1
|
He X, Ma P, Ma S, Cao R, Li J, Lu Y, Liang Y, Tian X, Wang Z, Lu X. Super-stretchable, freezing-resistant and self-powered organohydrogels for extreme environment-adaptable high-performance strain sensors. NANOSCALE 2025; 17:11450-11460. [PMID: 40230277 DOI: 10.1039/d5nr00962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The rapid development of wearable sensors has indeed driven the demand for multifunctional conductive soft materials to new heights. However, conventional flexible strain sensors find it difficult to adapt to complex environments due to their poor mechanical properties, susceptibility to freezing deactivation at low temperatures and insufficient long-term stability. In this study, acrylamide (AAm), [2-(methacryloyloxy)ethyl]dimethyl(3-sulfopropyl)ammonium hydroxide (DMAPS), and octadecyl acrylate (SA) were copolymerized in a glycerol/water system by one-step photopolymerization, and PEDOT : PSS was introduced to construct a super-stretching antifreeze amphiphilic ion hydrogel (HADP). Its synergistic network, comprising hydrogen bonding, electrostatic interactions, and high entanglement, endows it with exceptional properties: a tensile strength of 230 kPa, a strain at break of 5295%, a fracture toughness of 64 MJ m-3, and the ability to retain 3344.5% strain and 194.73 kPa strength even after 7 days of storage at -20 °C. Based on high sensitivity (GF = 4.55), a wide detection range (5-500% strain) and a fast response of 0.19 s, HADP can accurately monitor movements such as joint bending and swallowing and realize encrypted information transmission via Morse code. This study provides a paradigm of high-performance materials and multifunctional integrated design for wearable electronics in complex environments.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Penggai Ma
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuo Ma
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Runze Cao
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Jing Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yuanyuan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yanling Liang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xin Tian
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Zhiqiang Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Yu J, Huo H, Yang H, Shi H, Shen J, Li J, Li Y, Du G, Wan J, Yang L. A Super-Robust and Ultra-Tough Hydrogel Prepared from Flower-Like Submicron Carbon Clusters Exhibited Excellent Resistance to Crack Propagation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501270. [PMID: 40304133 DOI: 10.1002/smll.202501270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Hydrogels are widely used in flexible sensing, drug delivery, and tissue engineering due to their outstanding flexibility and biocompatibility, etc. However, the development of conductive hydrogels with high strength, toughness, and fatigue resistance still exists significant challenges. This study introduced a novel toughening strategy based on the "pinning effect", utilizing submicron carbon cluster (CCs) with a unique π-conjugated core prepared with self-assembly and acrylamide to fabricate high strength and toughness hydrogels. The resulting CCs, coupled with stress dissipation, chain entanglement, and interfacial interactions with polyacrylamide (PAM), effectively arrested crack propagation during stretching, thereby enhancing mechanical performance. The mechanical properties of the PAM-CCs hydrogels are significantly improved compared to PAM hydrogel, showing a fracture strength of 2.33 MPa (2850% increase), an elongation of ≈2400% (700% increase), a fracture energy of 126.4 kJ m-2 (3461% increase), and toughness of 14.94 MJ m-3 (10571% increase). Besides, PAM-CCs hydrogel also revealed good adhesion, compression, and conductivity properties. This strategy do not require complex design or processing, using a simple and fast approach that showed immense potential for applications of hydrogels requiring high mechanical performance.
Collapse
Affiliation(s)
- Jiaojiao Yu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Huanxin Huo
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Hongxing Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Haoran Shi
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Jingjie Shen
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Jun Li
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Jianyong Wan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
3
|
Wei J, Liu C, Shi L, Liu Y, Lu H. Highly stretchable, self-healing, adhesive, 3D-printable and antibacterial double-network hydrogels for multifunctional wearable sensors. Int J Biol Macromol 2025; 292:138813. [PMID: 39694378 DOI: 10.1016/j.ijbiomac.2024.138813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Conductive hydrogels based on sodium alginate (SA) have potential applications in human activity monitoring and personal medical diagnosis due to their good conductivity and flexibility. However, most sensing SA-hydrogels exhibit poor mechanical properties and lack of self-healing, self-adhesive, and antibacterial properties, greatly limiting their practical applications. Therefore, in this paper, a multifunctional double-network PAA-SA hydrogel consisting of poly(acrylic acid) (PAA) and sodium alginate (SA) was prepared by a simple strategy. As a rigid network structure, SA endowed the hydrogel double network structure with excellent mechanical performance. As a wearable sensor, the PAA-SA hydrogel exhibited excellent tensile properties (strain: 1799.2 %), self-healing, high sensitivity (GF = 9.9), reliable repeatability, self-adhesive, 3D printability and antibacterial activity. Additionally, the highly sensitive wearing sensing PAA-SA hydrogel could accurately and real-time monitor various intense or subtle human movements, such as joint bending, face and throat vibration. Moreover, PAA-SA hydrogels were not only used for handwritten recognition of Arabic numerals and English letters, but also for real-time sensing of temperature changes and monitoring of human sweating. The prepared multifunctional wearable sensing hydrogel has the advantages of simple and versatile methods and low cost, making it a promising candidate for applications in different fields such as electronic skin, soft robotics, and medical monitoring.
