels were directly prepared by controlling the relative humidity and solvent evaporation rate, as well as regulating the charge jet density and phase separation behavior. The prepared aerogel exhibited ultralight performance with a density of 4.4 mg cm-3, hydrophobic liquid-repelling performance with a contact angle of 137.4°, and ultralow thermal conductivity (0.02586 W m-1 k-1), making it an ideal material for maintaining thermal comfort in complex environments. This work provides valuable insights into the design and development of high-performance fiber insulation materials.
Collapse
Affiliation(s)
- Huabin Hu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials, Tiangong University, Tianjin 300387, China
| | - Jing Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials, Tiangong University, Tianjin 300387, China
| | - Mingkao Xu
- Kemira Chemicals (Yanzhou) Co., Ltd, Jining 272117, China
| | - Caiyun Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Institute of Composite Materials, Tiangong University, Tianjin 300387, China
| | - Jun Xu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lei Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sun Y, Ma L, Wei T, Zheng M, Mao C, Yang M, Shuai Y. Green, Low-carbon Silk-based Materials in Water Treatment: Current State and Future Trends. CHEMSUSCHEM 2024; 17:e202301549. [PMID: 38298106 DOI: 10.1002/cssc.202301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.
Collapse
Affiliation(s)
- Yuxu Sun
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Lantian Ma
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong SAR, P. R.China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
3
|
Du Y, Jiang P, Yang X, Fu R, Liu L, Miao C, Wang Y, Sai H. Hydrophobic Silk Fibroin-Agarose Composite Aerogel Fibers with Elasticity for Thermal Insulation Applications. Gels 2024; 10:266. [PMID: 38667686 PMCID: PMC11049485 DOI: 10.3390/gels10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.
Collapse
Affiliation(s)
- Yuxiang Du
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Pengjie Jiang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rui Fu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lipeng Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Changqing Miao
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yaxiong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Huazheng Sai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; (Y.D.); (P.J.); (X.Y.); (L.L.); (C.M.); (Y.W.)
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
4
|
Yang H, Ying L, Wang Y, Farooq A, Wang P, Wang Z. Versatile, durable conductive networks assembled from MXene and sericin-modified carbon nanotube on polylactic acid textile micro-etched via deep eutectic solvent. J Colloid Interface Sci 2024; 658:648-659. [PMID: 38134673 DOI: 10.1016/j.jcis.2023.11.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023]
Abstract
Integration of polylactic acid (PLA) textiles with conductive MXene holds great promise for fabricating green electronic textiles (e-textiles) and reducing the risk of electronic waste. However, constructing robust conductive networks on PLA fibers remains challenging due to the susceptibility of MXene to oxidation and the hydrophobicity of PLA fibers. Here, we demonstrate a versatile, degradable, and durable e-textile by decorating the deep eutectic solvent (DES) micro-etched PLA textile with MXene and sericin-modified carbon nanotube hybrid (MXene@SSCNT). The co-assembly of MXene with SSCNT in water not only enhanced its oxidative stability but also formed synergistic conductive networks with biomimetic leaf-like nanostructures on PLA fiber. Consequently, the MXene@SSCNT coated PLA textile (MCP-textile) exhibited high electrical conductivity (5.5 Ω·sq-1), high electromagnetic interference (EMI) shielding efficiency (34.20 dB over X-band), excellent electrical heating performance (66.8 ℃, 5 V), and sensitive humidity response. Importantly, the interfacial bonding between the MXene@SSCNT and fibers was significantly enhanced by DES micro-etching, resulting in superior wash durability of MCP-textile. Furthermore, the MCP-textile also showed satisfactory breathability, flame retardancy, and degradability. Given these outstanding features, MCP-textile can serve as a green and versatile e-textile with tremendous potential in EMI shielding, personal thermal management, and respiratory monitoring.
Collapse
Affiliation(s)
- Haiwei Yang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Lili Ying
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yong Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Amjad Farooq
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Peng Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Zongqian Wang
- School of Textile and Garment, Innovation Center for Anhui Ecological Textile Printing and Dyeing Manufacturing Industry, Anhui Textile Printing and Dyeing Industry Technology Center, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
5
|
Li X, Gao Z, Zhou S, Zhu L, Zhang Q, Wang S, You R. Engineering biomimetic scaffolds by combining silk protein nanofibrils and hyaluronic acid. Int J Biol Macromol 2024; 257:128762. [PMID: 38101657 DOI: 10.1016/j.ijbiomac.2023.128762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Nanofibrous scaffolds mimicking important features of the native extracellular matrix (ECM) provide a promising strategy for tissue regeneration. However, 3D scaffolds mimicking natural protein nanofibers and bioactive glycosaminoglycans remain poorly developed. In this study, a biomimetic nanofibrous scaffold composed of natural silk protein nanofibers and glycosaminoglycan hyaluronic acid (HA) was developed. HA functionalization significantly improved the hydrophilicity and bioactivity of silk nanofibers (SNFs). SNFs can be assembled into nanofibrous aerogel scaffolds with low density and desirable shapes on a large scale. More importantly, with the assistance of HA, the silk nanofibrous aerogel scaffolds with ultra-high porosity, natural bioactivity, and structural stability in aqueous environment can be fabricated. In the protease/hyaluronidase solution, the SNF scaffolds with 10.0 % HA can maintain their monolithic shape for >3 weeks. The silk nanofibrous scaffolds not only imitate the composition of ECM but also mimic the hierarchical structure of ECM, providing a favorable microenvironment for cell adhesion and proliferation. These results indicate that this structurally and functionally biomimetic system is a promising tissue engineering scaffold.
