1
|
Niyirora P, Cyganowski P. Catalytic Production of Aromatic Amines from Nitroaromatics-Addressing a Critical Challenge in Environmental Remediation. Chemistry 2025; 31:e202500281. [PMID: 40079318 DOI: 10.1002/chem.202500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The present work reviews the continuous-flow hydrogenation of nitroaromatic compounds (NACs) to aromatic amines, highlighting its significance in sustainable chemical manufacturing. These processes offer enhanced efficiency, scalability, and safety compared to traditional batch methods, addressing the environmental concerns associated with NACs contamination. In this context, the flow-mode processes of NACs hydrogenation may be considered as tools for catalytically driven extraction of fine chemical products. Within this review, key aspects, including an overview of flow reactor designs-such as packed-bed and microreactors-optimizing heat and mass transfer are discussed. Additionally, various catalytic materials, including bimetallic nanoparticles and metal-organic frameworks, are explored for their improved stability and selectivity in NACs reduction. The kinetics of these reactions aids in understanding the factors affecting reaction, and mass transfer rates. Despite the advantages, challenges remain, including catalyst deactivation and reactor design complexities, particularly during scale-up for industrial applications. Future trends indicate a shift toward hybrid systems integrating photocatalysis and biocatalysis, enhancing the versatility of continuous-flow processes. Ultimately, the adoption of these technologies is anticipated to play a crucial role in the circular economy by converting hazardous waste into valuable products, thereby fostering innovation and environmental preservation in the chemical industry.
Collapse
Affiliation(s)
- Patrick Niyirora
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. S. Wyspiańskiego 27, Wrocław, 50-370, Poland
| | - Piotr Cyganowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. S. Wyspiańskiego 27, Wrocław, 50-370, Poland
| |
Collapse
|
2
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Baran NY, Çalışkan M, Kızılbulut N, Baran T. Pd@Na-CMC/g-C 3N 4: A nanostructured catalyst system based on sodium carboxymethyl cellulose/graphitic carbon nitride hydrogel beads and its performance in the treatment of organic and inorganic pollutants in water. Int J Biol Macromol 2024; 276:134001. [PMID: 39032897 DOI: 10.1016/j.ijbiomac.2024.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The chemical reduction of organic or inorganic water contaminants is very important for both human health and pollution control. However, challenges still persist in preparing catalysts for chemical reduction, and there is a need for the development of inexpensive, easily synthesized, and effective catalyst systems. In this study, we have synthesized a new palladium nanocatalyst supported on the composite hydrogel beads composed of sodium carboxymethyl cellulose (Na-CMC) and graphitic carbon nitride (g-C3N4). The Pd@Na-CMC/g-C3N4 composite was fully characterized using FE-SEM, XRD, BET, EDS, TEM, and EDS mapping analysis, confirming its successful preparation at the nano-scale. Pd@Na-CMC/g-C3N4 was utilized to reduce various nitroaromatics such as 4-nitrophenol (4-NP), 2-nitrophenol (2-NA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPDA), and organic dyes including methylene blue (MB), methyl orange (MO), Rhodamine B (RhB), as well as potassium hexacyanoferrate(III) (K3[Fe(CN)6]), which is the inorganic contaminant. While Pd@Na-CMC/g-C3N4 completely reduced nitroaromatics within 65-120 s at 1 × 10-4 M concentration, organic dyes within 0-60 s at 1 × 10-5 M concentration, and K3[Fe(CN)6] within 90 s at 0.002 M concentration in water at room temperature. Rate constant values (kapp) of 4-NP, 2-NA, 4-NA, 4-NPDA, MO, RhB, and K3[Fe(CN)6] were calculated to be 0.0085 s-1, 0.012 s-1, 0.016 s-1, 0.01 s-1, 0.013 s-1, 0.021 s-1, and 0.015 s-1, respectively. Additionally, the Pd@Na-CMC/g-C3N4 displayed high stability and even after four consecutive runs, it was able to reduce 4-NP and MO without any significant loss in its performance.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100 Aksaray, Turkey.
| | - Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Nurcan Kızılbulut
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| |
Collapse
|
5
|
Barzegar G, Dehghanifard E, Esrafili A, Kermani M, Sanaei D, Kalantary RR. Enhancing oxygen reduction reaction performance through eco-friendly chitosan gel-assisted molten salt strategy: Small NiCo alloy nanoparticles decorated with high-loading single Fe-N X. Int J Biol Macromol 2024; 267:131481. [PMID: 38599431 DOI: 10.1016/j.ijbiomac.2024.131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
We developed an effective and eco-friendly strategy using chitosan gel-molten salt to achieve high loading (2.23 At. %) of single Fe-NX as assistive active sites. These sites were combined with small NiCo alloy NPs distributed on porous carbon aerogels to boost the ORR performance. The FeSAs-NiCo alloy@N-C sphere exhibits exceptional mass activity and specific activity of 3.705 A.mg-1 and 8.79 mA.cm-2(ECSA), respectively, at 0.85 V versus RHE. It has a superior onset potential of 1.08 V versus RHE, surpassing that of its nanoparticle Fe counterpart and NiCo alloy@N-C sphere. The significant improvement in ORR performance of the FeSAs-NiCo alloy@N-C sphere could be attributed to the positive effects of increased lattice strain due to the single atoms of Fe-NX hybridized with small NiCo alloy NPs. The chitosan gel-assisted molten salt strategy and assistive active sites of Fe-NX hybridized with NiCo alloy NPs regulate the electronic properties of the FeSAs-NiCo alloy@N-C sphere, both geometrically via lattice strain mismatch and electronically through shifting of the d-band center. This could influence the binding energies for oxygen and/or oxygen reduction intermediate adsorption/desorption. The additional improvement in the ORR performance of the FeSAs-NiCo alloy@N-C sphere also benefits from having a lower electrochemical activation energy.