Collapse
Affiliation(s)
- Jinmei Wei
- Guilin University of Technology, Coll Chem & Bioengn, Guangxi, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chenglu Liu
- Guilin University of Technology, Coll Chem & Bioengn, Guangxi, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Lin Shi
- Guilin University of Technology, Coll Chem & Bioengn, Guangxi, Guilin 541004, China
| | - Yongping Liu
- Guilin University of Technology, Coll Chem & Bioengn, Guangxi, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Huidan Lu
- Guilin University of Technology, Coll Chem & Bioengn, Guangxi, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Duan X, Wang Y, Lei T, Zhang Q, Wan A, Xia Z, Fan J. A flexible wearable sensor based on the multiple interaction and synergistic effect of the hydrogel components with anti-freezing, low swelling for human motion detection and underwater communication. Int J Biol Macromol 2025; 295:139713. [PMID: 39793778 DOI: 10.1016/j.ijbiomac.2025.139713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al3+ hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl3. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al3+ hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl3 endows the Gel/PSAA-Al3+ hydrogel fantastic anti-freezing (-31.58 °C) and water retention properties. Moreover, the electrostatic interaction between SBMA and AlCl3 due to the ion hopping mechanism endows the hydrogel with excellent ionic conductivity (6.38 mS/cm). The Gel/PSAA-Al3+ hydrogel sensors present good biocompatibility and provide a wide operating range (0 %-1050 %), fast response time (229 ms) and recovery time (248 ms), high sensitivity (GF = 1.61) and excellent stability for detecting large and small body movements. The Gel/PSAA-Al3+ hydrogel shows potential applications as a wearable sensor for communication at low temperature or underwater.
Collapse
Affiliation(s)
- Xingru Duan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongheng Wang
- Medical Experimental Center, North China University of Science and Technology, Tangshan 063210, China
| | - Tongda Lei
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qingsong Zhang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Ailan Wan
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jie Fan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Zhou T, Li P, Sun Y, Wang W, Bai L, Chen H, Yang H, Yang L, Wei D. BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection. J Mater Chem B 2025; 13:2705-2716. [PMID: 39844677 DOI: 10.1039/d4tb02186j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat. In this study, BSA was initially attached to CNCs through electrostatic interactions. To further boost the surface active sites of the nanomaterial (CNCs@BSA), PEI was grafted onto the nanomaterial surface. The resulting CNC@BSA@PEI nanomaterials were then used as carriers for GOD. The prepared hydrogel exhibited good self-healing properties (87.5%) and excellent breaking strength (0.8 MPa), effectively converting glucose stimulation in human sweat into electrical output. The sensor had a detection range of 1.0-100.0 μM and a detection limit as low as 0.9 μM. Due to its ability to specifically recognize trace glucose levels in sweat, the CBPG-PVA sensor can perform highly selective, flexible, and reliable real-time monitoring of human sweat, offering significant potential for wearable biofluid monitoring in personalized health applications.
Collapse
Affiliation(s)
- Tianjun Zhou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Pan Li
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Yujie Sun
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| |
Collapse
|
6
|
Liu H, Guan S, Wang P, Dong X. Super Tough Anti-freezing and Antibacterial Hydrogel With Multi-crosslinked Network for Flexible Strain Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407870. [PMID: 39905917 DOI: 10.1002/smll.202407870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Indexed: 02/06/2025]
Abstract
Addressing the diverse environmental demands for electronic material performance, the design of a multifunctional ionic conductive hydrogel with mechanical flexibility, anti-freezing capability, and antibacterial characteristics represents an optimal solution. Leveraging the Dead Sea effect and the strong hydrogen bonding, this study exploits the CaCl2 and the abundant hydroxyl groups in phytic acid (PA) to induce chain entanglements, thereby constructing a complex, multi-crosslinked network. Furthermore, PA and ternary solvent systems (CaCl2/Glycerol/H2O) synergistically impart excellent mechanical strength, toughness (with tensile strength of 8.93 MPa, elongation at break of 859.93%, and toughness of 39.92 MJ m-3), high electrical conductivity, antifreeze capability, antibacterial properties, and high strain sensitivity (gauge factor up to 2.10) to the hydrogels. Remarkably, the hydrogel structure maintains stability even after undergoing 6000 loading-unloading cycles, demonstrating its outstanding fatigue resistance. Upon receiving external stimuli, the hydrogel exhibits a response time of 126 ms, making it ideal for the dynamic monitoring of human motion signals. This study offers novel insight into the potential application of ionic conductive hydrogels as flexible sensors in challenging environments.
