1
|
Zhao B, Huang Z, Han M, Predicala B, Wang Q, Liang Y, Li M, Liu X, Qi J, Guo L. Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification. Polymers (Basel) 2025; 17:1234. [PMID: 40363021 PMCID: PMC12073558 DOI: 10.3390/polym17091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Air pollutants, such as particulate matter (PM) and ammonia (NH3), generated by intensive animal farming pose considerable threats to human health, animal welfare, and ecological balance. Conventional materials are often ineffective at simultaneously removing multiple pollutants, maintaining a low pressure drop, and ensuring durability in heavily polluted environments. Inspired by the dust-retention properties of Pinus sylvestris var. mongolica (PS) needles, this study developed a biomimetic grooved ribbon fiber using electrospinning technology. These fibers were further assembled into a three-dimensional bioinspired aerogel structure through freeze-forming technology to achieve efficient dust capture. Additionally, the introduction of UiO-66-NH2 nanoparticles significantly enhanced the properties of the aerogels for NH3 adsorption. Among the various prepared aerogels (PG, UPG-5, UPG-10, UPG-15, and UPG-20), UPG-10 demonstrated the best performance, achieving a filtration efficiency of 99.24% with a pressure drop of 95 Pa. Notably, it exhibited a remarkable dust-holding capacity of 147 g/m2, and its NH3 adsorption capacity reached 99.89 cm3/g, surpassing PG aerogel by 31.46 cm3/g. Additionally, UPG-10 exhibited outstanding elasticity, maintaining over 80% of its original shape after 30 compression cycles. This biomimetic aerogel presents a promising solution for air purification, contributing to improved agricultural efficiency and environmental sustainability.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| | - Zikun Huang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Mingze Han
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | | | - Qiushi Wang
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Yunhong Liang
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Mo Li
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Xin Liu
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Jiangtao Qi
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| | - Li Guo
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China; (B.Z.); (M.H.); (Q.W.); (Y.L.); (M.L.); (X.L.)
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| |
Collapse
|
2
|
Wang H, He Y, Wan L, Li C, Li Z, Li Z, Xu H, Tu C. Deep learning models in classifying primary bone tumors and bone infections based on radiographs. NPJ Precis Oncol 2025; 9:72. [PMID: 40074845 PMCID: PMC11904180 DOI: 10.1038/s41698-025-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Primary bone tumors (PBTs) present significant diagnostic challenges due to their heterogeneous nature and similarities with bone infections. This study aimed to develop an ensemble deep learning framework that integrates multicenter radiographs and extensive clinical features to accurately differentiate between PBTs and bone infections. We compared the performance of the ensemble model with four imaging models based solely on radiographs utilizing EfficientNet B3, EfficientNet B4, Vision Transformer, and Swin Transformers. The patients were split into external dataset (N = 423) and internal dataset [including training (N = 1044), test (N = 354), and validation set (N = 171)]. The ensemble model outperformed imaging models, achieving areas under the curve (AUCs) of 0.948 and 0.963 on internal and external sets, respectively, with accuracies of 0.881 and 0.895. Its performance surpassed junior and mid-level radiologists and was comparable to senior radiologists (accuracy: 83.6%). These findings underscore the potential of deep learning in enhancing diagnostic precision for PBTs and bone infections (Research Registration Unique Identifying Number (UIN): researchregistry10483 and with details are available at https://www.researchregistry.com/register-now#home/registrationdetails/6693845995ba110026aeb754/ ).
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu He
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lu Wan
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Shenzhen Research Institute of Central South University, Guangdong, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Shenzhen Research Institute of Central South University, Guangdong, China.
- Changsha Medical University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Yang Q, Chen X, Liu J, He Y. Gelatin-based biomaterials as a delivery strategy for osteosarcoma treatment. Front Pharmacol 2025; 16:1537695. [PMID: 39936088 PMCID: PMC11811086 DOI: 10.3389/fphar.2025.1537695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although surgery and chemoradiotherapy have made some progress in the treatment of osteosarcoma. However, the high recurrence and metastasis rate of osteosarcoma and bone defects caused by surgery are still the main problems faced by osteosarcoma. Gelatin has excellent biocompatibility and biodegradability, and has made phased progress in tumor treatment. In the treatment of osteosarcoma, gelatin-based biomaterials can be used in delivery strategies to enhance the anti-tumor activity of osteosarcoma and can improve the appropriate compressive strength to improve the bone defects faced after surgery. At present, gelatin-based hydrogels, gelatin scaffolds, and gelatin-based nanoparticles have been reported in preclinical studies. In this article, we introduce the application of gelatin-based biomaterials in the treatment of osteosarcoma, and summarize and look forward to them.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xingpeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yeteng He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
4
|
Kahraman E, Nasun-Saygili G. 5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies. Heliyon 2024; 10:e38494. [PMID: 39398033 PMCID: PMC11471203 DOI: 10.1016/j.heliyon.2024.e38494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
The present study focused on investigation of graphene oxide/hydroxyapatite (GO/HAp) and amine modified graphene oxide/hydroxyapatite (GO-NH2/HAp) composites as potential drug carrier agents for 5-Fluorouracil (5-FU). Incorporation of 5-Fluorouracil drug was performed via adsorption through π-π interactions and electrostatic attractions. Modification of graphene oxide was performed for the production of amine modified graphene oxide/hydroxyapatite composite with the intention of enhancing adsorption performance. The X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and zeta potential/particle size analysis were performed for particle characterization while Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis were used to analyze detailed morphological properties. Experimental design studies were followed out in order to determine the effect of adsorption parameters including graphene oxide amount, pH and initial drug concentration on 5-Fluorouracil adsorption behavior. Adsorption isotherms of both composites with unmodified and modified GO were best fitted to Freundlich model with R2 values of 0.9616 and 0.9682 respectively. The maximum adsorption capacities (qm) were calculated as 47.3 mg/g and 18.4 for graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites respectively at pH 2.0. The highest adsorption percentage was obtained for amine modified graphene oxide/hydroxyapatite composite as 40.87 % at pH 2.0 condition. In vitro release kinetic studies revealed that compliance with Higuchi and Korsmeyer-Peppas kinetic models were observed for graphene oxide/hydroxyapatite, whereas zero order and Korsmeyer-Peppas kinetic models pointed out as the well-fitted model for amine modified graphene oxide/hydroxyapatite composite. The release period of 5-FU drug from all composites were continued up to 8-10 h in physiological conditions (pH 7.4, 37 °C) indicating an achieved controlled release. Based on the overall findings, graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites could be suggested as a potential drug delivery agent for 5-FU in clinical applications.
