1
|
Malhotra Y, John J, Yadav D, Sharma D, Vanshika, Rawal K, Mishra V, Chaturvedi N. Advancements in protein structure prediction: A comparative overview of AlphaFold and its derivatives. Comput Biol Med 2025; 188:109842. [PMID: 39970826 DOI: 10.1016/j.compbiomed.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
This review provides a comprehensive analysis of AlphaFold (AF) and its derivatives (AF2 and AF3) in protein structure prediction. These tools have revolutionized structural biology with their highly accurate predictions, driving progress in protein modeling, drug discovery, and the study of protein dynamics. Its exceptional accuracy has redefined our understanding of protein folding, which enables groundbreaking advancements in protein design, disease research and discusses future integration with experimental techniques. In addition, their achievement features, architectures, important case studies, and noteworthy effects in the field of biology and medicine were evaluated. In consideration of the fact that AF2 is a relatively recent innovation, it has already been taken into account in many studies that highlight its applications in many ways. Moreover, the limitations of AF2 that directed to the introduction of AF3 are also reported, which is a great improvement as it provides precise predictions of the structures and interactions of proteins, DNA, RNA, and ligands, thereby aiding in the understanding of the molecular level. Addressing current challenges and forecasting future developments, this work underscores the lasting significance of AF in reshaping the scientific landscape of protein research.
Collapse
Affiliation(s)
- Yuktika Malhotra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Jerry John
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Deepika Yadav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Deepshikha Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Vanshika
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Kamal Rawal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Vaibhav Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, 201303, India
| | - Navaneet Chaturvedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
2
|
Yousaf MA, Michel M, Khan ATA, Noreen M, Bano S. Repurposing doxycycline for the inhibition of monkeypox virus DNA polymerase: a comprehensive computational study. In Silico Pharmacol 2025; 13:27. [PMID: 39958784 PMCID: PMC11825436 DOI: 10.1007/s40203-025-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
The global spread of monkeypox, caused by the double-stranded DNA monkeypox virus (MPXV), has underscored the urgent need for effective antiviral treatments. In this study, we aim to identify a potent inhibitor for MPXV DNA polymerase (DNAP), a critical enzyme in the virus replication process. Using a computational drug repurposing approach, we performed a virtual screening of 1615 FDA-approved drugs based on drug-likeness and molecular docking against DNAP. Among these, 1430 compounds met Lipinski's rule of five for drug-likeness, with Doxycycline emerging as the most promising competitive inhibitor, binding strongly to the DNAP active site with a binding affinity of - 9.3 kcal/mol. This interaction involved significant hydrogen bonds, electrostatic interactions, and hydrophobic contacts, with Doxycycline demonstrating a stronger affinity than established antivirals for smallpox, including Cidofovir, Brincidofovir, and Tecovirimat. Stability and flexibility analyses through a 200 ns molecular dynamics simulation and normal mode analysis confirmed the robustness of Doxycycline binding to DNAP. Overall, our results suggest Doxycycline as a promising candidate for monkeypox treatment, though additional experimental and clinical studies are needed to confirm its therapeutic potential and clinical utility. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00307-7.
Collapse
Affiliation(s)
- Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Abeedha Tu-Allah Khan
- School of Biological Sciences, Faculty of Life-Sciences, University of the Punjab, Lahore, Pakistan
- Department of Biological Sciences, Faculty of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Misbah Noreen
- Department of Biological Sciences, Virtual University of Pakistan, Lahore, Pakistan
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Saddia Bano
- Department of Biological Sciences, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
3
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Peñaflor-Téllez Y, Escobar-Almazan JA, Pérez-Ibáñez C, Miguel-Rodríguez CE, Gómez de la Madrid J, Monge-Celestino EI, Talamás-Rohana P, Gutiérrez-Escolano AL. The Feline calicivirus Leader of the Capsid (LC) Protein Contains a Putative Transmembrane Domain, Binds to the Cytoplasmic Membrane, and Exogenously Permeates Cells. Viruses 2024; 16:1319. [PMID: 39205293 PMCID: PMC11359386 DOI: 10.3390/v16081319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Feline calicivirus (FCV), an important model for studying the biology of the Caliciviridae family, encodes the leader of the capsid (LC) protein, a viral factor known to induce apoptosis when expressed in a virus-free system. Our research has shown that the FCV LC protein forms disulfide bond-dependent homo-oligomers and exhibits intrinsic toxicity; however, it lacked a polybasic region and a transmembrane domain (TMD); thus, it was initially classified as a non-classical viroporin. The unique nature of the FCV LC protein, with no similarity to other proteins beyond the Vesivirus genus, has posed challenges for bioinformatic analysis reliant on sequence similarity. In this study, we continued characterizing the LC protein using the AlphaFold 2 and the recently released AlphaFold 3 artificial intelligence tools to predict the LC protein tertiary structure. We compared it to other molecular modeling algorithms, such as I-Tasser's QUARK, offering new insights into its putative TMD. Through exogenous interaction, we found that the recombinant LC protein associates with the CrFK plasmatic membrane and can permeate cell membranes in a disulfide bond-independent manner, suggesting that this interaction might occur through a TMD. Additionally, we examined its potential to activate the intrinsic apoptosis pathway in murine and human ovarian cancer cell lines, overexpressing survivin, an anti-apoptotic protein. All these results enhance our understanding of the LC protein's mechanism of action and suggest its role as a class-I viroporin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico; (Y.P.-T.); (J.A.E.-A.); (C.P.-I.); (C.E.M.-R.); (J.G.d.l.M.); (E.I.M.-C.); (P.T.-R.)