Collapse
Affiliation(s)
- Huimin Liu
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shiqiang Guan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Pengwei Wang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
7
|
Liu Z, Ding S, Zhang G, Yan B, Zhang C, Yu P, Long Y, Zhang J. Carbonized Plant Powder Gel for Rapid Hemostasis and Sterilization in Regard to Irregular Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1992. [PMID: 39728528 PMCID: PMC11728490 DOI: 10.3390/nano14241992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Irregularly shaped wounds cause severe chronic infections, which have attracted worldwide attention due to their high prevalence and poor treatment outcomes. In this study, we designed a new composite functional dressing consisting of traditional Chinese herb carbonized plant powder (CPP) and a polyacrylic acid (PAA)/polyethylenimine (PEI) gel. The rapid gelation of the dressing within 6-8 s allowed the gel to be firmly attached to an irregularly shaped wound surface and avoided powder detachment. In addition, through an infrared thermography analysis, a coagulation assay, and a morphological examination of regenerative tissue in animal wound models, it was found that the dressing substrates had synergistic effects on photothermal sterilization, rapid hemostasis, and anti-inflammatory activity, thereby achieving an 88% wound closure rate on the 9th day after the formation of the wound. This multifunctional hemostatic material is expected to be adaptable to irregular wounds and promote rapid wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
9
|
Wang Z, Xu L, Liu W, Chen Y, Yang Q, Tang Z, Tan H, Li N, Du J, Yu M, Xu J. Tough, self-healing, adhesive double network conductive hydrogel based on gelatin-polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors. Int J Biol Macromol 2024; 276:133802. [PMID: 38992552 DOI: 10.1016/j.ijbiomac.2024.133802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Pursuing high-performance conductive hydrogels is still hot topic in development of advanced flexible wearable devices. Herein, a tough, self-healing, adhesive double network (DN) conductive hydrogel (named as OSA-(Gelatin/PAM)-Ca, O-(G/P)-Ca) was prepared by bridging gelatin and polyacrylamide network with functionalized polysaccharide (oxidized sodium alginate, OSA) through Schiff base reaction. Thanks to the presence of multiple interactions (Schiff base bond, hydrogen bond, and metal coordination) within the network, the prepared hydrogel showed outstanding mechanical properties (tensile strain of 2800 % and stress of 630 kPa), high conductivity (0.72 S/m), repeatable adhesion performance and excellent self-healing ability (83.6 %/79.0 % of the original tensile strain/stress after self-healing). Moreover, the hydrogel-based sensor exhibited high strain sensitivity (GF = 3.66) and fast response time (<0.5 s), which can be used to monitor a wide range of human physiological signals. Based on this, excellent compression sensitivity (GF = 0.41 kPa-1 in the range of 90-120 kPa), a three-dimensional (3D) array of flexible sensor was designed to monitor the intensity of pressure and spatial force distribution. In addition, a gel-based wearable sensor was accurately classified and recognized ten types of gestures, achieving an accuracy rate of >96.33 % both before and after self-healing under three machine learning models (the decision tree, SVM, and KNN). This paper provides a simple method to prepare tough and self-healing conductive hydrogel as flexible multifunctional sensor devices for versatile applications in fields such as healthcare monitoring, human-computer interaction, and artificial intelligence.
Collapse
Affiliation(s)
- Zengsheng Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Weiling Liu
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yi Chen
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Qiannian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Zengmin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Haihu Tan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Na Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Jingjing Du
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China.