Collapse
Affiliation(s)
- Ebru Kahraman
- Chemical Engineering Department, Istanbul Technical University, 34469, Turkey
| | | |
Collapse
|
5
|
Mohammadi MA, Alizadeh AM, Mousavi M, Hashempour-Baltork F, Kooki S, Shadan MR, Hosseini SM, McClements DJ. Advances and applications of crosslinked electrospun biomacromolecular nanofibers. Int J Biol Macromol 2024; 271:132743. [PMID: 38821308 DOI: 10.1016/j.ijbiomac.2024.132743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Electrospinning is a technology for fabricating ultrafine fibers from natural or synthetic polymers that have novel or enhanced functional properties. These fibers have found applications in a diverse range of fields, including the food, medicine, cosmetics, agriculture, and chemical industries. However, the tendency for electrospun nanofibers to dissociate when exposed to certain environmental conditions limits many of their practical applications. The structural integrity and functional attributes of these nanofibers can be improved using physical and/or chemical crosslinking methods. This review article discusses the formation of polymeric nanofibers using electrospinning and then describes how different crosslinking methods can be used to enhance their mechanical, thermal, and biological attributes. Methods for optimizing the crosslinking reactions are discussed, including proper selection of crosslinker type and reaction conditions. Then, food, medical, and separation applications of crosslinked electrospun fibers are assessed, including in bone and skin tissue engineering, wound healing, drug delivery, air filtration, water filtration, oil removal, food packaging, food preservation, and bioactive delivery. Finally, areas where future research are needed are highlighted, as well as possible future applications of crosslinked nanofibers.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Malihe Mousavi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional, and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Oliva R, Torcasio SM, Coulembier O, Piperno A, Mazzaglia A, Scalese S, Rossi A, Bassi G, Panseri S, Montesi M, Scala A. RGD-tagging of star-shaped PLA-PEG micellar nanoassemblies enhances doxorubicin efficacy against osteosarcoma. Int J Pharm 2024; 657:124183. [PMID: 38692500 DOI: 10.1016/j.ijpharm.2024.124183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.
Collapse
Affiliation(s)
- Roberto Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Serena Maria Torcasio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy; Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, National Council of Research, Institute for the Study of Nanostructured Materials, URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le, F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scalese
- CNR-IMM, Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi, Ottava Strada n.5, 95121 Catania, Italy
| | - Arianna Rossi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy; CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Giada Bassi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy; Department of Neuroscience, Imaging and Clinical Science, University of Studies "G. D'Annunzio", 66100 Chieti, CH, Italy
| | - Silvia Panseri
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Monica Montesi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
7
|
Deng P, Wang Z, Bu J, Fan Y, Kuang Y, Jiang F. Konjac glucomannan-based nanocomposite spray coating with antimicrobial, gas barrier, UV blocking, and antioxidation for bananas preservation. Int J Biol Macromol 2024; 265:130895. [PMID: 38492692 DOI: 10.1016/j.ijbiomac.2024.130895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Fruit is prone to rot and deterioration due to oxidative browning and microbial infection during storage, which can cause serious economic losses and food safety problems. It is urgent to develop a multifunctional composite coating to extend the shelf life of fruits. In this work, multifunctional quaternized chitosan nanoparticles (QCs/TA NPs) with excellent antibacterial and antioxidant properties were prepared based on electrostatic interaction using tannic acid instead of conventional cross-linking agents. Meanwhile, konjac glucomannan (KGM) with high viscosity, edible and biodegradable properties was used as a dispersant to disperse and stabilize the nanoparticles, and as a film-forming agent to form a multifunctional composite coating. The composite coating exhibited excellent oxygen and water vapor barrier properties, antioxidant, antibacterial, mechanical properties, hydrophobicity, and UV shielding properties. Surprisingly, the oxygen permeability of the K-NPs-15 composite film was as low as 1.93 × 10-13 (cm3·cm)/(cm2·s·Pa). The banana spray preservation experiments proved that the K-NPs-15 composite coating could effectively prolong the shelf life of bananas. Therefore, this study provides a new idea for designing multifunctional freshness preservation coatings, which has a broad application prospect.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zihao Wang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jinjing Bu
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yuqi Fan
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Ying Kuang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|