1
|
Liu WY, Jia XY, Zheng HY, Zhang HH, Xiao JX, Huang GQ. Pickering emulsions stabilized by protein/polysaccharide polyelectrolyte complexes for lipase catalysis. Food Chem 2025; 480:143969. [PMID: 40138821 DOI: 10.1016/j.foodchem.2025.143969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The Pickering emulsion stabilized by ovalbumin/pectin polyelectrolyte complex with porcine pancreatic lipase (PPL) dissolved in the aqueous phase was investigated for its feasibility in biphasic catalysis. CLSM and QCM-D analysis revealed that PPL discretely adsorbed to emulsion interface, though they were both negatively charged. The hydrolysis of p-NPP was favored in low stabilizer concentrations and could be saturated by PPL, and the optimum conditions were pH 6.5, ovalbumin to pectin mass ratio 1:3, complex concentration 0.25 %, and PPL dosage 0.6 %. Under these conditions, the Pickering emulsion conferred a conversion rate of 0.87 μmol/h and product yield of 46.8 % after reaction for 5 h, which were significantly lower than 1.37 μmol/h and 73.6 % of the conventional oil/water system. Hence, Pickering emulsions stabilized by protein/polysaccharide polyelectrolyte complexes might not be ideal media for biphasic catalysis, possibly due to the viscoelastic property of the complexes that could better cover emulsion interfaces.
Collapse
Affiliation(s)
- Wen-Yu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin-Yue Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao-Yue Zheng
- Bathers College of Future Agricultural Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui-Hui Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
An H, Gong N, Chen H, Xie B, Zhang Y, Luo D. Metal-organic framework-based tunable platform for the immobilization of lipase with enhanced activity in non-aqueous systems. Int J Biol Macromol 2025; 300:140272. [PMID: 39864684 DOI: 10.1016/j.ijbiomac.2025.140272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane. The reduced Km value demonstrated a superior affinity of lipase@NKMOF-101s toward to the substrate in non-aqueous reaction system. Moreover, the effects of MOF particle size, metal ions, and enzyme distribution on the catalytic performance of the immobilized lipase were systematically investigated. The results demonstrated that as the particle size of lipase@NKMOF-101s decreased, the apparent enzyme activity increased dramatically. Metal ions in MOFs exhibited activation effect toward to enzyme activity and an approximate 12-fold increase in activity was achieved when transesterification was performed using lipase@NKMOF-101-Mn compared with free lipase. Notably, lipase@NKMOF-101-Co and lipase@NKMOF-101-Ni exhibited substrate selectivity owing to the specific distribution of the lipase in the MOF carriers. Lipase@NKMOF-101s can maintain >80 % of its initial activity even after 5 recycles and a long-term storage (30 days). Consequently, NKMOF-101 is a tunable and sustainable platform for the construction of enzyme@MOFs biocatalysts with superior catalytic performance.
Collapse
Affiliation(s)
- Hongde An
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China.
| | - Nanxin Gong
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China
| | - Hao Chen
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China
| | - Bo Xie
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China
| | - Yahui Zhang
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China
| | - Duqiang Luo
- College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China.
| |
Collapse
|
3
|
Lin Z, Huang L, Abker AM, Oh DH, Kassem JM, Salama M, Shi R, Fu X. Magnetic polydopamine nanoparticles as stabilisers for enzyme-Pickering emulsions: Application in the interfacial catalytic reaction of olive oil. Food Chem 2025; 463:141315. [PMID: 39306998 DOI: 10.1016/j.foodchem.2024.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 09/14/2024] [Indexed: 11/14/2024]
Abstract
Solid particles are essential for stabilising Pickering emulsions and improving interfacial catalytic reactions. We constructed magnetic polydopamine nanoparticles to stabilise lipase-Pickering emulsions for olive oil deacidification. The results showed that the nanoparticles had a core-shell structure with an average particle size of 605.8 nm, a zeta potential of -39.3 mV and a contact angle of 55.9°, which effectively stabilised the emulsion. The particles were added to the lipase solution and sonicated to construct the emulsion system. The emulsion droplets were the smallest and most uniformly distributed under 400 W ultrasonic irradiation for 10 min. The lipase adsorbed on the oil-water interface and promoted the hydrolysis of olive oil. The released fatty acid content increased 1.7-fold compared with the non-emulsion. This study not only provides a new immobilisation method for the interfacial catalysis of lipase but also provides ideas for the high-value utilisation of high acid-value oil resources.
Collapse
Affiliation(s)
- Ziqi Lin
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Adil Mohamed Abker
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 200701, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ran Shi
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Luo T, Wei Z, Xue C. Novel food-grade water-in-water emulsion fabricated by amylopectin and tara gum: Property evaluation and stability analysis. Carbohydr Polym 2025; 348:122937. [PMID: 39567153 DOI: 10.1016/j.carbpol.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
To surmount the limitation of the instability of the currently reported water-in-water (W/W) emulsions, novel W/W emulsionss were constructed using amylopectin (AMP) and tara gum (TG) as the phases, and differently shaped ovalbumin (OVA) particles were used as stabilizers to improve the stability of W/W emulsions. Experiments displayed that the conformation of OVA could be changed by heating treatment, thus forming fibrous or spherical OVA particles that had the potential to stabilize TG-in-AMP (TG/AMP) emulsions. The emulsions had the best stability when the pH was 4 and the concentration of OVA particles was 3 %. Moreover, since ovalbumin fibril (OVAF) had better adsorption at the water-water interface than ovalbumin sphere (OVAS), OVAF-stabilized TG/AMP emulsion (OF-TE) had a relatively denser interfacial layer and exhibited more satisfactory ionic stability and physical stability than OVAS-stabilized TG/AMP emulsion (OS-TE). The rheological results demonstrated that OVAF and OVAS had little effect on the viscosity of TG/AMP emulsions. In brief, OVAF was more effective in improving the stability of TG/AMP emulsions than OVAS, and OF-TE did not show phase separation for at least 5 days. This study may be of great significance in improving the stability of food-grade W/W emulsions.