| |
Collapse
|
10
|
Liu J, Li S, Li S, Tian J, Li H, Pan Z, Lu L, Mao Y. Recent Advances in Natural-Polymer-Based Hydrogels for Body Movement and Biomedical Monitoring. BIOSENSORS 2024; 14:415. [PMID: 39329790 PMCID: PMC11430138 DOI: 10.3390/bios14090415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Saisai Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Shuoze Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinyue Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Hasan N, Bhuyan MM, Jeong JH. Single/Multi-Network Conductive Hydrogels-A Review. Polymers (Basel) 2024; 16:2030. [PMID: 39065347 PMCID: PMC11281081 DOI: 10.3390/polym16142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels made from conductive organic materials have gained significant interest in recent years due to their wide range of uses, such as electrical conductors, freezing resistors, biosensors, actuators, biomedical engineering materials, drug carrier, artificial organs, flexible electronics, battery solar cells, soft robotics, and self-healers. Nevertheless, the insufficient level of effectiveness in electroconductive hydrogels serves as a driving force for researchers to intensify their endeavors in this domain. This article provides a concise overview of the recent advancements in creating self-healing single- or multi-network (double or triple) conductive hydrogels (CHs) using a range of natural and synthetic polymers and monomers. We deliberated on the efficacy, benefits, and drawbacks of several conductive hydrogels. This paper emphasizes the use of natural polymers and innovative 3D printing CHs-based technology to create self-healing conductive gels for flexible electronics. In conclusion, advantages and disadvantages have been noted, and some potential opportunities for self-healing single- or multi-network hydrogels have been proposed.
Collapse
Affiliation(s)
| | - Md Murshed Bhuyan
- Department of Mechanical, Smart and Industrial Engineering (Mechanical Engineering Major), Gachon University 1342, Seongnam-si 13120, Republic of Korea;
| | - Jae-Ho Jeong
- Department of Mechanical, Smart and Industrial Engineering (Mechanical Engineering Major), Gachon University 1342, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
13
|
Ren Y, Zou B, Wu Y, Ye L, Liang Y, Li Y. Acryloyl chitosan as a macro-crosslinker for freezing-resistant, self-healing and self-adhesive ionogels-based multicompetent flexible sensors. Int J Biol Macromol 2024; 273:133002. [PMID: 38851613 DOI: 10.1016/j.ijbiomac.2024.133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Here, a polysaccharide derivative acryloyl chitosan (AcCS) is exploited as macro-crosslinker to synthesize a novel ionogel poly (acrylic acid-co-1-Vinyl-3-butyl imidazolium chloride) (AA-IL/AcCS) via a one-pot method. AcCS provides abundant physical and chemical crosslinking sites contributing to the high mechanical stretchability (elongation at break 600 %) and strength (tensile strength 137 kPa) of AA-IL/AcCS. The high-density of dynamic bonds (hydrogen bonds and electrostatic interactions) in the network of ionogels enables self-healing and self-adhesive features of AA-IL/AcCS. Meanwhile, AA-IL/AcCS exhibits high ionic conductivity (0.1 mS/cm) at room temperature and excellent antifreeze ability (-58 °C). The AA-IL/AcCS-based sensor shows diverse sensory capabilities towards temperature and humidity, moreover, it could precisely detect human motions and handwritings signals. Furthermore, AA-IL/AcCS exhibits excellent bactericidal properties against both gram-positive and gram-negative bacteria. This work opens the possibility of polysaccharides as a macro-crosslinkers for preparing ionogel-based sensors for wearable electronics.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Binhu Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Yantong Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Lijun Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China
| | - Yuanyuan Liang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China.
| | - Yongjin Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Rd., 311121 Hangzhou, PR China.
| |
Collapse
|
14
|
Liu D, Wang S, Wang H, Zhang Z, Wang H. A flexible, stretchable and wearable strain sensor based on physical eutectogels for deep learning-assisted motion identification. J Mater Chem B 2024; 12:6102-6116. [PMID: 38836422 DOI: 10.1039/d4tb00809j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Physical eutectogels as a newly emerging type of conductive gel have gained extensive interest for the next generation multifunctional electronic devices. Nevertheless, some obstacles, including weak mechanical performance, low self-adhesive strength, lack of self-healing capacity, and low conductivity, hinder their practical use in wearable strain sensors. Herein, lignin as a green filler and a multifunctional hydrogen bond donor was directly dissolved in a deep eutectic solvent (DES) composed of acrylic acid (AA) and choline chloride, and lignin-reinforced physical eutectogels (DESL) were obtained by the polymerization of AA. Due to the unique features of lignin and DES, the prepared DESL eutectogels exhibit good transparency, UV shielding capacity, excellent mechanical performance, outstanding self-adhesiveness, superior self-healing properties, and high conductivity. Based on the aforementioned integrated functions, a wearable strain sensor displaying a wide working range (0-1500%), high sensitivity (GF = 18.15), rapid responsiveness, and excellent stability and durability (1000 cycles) and capable of detecting diverse human motions was fabricated. Additionally, by combining DESL sensors with a deep learning technique, a gesture recognition system with accuracy as high as 98.8% was achieved. Overall, this work provides an innovative idea for constructing multifunction-integrated physical eutectogels for application in wearable electronics.