Collapse
Affiliation(s)
- Gelavizh Barzegar
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Daryoush Sanaei
- Center for Climate Change and Health Research (CCCHR), Dezful University of Medical Sciences, Dezful, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Baran NY, Çalışkan M, Özpala A, Baran T. Fabrication of nano-sized Pd catalyst supported on sodium carboxymethyl cellulose/gum Arabic/sodium alginate functionalized microspheres for catalytic reduction of nitro compounds, organic dyes, K 3[Fe(CN) 6], and chromium(VI) pollutants. Int J Biol Macromol 2024; 262:130134. [PMID: 38354923 DOI: 10.1016/j.ijbiomac.2024.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The rapid development of industrialization and urbanization, along with the increasing human population, has led to serious water pollution. Among water pollutants, organic and inorganic pollutants cause serious problems for both the environment and human health due to their toxicity and carcinogenic properties. One of the best ways to eliminate these pollutants is to develop eco-friendly, efficient, and long-life catalysts. For this purpose, in this study, environmentally friendly microspheres containing sodium alginate (SA), sodium carboxymethyl cellulose (Na-CMC), and gum Arabic (GA) were fabricated as potential stabilizers (SA/Na-CMC/GA). Subsequently, newly heterogeneous catalyst system was designed by immobilizing Pd nanoparticles on them and characterized (Pd@SA/Na-CMC/GA). The catalytic reduction ability of Pd@SA/Na-CMC/GA was then investigated against the reduction of 4-nitroaniline (4-NA), 4-nitrophenol (4-NP), 2-nitroaniline (2-NA), 4-nitro-o-phenylenediamine (4-NPDA), methylene blue (MB), methyl orange (MO), Rodamin B (RhB), potassium hexacyanoferrate(III) (K3[Fe(CN)6]), and hexavalent chromium (Cr(VI)) using NaBH4. The Pd@SA/Na-CMC/GA effectively catalyzed these contaminants in a short period of time under mild reaction conditions. As a result of the performed kinetics studies, rate constants were found to be 0.009 s-1, 0.016 s-1, 0.027 s-1, 0.018 s-1, 0.043 s-1, 0.058 s-1, 0.038 s-1 and 0.041 s-1 for the reduction of 4-NP, 2-NA, 4-NA, 4-NPDA, MO, RhB, K3[Fe(CN)6], and Cr(VI), respectively. Additionally, MO was immediately reduced by Pd@SA/Na-CMC/GA. The microsphere nature of Pd@SA/Na-CMC/GA allowed for easy recovery through simple filtration and successful reuse for up to six cycles.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100 Aksaray, Turkey
| | - Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Ali Özpala
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
7
|
Rehan M, Montaser AS, El-Shahat M, Abdelhameed RM. Decoration of viscose fibers with silver nanoparticle-based titanium-organic framework for use in environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13185-13206. [PMID: 38240971 PMCID: PMC10881727 DOI: 10.1007/s11356-024-31858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
To effectively remove pharmaceuticals, nitroaromatic compounds, and dyes from wastewater, an efficient multifunctional material was created based on silver nanoparticles (Ag) and MIL-125-NH2 (MOF) immobilized on viscose fibers (VF) as a support substrate. Firstly, silver nanoparticles (Ag) were immobilized on the surface of viscose fibers (VF) via in situ synthesis using trisodium citrate (TSC) as a reducing agent to create (VF-Ag). Then, VF and VF-Ag were decorated with the titanium metal-organic framework MIL-125-NH2 (MOF) to create VF-MOF and VF-Ag-MOF. The influence of VF-Ag, VF-MOF, and VF-Ag-MOF on the sonocatalytic or sonophotocatalytic degradation of sulfa drugs was investigated. The results show that VF-Ag-MOF showed excellent sonocatalytic and sonophotocatalytic activity towards the degradation of sulfa drugs compared to VF-Ag and VF-MOF. Furthermore, sonophotodegradation showed a dramatic enhancement in the efficiency of degradation of sulfa drugs compared to sonodegradation. The sonophotodegradation degradation percentage of sulfanilamide, sulfadiazine, and sulfamethazine drugs in the presence of VF-Ag-MOF was 65, 90, and 95 after 45 min of ultrasonic and visible light irradiation. The catalytic activity of VF-Ag, VF-MOF, and VF-Ag-MOF was evaluated through the conversion of p-nitrophenol (4-NP) to p-aminophenol (4-AP). The results demonstrate that VF-Ag-MOF had the highest catalytic activity, followed by VF-Ag and VF-MOF. The conversion percentage of 4-NP to 4-AP was 69%. The catalytic or photocatalytic effects of VF-Ag, VF-MOF, and VF-Ag-MOF on the elimination of methylene blue (MB) dye were investigated. The results demonstrate that VF-Ag-MOF showed high efficiency in removing the MB dye through the reduction (65%) or photodegradation (71%) after 60 min. VF-Ag-MOF composites structure-activity relationships represent that doping within silver NPs enhanced the photocatalytic activity of MIL-125-NH2, which could be explained as follows: (i) Due to the formation of a Schottky barrier at the junction between MIL-125-NH2 and Ag NPs, the photogenerated electrons in the conduction band of MIL-125-NH2 were supposed to be quickly transferred to the valence band of the Ag NPs, and subsequently, the electrons were transferred to the conduction band of Ag NPs. This considerable electron transferring process, which is reported as Z scheme heterojunction, can efficiently suppress the recombination of electron/hole pairs in VF-Ag-MIL-125-NH2 composites. (ii) Sufficient separation between the photogenerated charge carriers (holes and electrons) and avoiding their recombination enhanced the photocatalytic activity of composites.
