1
|
Trung LG, Gwag JS, Do HH, Mishra RK, Nguyen MK, Tran NT. Hierarchical chitin and chitosan-derived heterostructural nanocomposites: From interdisciplinary applications to a sustainable vision. Carbohydr Polym 2025; 362:123702. [PMID: 40409803 DOI: 10.1016/j.carbpol.2025.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
Natural biopolymeric nanomaterials are highly prioritized and indispensable for industrial production and human use due to their exceptional features. In recent years, the development of bioinspired materials has rapidly advanced, driven by their outstanding qualities and versatile applications. Among these, chitin and chitosan stand out for their biodegradability, biocompatibility, and hierarchical structures, captivating researchers worldwide. In order to ameliorate the characteristics of these materials, integrating them with complementary components such as polymers, organics, and nanomaterials to create multifunctional chitinous bio-composites has become increasingly important. This review highlights recent progress in the development of these composite biomaterials, emphasizing biomimetic design, synthesis methodologies, and applications in drug delivery, cancer therapy, tissue engineering, wound healing, antimicrobial activity, food safety, natural bio-adhesives, and various industrial uses, alongside their ecological balance on Earth within a sustainable vision. Additionally, the discussion also addresses ongoing challenges and explores potential prospects for advancing these innovative biocomposites.
Collapse
Affiliation(s)
- Le Gia Trung
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Ha Huu Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | | | - Minh Kim Nguyen
- Department of Nanoscience and Technology Convergence, Gachon University, Gyeonggi-do 13120, South Korea.
| | - Nguyen Tien Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Zhao Y, Wu S, Cai Y, Yang H, Dong X, Yang B, Zhong J. Integration of finite element simulations with 3D printing technology for personalized Chitin/PLA microneedle-based drug delivery systems in thoracic keloid treatment. Int J Biol Macromol 2025; 315:144487. [PMID: 40409657 DOI: 10.1016/j.ijbiomac.2025.144487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/23/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The high prevalence of keloids in the thoracic (48.9 %) is closely associated with its unique anatomical morphology and mechanical environment. The irregular shape of keloids in this area significantly complicates treatment, particularly regarding drug delivery. Microneedle arrays (MNAs) have demonstrated remarkable advantages in the scar treatment due to their ability to deliver drugs evenly. However, existing MNAs often lack personalized design and present challenges during the treatment, such as unable to conform to the distinctive shapes of thoracic keloids, leading to uneven drug penetration. Consequently, we propose a preparation strategy for MNAs designed to meet the personalized treatment needs of thoracic keloids. In this study, personalized MNAs were constructed using 3D printing technology, incorporating chitin into polylactic acid (PLA) to enhance printing accuracy and drug-loading capacity. By integrating compressive properties of keloids with finite element analysis (FEA), we simulated the puncturing of keloids with a composite MNAs. The results indicated that the 0.2Chitin/PLA improves the accuracy and mechanical properties of the 3D-printed MNAs, and the drug-loading performance was improved by 6 times. Furthermore, FEA results revealed that Chitin/PLA MNAs can withstand the reaction forces encountered during the puncture process, thus achieving effective puncture depth. FEA combined with 3D printing and drug loading technology can effectively address the personalized needs and drug delivery in the treatment of thoracic keloids. This strategy not only improves the accuracy and effectiveness of the treatment, but also provides new research directions and technical support for the personalized treatment of keloids.
Collapse
Affiliation(s)
- Yanyan Zhao
- The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China; Guangdong Provincial key Laboratory of Digital medical and Biomechanics, Guangzhou 510515, China
| | - Shangjing Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Yunong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Hao Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| | - Jing Zhong
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; Guangdong Provincial key Laboratory of Digital medical and Biomechanics, Guangzhou 510515, China.