Collapse
Affiliation(s)
- Dandan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shiyu Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hui Wang
- Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu 610041, P. R. China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
15
|
Yang F, Chen Y, Zhang W, Gu S, Liu Z, Chen M, Chen L, Chen F, Zhang H, Ding Y, Liu Y, Chen J, Wang L. Tunable and fast-cured hyaluronic acid hydrogel inspired on catechol architecture for enhanced adhesion property. Int J Biol Macromol 2024; 271:132119. [PMID: 38816297 DOI: 10.1016/j.ijbiomac.2024.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.
Collapse
Affiliation(s)
- Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yunlu Chen
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Wentao Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Shaochun Gu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China.
| | - Maohu Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Leidan Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yude Ding
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yanshan Liu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
16
|
Liu T, Sun W, Mu C, Zhang X, Xu D, Yan Q, Luan S. Bionic double-crosslinked hydrogel of poly (γ-glutamic acid)/poly (N-(2-hydroxyethyl) acrylamide) with ultrafast gelling process and ultrahigh burst pressure for emergency rescue. Int J Biol Macromol 2024; 271:132360. [PMID: 38810432 DOI: 10.1016/j.ijbiomac.2024.132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Injectable adhesive hydrogels combining rapid gelling with robust adhesion to wet tissues are highly required for fast hemostasis in surgical and major trauma scenarios. Inspired by the cross-linking mechanism of mussel adhesion proteins, we developed a bionic double-crosslinked (BDC) hydrogel of poly (γ-glutamic acid) (PGA)/poly (N-(2-hydroxyethyl) acrylamide) (PHEA) fabricated through a combination of photo-initiated radical polymerization and hydrogen bonding cross-linking. The BDC hydrogel exhibited an ultrafast gelling process within 1 s. Its maximum adhesion strength to wet porcine skin reached 254.5 kPa (9 times higher than that of cyanoacrylate (CA) glue) and could withstand an ultrahigh burst pressure of 626.4 mmHg (24 times higher than that of CA glue). Notably, the BDC hydrogel could stop bleeding within 10 s from a rat liver incision 10 mm long and 5 mm deep. The wound treated with the BDC hydrogel healed faster than the control groups, underlining the potential for emergency rescue and wound care scenarios.
Collapse
Affiliation(s)
- Tingwu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Wen Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Changjun Mu
- Shandong Weigao Blood Purification Products Company Limited, Weihai 264210, PR China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China.
| |
Collapse
|
17
|
Ai J, Huang Y, Yin Z, Deng Y, Yan L, Liao J, Liang G, Chen C, Chang Y, Xiao C, Zhou J, Zhu Z, Liu C, Jiang Z, Ning C, Wang Z. Sea Anemone-Inspired Conducting Polymer Sensing Platform for Integrated Detection of Tumor Protein Marker and Circulating Tumor Cell. Adv Healthc Mater 2024:e2401305. [PMID: 38767216 DOI: 10.1002/adhm.202401305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Combining the detection of tumor protein markers with the capture of circulating tumor cells (CTCs) represents an ultra-promising approach for early tumor detection. However, current methodologies have not yet achieved the necessary low detection limits and efficient capture. Here, a novel polypyrrole nanotentacles sensing platform featuring anemone-like structures capable of simultaneously detecting protein biomarkers and capturing CTCs is introduced. The incorporation of nanotentacles significantly enhances the electrode surface area, providing abundant active sites for antibody binding. This enhancement allows detecting nucleus matrix protein22 and bladder tumor antigen with 2.39 and 3.12 pg mL-1 detection limit, respectively. Furthermore, the developed sensing platform effectively captures MCF-7 cells in blood samples with a detection limit of fewer than 10 cells mL-1, attributed to the synergistic multivalent binding facilitated by the specific recognition antibodies and the positive charge on the nanotentacles surface. This sensing platform demonstrates excellent detection capabilities and outstanding capture efficiency, offering a simple, accurate, and efficient strategy for early tumor detection.