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Ahmed S Montaser
- Department of Pretreatment and Finishing of Cellulosic-Based Textiles, Textile Research and Technology Institute, National Research Centre, 33 Bohoth Street, Dokki, P.O. Box 12622, Giza, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
8
|
Zhu Q, Yin X, Tan Y, Wei D, Li Y, Pei X. Highly dispersed palladium nano-catalyst anchored on N-doped nanoporous carbon microspheres derived from chitosan for efficient and stable hydrogenation of quinoline. Int J Biol Macromol 2024; 254:127949. [PMID: 37951427 DOI: 10.1016/j.ijbiomac.2023.127949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Under the background of green chemistry, the synthesis of N-heterocycles using efficient, stable and long-life catalysts has still faced great challenges. Herein, we used biomass resource chitosan to fabricate a nanoporous chitosan carbon microsphere (CCM), and successfully designed a stable and efficient Pd nano-catalyst (CCM/Pd). Various physicochemical characterizations provided convincible evidences that the palladium nanoparticles (NPs) were tightly and evenly dispersed on the CCM with a mean diameter of 2.28 nm based on the nanoporous structure and abundant functional N/O groups in CCM. Importantly, the graphitized constructure, the formed defects and larger surface area in CCM were able to promote the immobilization of Pd NPs and the electron transfer between Pd and CCM, thereby significantly improving the catalytic activity. The CCM/Pd catalyst was applied for hydrogenation of quinoline compounds, which showed excellent catalytic activity and durability, as well as good substrate applicability. The application of renewable biomass-based catalysts contributes to the progression of a green/sustainable society.
Collapse
Affiliation(s)
- Qiudi Zhu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Xiaogang Yin
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Youjuan Tan
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Duoduo Wei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianglin Pei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Lightweight Materials Engineering Research Center of the Education Department of Guizhou, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
9
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Rojas MA, Amalraj J, Santos LS. Biopolymer-Based Composite Hydrogels Embedding Small Silver Nanoparticles for Advanced Antimicrobial Applications: Experimental and Theoretical Insights. Polymers (Basel) 2023; 15:3370. [PMID: 37631426 PMCID: PMC10458816 DOI: 10.3390/polym15163370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, we report a two-step methodology for the synthesis of small silver nanoparticles embedded into hydrogels based on chitosan (CS) and hydroxypropyl methylcellulose (HPMC) biopolymers. This method uses d-glucose as an external green reducing agent and purified water as a solvent, leading to an eco-friendly, cost-effective, and biocompatible process for the synthesis of silver nanocomposite hydrogels. Their characterization comprises ultraviolet-visible spectroscopy, Fourier-transform infrared spectra, differential scanning calorimetry, scanning electron microscopy with energy-dispersive spectroscopy, and transmission electron microscopy assays. Moreover, the structural stability of the hydrogels was investigated through sequential swelling-deswelling cycles. The nanomaterials showed good mechanical properties in terms of their structural stability and revealed prominent antibacterial properties due to the reduced-size particles that promote their use as new advanced antimicrobial agents, an advantage compared to conventional particles in aqueous suspension that lose stability and effectiveness. Finally, theoretical analyses provided insights into the possible interactions, charge transfer, and stabilization process of nanoclusters mediated by the high-electron-density groups belonging to CS and HPMC, revealing their unique structural properties in the preparation of nano-scaled materials.
Collapse
Affiliation(s)
- Moises A. Rojas
- Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile;
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Leonardo S. Santos
- Laboratory of Asymmetric Synthesis, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile;
| |
Collapse
|