1
|
Qin S, Gao Y, Zhao M, Wang Y, Zhai M, Chen M, Xu X, Hu C, Lei J, Chu H, Gao L, Jin F. Acriflavine-modified UIO-66 ratiometric fluorescent sensor for highly selective and fast detection of hypochlorite in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125333. [PMID: 39492089 DOI: 10.1016/j.saa.2024.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Hypochlorite (ClO-) as a kind of highly toxic pollutant has garnered significant interest in detection methods, highlighting the pressing need to develop intelligent functional materials for the qualitative and quantitative analysis of ClO- in aqueous solutions. Herein, a ratiometric fluorescent sensor was prepared by the combination of acriflavine (Acr) and UIO-66 via a post-synthetic modification strategy. Acr/UIO-66 exhibited both high crystallinity typical of metal-organic frameworks and demonstrated good fluorescent and thermal stability. Additionally, Acr/UIO-66 functioned effectively as a dual-responsive fluorescent platform for detecting ClO- in domestic drinking and surface water samples. This material displayed high sensitivity, exceptional selectivity, and superior anti-interference capabilities, along with fast respond time (60 s), a wide pH range (4.0-7.0), high recoveries (94.46-118.00 %), a broad linear range (0-28 µmol L-1) and low detection limits (0.74 µmol L-1). This study broadened the potential applications of fluorescent metal-organic frameworks and presented a feasible solution for water quality monitoring.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Yu Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Minghui Zhai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Mo Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xidi Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Chunqi Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Jinxin Lei
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, PR China.
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, Qiqihar 161000, PR China.
| |
Collapse
|
2
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Verdoliva V, Muzio G, Autelli R, Saviano M, Bedini E, De Luca S. Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol. ACS POLYMERS AU 2024; 4:214-221. [PMID: 38882036 PMCID: PMC11177298 DOI: 10.1021/acspolymersau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
A microwave-assisted esterification reaction to prepare hyaluronan-curcumin derivatives by employing a solvent-free process was developed. In particular, a solid-state strategy to react two molecules characterized by totally different solubility profiles was developed. Hyaluronic acid, a highly hydrosoluble polysaccharide, was reacted with hydrophobic and even water-unstable curcumin. Microwave (MW) irradiation was employed to activate the reaction between the two solid compounds through the direct interaction with them and to preserve the integrity of the sensitive curcumin species. This new protocol can be considered efficient, fast, and also eco-friendly, avoiding the employment of toxic organic bases and solvents. A cytotoxicity test suggested that the developed hyaluronan-curcumin conjugate (HA-CUR) could be considered a candidate for its implementation as a new material. In addition, preliminary studies revealed promising anti-inflammatory activity and open future perspectives of further investigation.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| |
Collapse
|
4
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|