Collapse
Affiliation(s)
- Jialuo Ai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yixuan Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhaoyi Yin
- School of Materials Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yingshan Deng
- School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Ling Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jingwen Liao
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou, 511458, P. R. China
| | - Guoyan Liang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Chong Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Yunbing Chang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Cairong Xiao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jiale Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zurong Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chengli Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
18
|
Zhang S, Guo F, Li M, Yang M, Zhang D, Han L, Li X, Zhang Y, Cao A, Shang Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J Colloid Interface Sci 2024; 658:137-147. [PMID: 38100970 DOI: 10.1016/j.jcis.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengdan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
19
|
Yang Y, Zhu Y, Yang A, Liu T, Fang Y, Wang W, Song Y, Li Y. Rapid fabricated in-situ polymerized lignin hydrogel sensor with highly adjustable mechanical properties. Int J Biol Macromol 2024; 260:129378. [PMID: 38218262 DOI: 10.1016/j.ijbiomac.2024.129378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Conductive hydrogels have been widely used as sensors owing to their tissue-like properties. However, the synthesis of conductive hydrogels with highly adjustable mechanical properties and multiple functions remains difficult to achieve yet highly needed. In this study, lignin hydrogel characterized by frost resistance, UV resistance, high conductivity, and highly adjustable mechanical properties without forming by-products was prepared through a rapid in-situ polymerization of acrylic acid/zinc chloride (AA/ZnCl2) aqueous solution containing lignin extract induced by the reversible quinone-catechol redox of the ZnCl2-lignin system at room temperature. Results revealed that the PAA/ZnCl2/lignin hydrogel exhibited mechanical properties with tensile stress (ranging from 0.08 to 3.28 MPa), adhesion to multiple surfaces (up to 62.05 J m-2), excellent frost resistance (-70-20 °C), UV resistance, and conductivity (0.967 S m-1), which further endow the hydrogel as potential strain and temperature sensor with wide monitor range (0-300 %), fatigue resistance, and quick response (70 ms for 150 % strain). This study proposed and developed a green, simple, economical, and efficient processing method for a hydrogel sensor in flexible wearable devices and man-machine interaction fields.
Collapse
Affiliation(s)
- Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Tian Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yiqun Fang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Weihong Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, PR China; College of home and art design, Northeast Forestry University, Harbin 150040, PR China.
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150006, PR China.
| |
Collapse
|
20
|
Wang Z, Wang S, Zhang L, Liu H, Xu X. Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions. RESEARCH (WASHINGTON, D.C.) 2024; 7:0298. [PMID: 38222114 PMCID: PMC10786319 DOI: 10.34133/research.0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.5 MPa for compressive strength, 1.6 MPa for tensile strength, 896.9% for stretchability, 9.2 MJ m-3 for toughness, 59.5 kJ m-2 for fracture energy, and 13.9 and 6.2 mS cm-1 for ionic conductivity at 25 and -70 °C, respectively. Enabled by these features, the resultant hydrogel ionic conductor is further demonstrated to be assembled as a self-powered electronic skin (e-skin) with high signal-to-noise ratio for use in monitoring movement and physiological signals regardless of cold temperatures, with hinting that could go beyond high-performance hydrogel ionic conductors.
Collapse
Affiliation(s)
- Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
- College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China
| | - Siheng Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
22
|
Wen X, Deng Z, Wang H, Shi J, Wang S, Wang H, Song Y, Du Z, Qiu J, Cheng X. High strength, self-healing sensitive ionogel sensor based on MXene/ionic liquid synergistic conductive network for human-motion detection. J Mater Chem B 2023; 11:11251-11264. [PMID: 37823270 DOI: 10.1039/d3tb01570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Ionogels with both high strength and high conductivity for wearable strain and pressure dual-mode sensors are needed for human motion and health monitoring. Here, multiple hydrogen bonds are introduced through imidazolidinyl urea (IU) as a chain extender to provide high mechanical and self-healing properties for the water-borne polyurethane (WPU). The MXene/ionic liquids synergistic conductive network provides excellent conductivity and also reduces the relative content of ionic liquids to maintain the mechanical properties of the ionogels. The mechanical strength of this ionogel reached 1.81-2.24 MPa and elongation at break reached 570-624%. It also has excellent conductivity (22.7-37.5 mS m-1), gauge factor (GF) (as a strain sensor, GF = 1.8), sensitivity (S) (as a press sensor, S1 = 29.8 kPa-1, S2 = 1.3 kPa-1), and fast response time (as a strain sensor = 185 ms; as a press sensor = 204 ms). The ionogel also exhibits rapid photothermal self-healing capabilities due to the inherent photothermal behavior of MXene. It can maintain good elasticity and conductivity at low temperatures. In addition, this ionogel is able to stretch for 1200 cycles without significant change in the relative change of resistance. The ionogel can be assembled as a strain sensor for monitoring human motion and as a pressure sensor array for obtaining pressure magnitude and position information.