Collapse
Affiliation(s)
- Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zixin Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shunshun Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Si Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
6
|
Song P, Li C, Yao X, Zhang D, Zhao N, Zhang Y, Xu K, Chen X, Liu Q. Regenerated silk protein based hybrid film electrode with large area specific capacitance, high flexibility and light weight towards high-performance wearable energy storage. J Colloid Interface Sci 2023; 652:1793-1802. [PMID: 37683407 DOI: 10.1016/j.jcis.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Planar wearable supercapacitors (PWSCs) have sparked intense interest owing to their hopeful application in smart electronics. However, current PWSCs suffered from poor electrochemical property, weak flexibility and/or large weight. To relieve these defects, in this study, we fabricated a high-performance PWSC using silk protein derived film electrodes (PPy/RSF/MWCNTs-2; RSF, PPy and MWCNTs represent regenerated silk film, polypyrrole and multi-walled carbon nanotubes, respectively, while 2 is the mass ratio of silk to MWCNTs), which were developed by 'dissolving-mixing-evaporating' and in situ polymerization. In three-electrode, PPy/RSF/MWCNTs-2 showed a superb area specific capacitance of 8704.7 mF cm-2 at 5 mA cm-2, which surpassed numerous reported PWSC electrodes, and had a decent durability with a capacitance retention of 90.7 % after 5000 cycles. The PPy/RSF/MWCNTs-2 derived PWSC showed a largest energy density of 281.3 μWh cm-2 at 1660.1 μW cm-2, and a power density as high as 13636.4 μW cm-2 at 125.6 μWh cm-2. Furthermore, impressive capacitive-mechanical stability with a capacitance retention of 92 % under bending angles from 0 to 150 was depicted. Thanks to the rational and affordable preparation, our study for the first time prepared RSF electrode that had great capacitive property, high mechanical flexibility and light weight, simultaneously. The encouraging results can not only open up a new path to manufacture high-performance flexible electrodes, but may also help to realize the high-value-added utilization of silk.
Collapse
Affiliation(s)
- Peng Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Congcong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xiaohui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Dongyang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Ningmiao Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yue Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaojuan Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Qi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
7
|
Yan S, He L, Hai AM, Hu Z, You R, Zhang Q, Kaplan DL. Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws. Polymers (Basel) 2023; 15:polym15071645. [PMID: 37050259 PMCID: PMC10096991 DOI: 10.3390/polym15071645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
As a natural high-performance material with a unique hierarchical structure, silk is endowed with superior mechanical properties. However, the current approaches towards producing regenerated silk fibroin (SF) for the preparation of biomedical devices fail to fully exploit the mechanical potential of native silk materials. In this study, using a top-down approach, we exfoliated natural silk fibers into silk nanofibrils (SNFs), through the disintegration of interfibrillar binding forces. The as-prepared SNFs were employed to reinforce the regenerated SF solution to fabricate orthopedic screws with outstanding mechanical properties (compression modulus > 1.1 GPa in a hydrated state). Remarkably, these screws exhibited tunable biodegradation and high cytocompatibility. After 28 days of degradation in protease XIV solution, the weight loss of the screw was ~20% of the original weight. The screws offered a favorable microenvironment to human bone marrow mesenchymal stem cell growth and spread as determined by live/dead staining, F-action staining, and Alamar blue staining. The synergy between native structural components (SNFs) and regenerated SF solutions to form bionanocomposites provides a promising design strategy for the fabrication of biomedical devices with improved performance.
Collapse
|
8
|
He H, Huang M, Gao Z, Zhou Y, Zhao Y, Chen Y, Gu Y, Chen S, Yan B. Mussel-inspired polydopamine-modified silk nanofibers as an eco-friendly and highly efficient adsorbent for cationic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj06055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Obtaining silk nanofibers by simple swelling and mechanical splitting of fibers.
Collapse
Affiliation(s)
- Heng He
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Minggang Huang
- Key Laboratory of Fine Chemical Application Technology of Luzhou, Luzhou 646099, China
| | - Zhiwei Gao
- Xinjiang Xinchun Petroleum Development Co., Ltd., Sinopec, Dongying 257000, China
| | - Yifan Zhou
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yuxiang Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yan Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|