| |
Collapse
|
5
|
Haque MA, Halder AS, Hossain MJ, Islam MR. Prediction of potential public health risk of the recent multicountry monkeypox outbreak: An update after the end declaration of global public health emergency. Health Sci Rep 2024; 7:e2136. [PMID: 38817885 PMCID: PMC11136639 DOI: 10.1002/hsr2.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
Background and Aims A double-stranded DNA virus called monkeypox virus (MPV) belonging to the Poxviridae family and Orthopoxvirus genus causes monkeypox (mpox) infection. This virus used to infect only Central, East, and West Africa. However, it has spread to an extent outside Africa recently. The range of MPV outbreaks was so high that on July 23, 2022, the World Health Organization (WHO) declared it a Public Health Emergency of International Concern (PHEIC). About a year later, the WHO notified the end of a global public health emergency for mpox on May 11, 2023. Here, we aimed to assess the current pathogenicity and potential risk of MPV causing public health emergencies. Methods We searched information from published articles available in PubMed, Scopus, and ScienceDirect. We used monkeypox, mpox, monkeypox outbreak, and monkeypox virus as keywords during the literature search. Results Many new variants of MPV have emerged throughout the world that created PHEIC for mpox. Considering the low lethality and transmission rate, mpox is no longer a global public health threat. In addition, the availability of therapeutic and preventive measures helped the healthcare authorities fight the mpox infection in an efficient manner. In this review, we have portrayed the history and evolution of mpox from past to present and an idea of its future outcomes. Also, we have discussed the symptoms related to mpox and approved antiviral treatment strategies to fight off the infection in this piece. This review also emphasized the preventive guidelines set by the WHO for patients, caregivers, and healthcare providers to control the outbreak of mpox infection. Conclusion We believe this article would give an idea about the potential public health threats of the recent multi-country monkeypox outbreak to the healthcare authorities for taking measures accordingly.
Collapse
|
6
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
7
|
Yu F, Wu X, Chen W, Yan F, Li W. Computer-assisted discovery and evaluation of potential ribosomal protein S6 kinase beta 2 inhibitors. Comput Biol Med 2024; 172:108204. [PMID: 38484695 DOI: 10.1016/j.compbiomed.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
S6K2 is an important protein in mTOR signaling pathway and cancer. To identify potential S6K2 inhibitors for mTOR pathway treatment, a virtual screening of 1,575,957 active molecules was performed using PLANET, AutoDock GPU, and AutoDock Vina, with their classification abilities compared. The MM/PB(GB)SA method was used to identify four compounds with the strongest binding energies. These compounds were further investigated using molecular dynamics (MD) simulations to understand the properties of the S6K2/ligand complex. Due to a lack of available 3D structures of S6K2, OmegaFold served as a reliable 3D predictive model with higher evaluation scores in SAVES v6.0 than AlphaFold, AlphaFold2, and RoseTTAFold2. The 150 ns MD simulation revealed that the S6K2 structure in aqueous solvation experienced compression during conformational relaxation and encountered potential energy traps of about 19.6 kJ mol-1. The virtual screening results indicated that Lys75 and Lys99 in S6K2 are key binding sites in the binding cavity. Additionally, MD simulations revealed that the ligands remained attached to the activation cavity of S6K2. Among the compounds, compound 1 induced restrictive dissociation of S6K2 in the presence of a flexible region, compound 8 achieved strong stability through hydrogen bonding with Lys99, compound 9 caused S6K2 tightening, and the binding of compound 16 was heavily influenced by hydrophobic interactions. This study suggests that these four potential inhibitors with different mechanisms of action could provide potential therapeutic options.