Collapse
Affiliation(s)
- Xiao Wen
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Deng
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Hui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Jianyang Shi
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Shuang Wang
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Haibo Wang
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Yueming Song
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Zongliang Du
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Jinghong Qiu
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Xu Cheng
- College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Du J, Zhang Y, Huang Y, Zhang Q, Wang W, Yu M, Xu L, Xu J. Dual-Cross-Linked Chitosan-Based Antibacterial Hydrogels with Tough and Adhesive Properties for Wound Dressing. Macromol Rapid Commun 2023; 44:e2300325. [PMID: 37566735 DOI: 10.1002/marc.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Biocompatible chitosan-based hydrogels have attracted extensive attention in wound dressing due to their human skin-like tissue characteristics. However, it is a crucial challenge to fabricate chitosan-based hydrogels with versatile properties, including flexibility, stretchability, adhesivity, and antibacterial activity. In this work, a kind of chitosan-based hydrogels with integrated functionalities are facilely prepared by solution polymerization of acrylamide (AAm) and sodium p-styrene sulfonate (SS) in the presence of quaternized carboxymethyl chitosan (QCMCS). Due to the dual cross-linking between QCMCS and P(AAm-co-SS), the optimized QCMCS/P(AAm-co-SS) hydrogel exhibits tough mechanical properties (0.767 MPa tensile stress and 1100% fracture strain) and moderate tissue adhesion (11.4 kPa). Moreover, biological evaluation in vitro illustrated that as-prepared hydrogel possesses satisfactory biocompatibility, hemocompatibility, and excellent antibacterial ability (against S. aureus and E. coli are 98.8% and 97.3%, respectively). Then, the hydrogels are tested in a rat model for bacterial infection incision in vivo, and the results show that they can significantly accelerate epidermal regeneration and wound closure. This is due to their ability to reduce the inflammatory response, promote the formation of collagen deposition and granulation tissue. The proposed chitosan-based antibacterial hydrogels have the potential to be a highly effective wound dressing in clinical wound healing.
Collapse
Affiliation(s)
- Jingjing Du
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yutong Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yilin Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qiao Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Wenzhi Wang
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
24
|
Hayat M, Bukhari SAR, Irfan M. Electrospinning of bovine serum albumin-based nano-fibers: From synthesis to medical prospects; Challenges and future directions. Biotechnol J 2023; 18:e2300279. [PMID: 37632263 DOI: 10.1002/biot.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Bovine serum albumin (BSA) is a globular non-glycoprotein that has gotten a lot of attention because of its unique properties like biocompatibility, biodegradability, non-immunogenicity, non-toxicity, and strong resemblance to the natural extracellular matrix (ECM). Given its robust mechanical properties, such as interfacial tension, conductivity, swelling resistance, and viscoelasticity, it can be concluded that it is an appropriate matrix for producing novel BSA-based nanoconstructs. Thus, simple analytic methods are required for accurately detecting BSA as a model protein in medical sciences and healthcare. Furthermore, the characteristics mentioned above aid BSA in the electrospinning process, which results in fibers conjugated with other polymers. Electrospun synthesis has recently received much attention for its ability to produce stable, biomimicking, highly porous, 3D BSA-derived nano-fibers. As a result, BSA-based nano-fibers have achieved exclusive developments in the medical sector, such as tissue engineering for the remodeling of damaged tissue or organ repair by creating artificial ones. Meanwhile, they could be used as drug delivery systems (DDS) for target-specific drug delivery, wound dressings, and so on. This study illustrates the structural and physicochemical properties of BSA and the determination of BSA using various methods, by citing recent reports and current developments in the medical field. Furthermore, current challenges and future directions are also highlighted.
Collapse
Affiliation(s)
- Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
25
|
Lei L, Wang H, Jia Q, Tian Y, Wang S. Highly stretchable, supersensitive, and self-adhesive ionohydrogels using waterborne polyurethane micelles as cross-linkers for wireless strain sensors. J Mater Chem B 2023; 11:7478-7489. [PMID: 37455619 DOI: 10.1039/d3tb00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Due to the rapid development of multi-functional flexible wearable sensors, the development prospects of ionohydrogels with excellent mechanical properties and high sensitivity are necessary. In this work, a novel waterborne polyurethane (WPU) micelle with reactive groups on the surface has been prepared as a crosslinker and then reacted with polyacrylamide (PAM) to obtain a polyacrylamide-polyurethane/ionic liquid (PAM-WPU/IL) ionohydrogel. With the aid of ion-dipole interaction and crosslinks in the composite, the ionohydrogel exhibited ultrastretchability (up to 2927%), good mechanical resilience, and excellent self-adhesion strength (46.01 kPa). Furthermore, the ionohydrogel was used as a strain sensor for monitoring human movement with high strain sensitivity (gauge factor = 35). It is believed that this study provides a new idea for designing a multifunctional ionohydrogel for use in wearable electronics.