Collapse
Affiliation(s)
- Tian Luo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
5
|
Shen G, Qiu X, Hou X, Li M, Zhou M, Liu X, Chen A, Zhang Z. Development of Zanthoxylum bungeanum essential oil Pickering emulsions using potato protein-chitosan nanoparticles and its application in mandarin preservation. Int J Biol Macromol 2024; 277:134100. [PMID: 39048005 DOI: 10.1016/j.ijbiomac.2024.134100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to develop Pickering emulsions for the encapsulation of Zanthoxylum bungeanum essential oil (ZBEO) using potato protein-chitosan composite nanoparticles (PCCNs). The sustained release properties of ZBEO, antifungal efficacy, and preservation effects of formulated ZBEO-Pickering emulsions (ZBEO-PEs) on mandarins were evaluated. Particle size, zeta potential, emulsifying activity (EAI), and emulsifying stability (ESI) analysis showed that PCCNs prepared with the potato protein to chitosan mass ratio of 10:3 provided optimal emulsification and stabilization. Techniques such as differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) demonstrated that chitosan introduction increased the wettability of potato protein through electrostatic, hydrogen bonding, and hydrophobic interactions. ZBEO-PEs formulated with 3.0 % PCCNs and an oil fraction of 0.40 showed best encapsulation efficiency, storage stability and sustained release. Confocal laser scanning microscopy confirmed the adsorption of PCCNs, forming dense interface layers on the surface of oil droplets, thereby enhancing the stability of ZBEO-PEs. In vitro experiments demonstrated enhanced antifungal activity of ZBEO-PEs against Penicillium italicum and Penicillium digitatum. Additionally, storage experiments indicated that ZBEO-PEs coatings effectively controlled postharvest decay caused by Penicillium spp. in mandarins. Overall, the findings suggest that PCCNs are highly efficient emulsifiers for ZBEO Pickering emulsions, underscoring their potential as preservative coatings for mandarins.
Collapse
Affiliation(s)
- Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaofang Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China; Sichuan Ng Fung Li Hong Food Co. Ltd., Ya'an, Sichuan 625302, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
6
|
Zhao M, Li F, Li H, Lin Q, Zhou X, Wu X, Wu W. Effects of rice bran rancidity on the interfacial adsorption properties of rice bran protein fibril aggregates and stability of high internal phase Pickering emulsions. Food Chem 2024; 443:138611. [PMID: 38309025 DOI: 10.1016/j.foodchem.2024.138611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The effects of rice bran rancidity-induced protein oxidation and heating time on the stability of rice bran protein fibril aggregates (RBPFA)-high internal phase Pickering emulsions (HIPPEs) were investigated. The optimal conditions for RBPFA-HIPPEs were 8 mg/mL RBPFA with an oil phase volume fraction of 75 %. Moderate oxidation (rice bran stored for 3 d) and moderate heating (8 h) enhanced the wettability, flexibility, diffusion rate, and adsorption rate of RBPFA, meanwhile, the rheological properties of RBPFA-HIPPEs increased. RBPFA-HIPPEs could be stably stored for 50 d at 25 °C. Moderate oxidized and moderate heated RBPFA-stabilized HIPPEs could remain stable after heat treatment and could be re-prepared after freeze-thaw (3 cycles). Additionally, the stability of RBPFA-HIPPEs was significantly related to the structural characteristics and interfacial properties of RBPFA. Overall, moderate oxidation and moderate heating enhanced the storage, thermal, and freeze-thaw stability of RBPFA-HIPPEs by improving the interfacial properties of RBPFA.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fang Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoling Zhou
- Chen Keming Food Manufacturing Co., Ltd, Changsha, Hunan 414000, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
7
|
Xia C, Xu Z, Xu M, Zhang C, Xu B, Liu B, Yan X, Zheng Z, Zhang R. Body temperature responsive capsules templated from Pickering emulsion for thermally triggered release of β-carotene. Int J Biol Macromol 2024; 266:130940. [PMID: 38521331 DOI: 10.1016/j.ijbiomac.2024.130940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
In recent years, functional foods with lipophilic nutraceutical ingredients are gaining more and more attention because of its potential healthy and commercial value, and developing of various bioderived food-grade particles for use in fabrication of Pickering emulsion has attracted great attentions. Herein, the bio-originated sodium caseinate-lysozyme (Cas-Lyz) complex particles were firstly designed to be used as a novel interfacial emulsifier for Pickering emulsions. Pickering emulsions of various food oils were all successfully stabilized by the Cas-Lyz particles without addition of any synthetic surfactants, while the fluorescence microscopy and SEM characterizations clearly evidenced Cas-Lyz particles were attached on the surface of emulsion droplets. Additionally, the Cas-Lyz particles stabilized emulsion can also be used to encapsulate the β-carotene-loaded soybean oil, suggestion a potential method to carry lipophilic bioactive ingredients in an aqueous formulation for food, cosmetic and medical industry. At last, we present a Pickering emulsion strategy that utilizes biocompatible, edible and body temperature-responsive lard oil as the core material in microcapsules, which can achieve hermetic sealing and physiological temperature-triggered release of model nutraceutical ingredient (β-carotene).
Collapse
Affiliation(s)
- Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Zihui Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Maodong Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Bo Xu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Benhai Liu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xin Yan
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenan Zheng
- Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|