| |
Collapse
|
3
|
Hikam M, Asri PPP, Hamid FH, Anwar AM, Nasir M, Sumboja A, Asri LATW. Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:231-241. [PMID: 39705093 DOI: 10.1021/acs.langmuir.4c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Commercial battery separators are made of polyolefin polymers due to their desired mechanical strength and chemical stability. However, these materials are not biodegradable and are challenging to recycle. Considering the environmental issues from polyolefins, biodegradable polymers can be developed as separators to reduce the potential waste from polyolefin separators. In this work, we investigated the potential of poly(vinyl alcohol)/chitin nanofiber (PVA/CHNF) nanofiber as a sustainable lithium-ion battery separator, which was successfully fabricated via the electrospinning and cross-linking method. The PVA/CHNF separator is biodegradable and has an ionic conductivity (1.41 mS cm-1), desirable porosity (86%), good thermal stability (1.4% shrinkage upon heating at 90 °C for 1 h), as well as high electrolyte uptake (388%). The PVA/CHNF separator is also evaluated in the assembled Li//LiFePO4 cells, showing an improved performance compared to the cell with the commercial separator. It shows a discharge capacity of 142 mAh g-1, which is stable throughout 120 charge-discharge cycles. Hence, according to these resulting properties, the PVA/CHNF separator shows promise as a sustainable and environmentally friendly lithium-ion battery separator, offering a high-value use of waste chitin materials.
Collapse
Affiliation(s)
- Muhammad Hikam
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| | - Putri P P Asri
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| | - Faiq H Hamid
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| | - Ahmad Miftahul Anwar
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| | - Muhamad Nasir
- Research Center of Environment and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, West Java 40135, Indonesia
| | - Afriyanti Sumboja
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| | - Lia Amelia Tresna Wulan Asri
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia
| |
Collapse
|
4
|
Patti A. Challenges to Improve Extrusion-Based Additive Manufacturing Process of Thermoplastics toward Sustainable Development. Macromol Rapid Commun 2024; 45:e2400249. [PMID: 38818529 DOI: 10.1002/marc.202400249] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Indexed: 06/01/2024]
Abstract
This review aims to present the different approaches to lessen the environmental impact of the extrusion-based additive manufacturing (MEX) process of thermoplastic-based resins and protect the ecosystem. The benefits and drawbacks of each alternative, including the use of biomaterials or recycled materials as feedstock, energy efficiency, and polluting emissions reduction, have been examined. First, the technological option of using a pellet-fed printer was compared to a filament-fed printer. Then, common biopolymers utilized in MEX applications are discussed, along with methods for improving the mechanical properties of associated printed products. The introduction of natural fillers in thermoplastic resins and the use of biocomposite filaments have been proposed to improve the specific performance of printed items, highlighting the numerous challenges related to their extrusion. Various polymers and fillers derived from recycling are presented as feeding raw materials for printers to reduce waste accumulation, showing the inferior qualities of the resulting goods when compared to printed products made from virgin materials. Finally, the energy consumption and emissions released into the atmosphere during the printing process are discussed, with the potential for both aspects to be controlled through material selection and operating conditions.
Collapse
Affiliation(s)
- Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, Catania, CT, 95125, Italy
| |
Collapse
|
5
|
Zhou Y, Shi K, Liu G, Sun H, Weng Y. Epoxidized Soybean Oil Toughened Poly(lactic acid)/Lignin-g-Poly(lauryl methacrylate) Bio-Composite Films with Potential Food Packaging Application. Polymers (Basel) 2024; 16:2025. [PMID: 39065342 PMCID: PMC11280936 DOI: 10.3390/polym16142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The application of lignin as a filler for poly (lactic acid) (PLA) is limited by their poor interfacial adhesion. To address this challenge, lignin-graft-poly(lauryl methacrylate) (LG-g-PLMA) was first blended with poly (lactic acid), and then epoxidized soybean oil (ESO) was also added to prepare PLA/LG-g-PLMA/ESO composite, which was subsequently hot pressed to prepare the composite films. The effect of ESO as a plasticizer on the thermal, mechanical, and rheological properties, as well as the fracture surface morphology of the PLA/LG-g-PLMA composite films, were investigated. It was found that the compatibility and toughness of the composites were improved by the addition of ESO. The elongation at break of the composites with an ESO content of 5 phr was increased from 5.6% to 104.6%, and the tensile toughness was increased from 4.1 MJ/m3 to 44.7 MJ/m3, as compared with the PLA/LG-g-PLMA composite without ESO addition. The toughening effect of ESO on composites is generally attributed to the plasticization effect of ESO, and the interaction between the epoxy groups of ESO and the terminal carboxyl groups of PLA. Furthermore, PLA/LG-g-PLMA/ESO composite films exhibited excellent UV barrier properties and an overall migration value below the permitted limit (10 mg/dm2), indicating that the thus-prepared biocomposite films might potentially be applied to environmentally friendly food packaging.