Collapse
Affiliation(s)
- Lingling Lei
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Qihan Jia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yali Tian
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610065, P. R. China.
| | - Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
26
|
Hadad M, Hadad N, Zestos AG. Carbon Electrode Sensor for the Measurement of Cortisol with Fast-Scan Cyclic Voltammetry. BIOSENSORS 2023; 13:626. [PMID: 37366991 DOI: 10.3390/bios13060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
Cortisol is a vital steroid hormone that has been known as the "stress hormone", which is elevated during times of high stress and anxiety and has a significant impact on neurochemistry and brain health. The improved detection of cortisol is critically important as it will help further our understanding of stress during several physiological states. Several methods exist to detect cortisol; however, they suffer from low biocompatibility and spatiotemporal resolution, and they are relatively slow. In this study, we developed an assay to measure cortisol with carbon fiber microelectrodes (CFMEs) and fast-scan cyclic voltammetry (FSCV). FSCV is typically utilized to measure small molecule neurotransmitters by producing a readout cyclic voltammogram (CV) for the specific detection of biomolecules on a fast, subsecond timescale with biocompatible CFMEs. It has seen enhanced utility in measuring peptides and other larger compounds. We developed a waveform that scanned from -0.5 to -1.2 V at 400 V/s to electro-reduce cortisol at the surface of CFMEs. The sensitivity of cortisol was found to be 0.87 ± 0.055 nA/μM (n = 5) and was found to be adsorption controlled on the surface of CFMEs and stable over several hours. Cortisol was co-detected with several other biomolecules such as dopamine, and the waveform was fouling resistant to repeated injections of cortisol on the surface of the CFMEs. Furthermore, we also measured exogenously applied cortisol into simulated urine to demonstrate biocompatibility and potential use in vivo. The specific and biocompatible detection of cortisol with high spatiotemporal resolution will help further elucidate its biological significance and further understand its physiological importance and impact on brain health.
Collapse
Affiliation(s)
- Michelle Hadad
- Department of Chemistry, American University, Washington, DC 20016, USA
| | - Nadine Hadad
- Department of Chemistry, American University, Washington, DC 20016, USA
| | | |
Collapse
|
27
|
Meng R, Zhu H, Deng P, Li M, Ji Q, He H, Jin L, Wang B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front Bioeng Biotechnol 2023; 11:1137145. [PMID: 37113668 PMCID: PMC10127125 DOI: 10.3389/fbioe.2023.1137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Albumin is derived from blood plasma and is the most abundant protein in blood plasma, which has good mechanical properties, biocompatibility and degradability, so albumin is an ideal biomaterial for biomedical applications, and drug-carriers based on albumin can better reduce the cytotoxicity of drug. Currently, there are numerous reviews summarizing the research progress on drug-loaded albumin molecules or nanoparticles. In comparison, the study of albumin-based hydrogels is a relatively small area of research, and few articles have systematically summarized the research progress of albumin-based hydrogels, especially for drug delivery and tissue engineering. Thus, this review summarizes the functional features and preparation methods of albumin-based hydrogels, different types of albumin-based hydrogels and their applications in antitumor drugs, tissue regeneration engineering, etc. Also, potential directions for future research on albumin-based hydrogels are discussed.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers’ University, Yancheng, China
| | - Hao He
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Department of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
28
|
Kang Q, Xu Y, Chen X. Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. SENSORS (BASEL, SWITZERLAND) 2023; 23:3881. [PMID: 37112222 PMCID: PMC10141710 DOI: 10.3390/s23083881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Monitoring of uric acid (UA) levels in biological samples is of great significance for human health, while the development of a simple and effective method for the precise determination of UA content is still challenging. In the present study, a two-dimensional (2D) imine-linked crystalline pyridine-based covalent organic framework (TpBpy COF) was synthesized using 2,4,6-triformylphloroglucinol (Tp) and [2,2'-bipyridine]-5,5'-diamine (Bpy) as precursors via Schiff-base condensation reactions and was characterized with scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) assays. The as-synthesized TpBpy COF exhibited excellent visible light-induced oxidase-like activity, ascribed to the generation of superoxide radicals (O2•-) by photo-generated electron transfer. TpBpy COF could efficiently oxidase the colorless substrate 3,3',5,5'-tetramethylbenzydine (TMB) into blue oxidized TMB (oxTMB) under visible light irradiation. Based on the color fade of the TpBpy COF + TMB system by UA, a colorimetric procedure was developed for UA determination with a detection limit of 1.7 μmol L-1. Moreover, a smartphone-based sensing platform was also constructed for instrument-free and on-site detection of UA with a sensitive detection limit of 3.1 μmol L-1. The developed sensing system was adopted for UA determination in human urine and serum samples with satisfactory recoveries (96.6-107.8%), suggesting the potential practical application of the TpBpy COF-based sensor for UA detection in biological samples.
Collapse
Affiliation(s)
- Qi Kang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yulong Xu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuwei Chen
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|