Collapse
Affiliation(s)
- Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - WeiSong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
8
|
Yu D, Du J, He P, Wang N, Li L, Liu Y, Yang C, Xu H, Li Y. Identification of natural xanthine oxidase inhibitors: Virtual screening, anti-xanthine oxidase activity, and interaction mechanism. Int J Biol Macromol 2024; 259:129286. [PMID: 38216015 DOI: 10.1016/j.ijbiomac.2024.129286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Xanthine oxidase (XO) is a crucial target for hyperuricemia treatment(s). Naturally occurred XO inhibitors with minimal toxicity and high efficacy have attracted researchers' attention. With the goal of quickly identifying natural XO inhibitors, an integrated computational screening strategy was constructed by molecular docking and calculating the free energy of binding. Twenty-seven hits were achieved from a database containing 19,377 natural molecules. This includes fourteen known XO inhibitors and four firstly-reported inhibitors (isolicoflavonol, 5,7-dihydroxycoumarin, parvifolol D and clauszoline M, IC50 < 40 μM). Iolicoflavonol (hit 8, IC50 = 8.45 ± 0.68 μM) and 5,7-dihydroxycoumarin (hit 25, IC50 = 10.91 ± 0.71 μM) displayed the great potency as mixed-type inhibitors. Docking study and molecular dynamics simulation revealed that both hits could interact with XO's primarily active site residues ARG880, MOS1328, and ASN768 of XO. Fluorescence spectroscopy studies showed that hit 8 bound to the active cavity region of XO, causing changes in XO's conformation and hydrophobicity. Hits 8 and 25 exhibit favorable Absorption, Distribution, Metabolism, and Excretion (ADME) properties. Additionally, no cytotoxicity against human liver cells was observed at their median inhibition concentrations against XO. Therefore, the present study offers isolicoflavonol and 5,7-dihydroxycoumarin with the potential to be disease-modifying agents for hyperuricemia.
Collapse
Affiliation(s)
- Dehong Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiana Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pei He
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Na Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lizi Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Can Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Haiqi Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Baselious F, Hilscher S, Robaa D, Barinka C, Schutkowski M, Sippl W. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. Int J Mol Sci 2024; 25:1358. [PMID: 38279359 PMCID: PMC10816272 DOI: 10.3390/ijms25021358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Collapse
Affiliation(s)
- Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic;
| | - Mike Schutkowski
- Charles Tanford Protein Center, Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.B.); (S.H.); (D.R.)
| |
Collapse
|
10
|
Shah BM, Modi P. Breaking Barriers: Current Advances and Future Directions in Mpox Therapy. Curr Drug Targets 2024; 25:62-76. [PMID: 38151842 DOI: 10.2174/0113894501281263231218070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus. OBJECTIVE Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox. RESULTS Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase. CONCLUSION In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
Collapse
Affiliation(s)
- Bhumi M Shah
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| | - Palmi Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| |
Collapse
|
11
|
Parigger L, Krassnigg A, Grabuschnig S, Gruber K, Steinkellner G, Gruber CC. AI-assisted structural consensus-proteome prediction of human monkeypox viruses isolated within a year after the 2022 multi-country outbreak. Microbiol Spectr 2023; 11:e0231523. [PMID: 37874150 PMCID: PMC10714838 DOI: 10.1128/spectrum.02315-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The 2022 outbreak of the monkeypox virus already involves, by April 2023, 110 countries with 86,956 confirmed cases and 119 deaths. Understanding an emerging disease on a molecular level is essential to study infection processes and eventually guide drug discovery at an early stage. To support this, we provide the so far most comprehensive structural proteome of the monkeypox virus, which includes 210 structural models, each computed with three state-of-the-art structure prediction methods. Instead of building on a single-genome sequence, we generated our models from a consensus of 3,713 high-quality genome sequences sampled from patients within 1 year of the outbreak. Therefore, we present an average structural proteome of the currently isolated viruses, including mutational analyses with a special focus on drug-binding sites. Continuing dynamic mutation monitoring within the structural proteome presented here is essential to timely predict possible physiological changes in the evolving virus.
Collapse
Affiliation(s)
- Lena Parigger
- Innophore, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Karl Gruber
- Innophore, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Georg Steinkellner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Innophore, San Francisco, California, USA
| | - Christian C. Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- Innophore, San Francisco, California, USA
| |
Collapse
|
12
|
Li Z, Yang B, Ding Y, Meng J, Hu J, Zhou X, Liu L, Wu Z, Yang S. Insights into a class of natural eugenol and its optimized derivatives as potential tobacco mosaic virus helicase inhibitors by structure-based virtual screening. Int J Biol Macromol 2023; 248:125892. [PMID: 37473893 DOI: 10.1016/j.ijbiomac.2023.125892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Plant diseases caused by malignant and refractory phytopathogenic viruses have considerably restricted crop yields and quality. To date, drug design targeting functional proteins or enzymes of viruses is an efficient and viable strategy to guide the development of new pesticides. Herein, a series of novel eugenol derivatives targeting the tobacco mosaic virus (TMV) helicase have been designed using structure-based virtual screening (SBVS). Structure-activity relationship indicated that 2 t displayed the most powerful bonding capability (Kd = 0.2 μM) along with brilliant TMV helicase ATPase inhibitory potency (IC50 = 141.9 μM) and applausive anti-TMV capability (EC50 = 315.7 μg/mL), ostentatiously outperforming that of commercial Acyclovir (Kd = 23.0 μM, IC50 = 183.7 μM) and Ribavirin (EC50 = 624.3 μg/mL). Molecular dynamics simulations and docking suggested ligand 2 t was stable and bound in the active pocket of the TMV helicase by multiple interactions. Given these superior properties, eugenol-based derivatives could be considered as the novel potential plant viral helicase inhibitors. Furthermore, this effective and feasible SBVS strategy established a valuable screening platform for helicase-targeted drug development.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinhong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Liwei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
13
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|