Collapse
Affiliation(s)
- Yingxin Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (K.S.); (G.L.)
| | - Kang Shi
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (K.S.); (G.L.)
| | - Guoshuai Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (K.S.); (G.L.)
| | - Hui Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (K.S.); (G.L.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (K.S.); (G.L.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
7
|
Sola A, Trinchi A. Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers (Basel) 2023; 15:4219. [PMID: 37959900 PMCID: PMC10649055 DOI: 10.3390/polym15214219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Additive manufacturing (AM, aka 3D printing) is generally acknowledged as a "green" technology. However, its wider uptake in industry largely relies on the development of composite feedstock for imparting superior mechanical properties and bespoke functionality. Composite materials are especially needed in polymer AM, given the otherwise poor performance of most polymer parts in load-bearing applications. As a drawback, the shift from mono-material to composite feedstock may worsen the environmental footprint of polymer AM. This perspective aims to discuss this chasm between the advantage of embedding advanced functionality, and the disadvantage of causing harm to the environment. Fused filament fabrication (FFF, aka fused deposition modelling, FDM) is analysed here as a case study on account of its unparalleled popularity. FFF, which belongs to the material extrusion (MEX) family, is presently the most widespread polymer AM technique for industrial, educational, and recreational applications. On the one hand, the FFF of composite materials has already transitioned "from lab to fab" and finally to community, with far-reaching implications for its sustainability. On the other hand, feedstock materials for FFF are thermoplastic-based, and hence highly amenable to recycling. The literature shows that recycled thermoplastic materials such as poly(lactic acid) (PLA), acrylonitrile-butadiene-styrene (ABS), and polyethylene terephthalate (PET, or its glycol-modified form PETG) can be used for printing by FFF, and FFF printed objects can be recycled when they are at the end of life. Reinforcements/fillers can also be obtained from recycled materials, which may help valorise waste materials and by-products from a wide range of industries (for example, paper, food, furniture) and from agriculture. Increasing attention is being paid to the recovery of carbon fibres (for example, from aviation), and to the reuse of glass fibre-reinforced polymers (for example, from end-of-life wind turbines). Although technical challenges and economical constraints remain, the adoption of recycling strategies appears to be essential for limiting the environmental impact of composite feedstock in FFF by reducing the depletion of natural resources, cutting down the volume of waste materials, and mitigating the dependency on petrochemicals.
Collapse
Affiliation(s)
- Antonella Sola
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| | - Adrian Trinchi
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| |
Collapse
|
8
|
Rahman AM, Rahman TT, Pei Z, Ufodike CO, Lee J, Elwany A. Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering (Basel) 2023; 10:845. [PMID: 37508872 PMCID: PMC10376353 DOI: 10.3390/bioengineering10070845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Agriculturally derived biowastes can be transformed into a diverse range of materials, including powders, fibers, and filaments, which can be used in additive manufacturing methods. This review study reports a study that analyzes the existing literature on the development of novel materials from agriculturally derived biowastes for additive manufacturing methods. A review was conducted of 57 selected publications since 2016 covering various agriculturally derived biowastes, different additive manufacturing methods, and potential large-scale applications of additive manufacturing using these materials. Wood, fish, and algal cultivation wastes were also included in the broader category of agriculturally derived biowastes. Further research and development are required to optimize the use of agriculturally derived biowastes for additive manufacturing, particularly with regard to material innovation, improving print quality and mechanical properties, as well as exploring large-scale industrial applications.
Collapse
Affiliation(s)
- Al Mazedur Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Chukwuzubelu Okenwa Ufodike
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jaesung Lee
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alaa Elwany
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|