1
|
Xu J, Tang M, Zhang W, Xie S, Gu Q, Zhang L. Controlled synthesis of superhydrophilic flower-like hierarchical porous diboronate affinity materials for capturing biomarkers. Anal Chim Acta 2025; 1357:344053. [PMID: 40316382 DOI: 10.1016/j.aca.2025.344053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Boronate affinity chromatography represents a powerful analytical technique for the selective separation and enrichment of biomolecules containing cis-diol moieties, including carbohydrates, glycoproteins, and other cis-dihydroxy compounds. While boronate affinity materials (BAMs) have shown promise in glycosylation-based separation and analysis, their practical application is hindered by non-biocompatible binding pH, low enrichment efficiency for low-abundance samples, non-specific adsorption, and limited loading capacity. To address these limitations, this work focuses on developing flower-like hierarchical porous diboronate affinity materials (FHP-DBAMs) with enhanced binding strength, selectivity, and capacity for cis-diol-containing biomolecules. RESULTS FHP-DBAM was synthesized via a facile sol-gel method, using tetrahydroxydiboron as a hydrophilic diboronic acid monomer. The electron-withdrawing nature and hydrophilicity of diboronate affinity mechanism enable FHP-DBAM to operate at lower pH values (pH ≥ 5), addressing the biocompatibility issue. DFT and experiment calculations confirm the enhanced cis-diol binding affinity of diboronate affinity mechanism compared with monoboronate affinity mechanism, resulting in a remarkably low dissociation constant (DFT Kd = 6.74 × 10-5 M, experiment Kd = 9.95 × 10-5 M) for FHP-DBAM. Furthermore, the unique flower-like hierarchical porous structure provides a high surface area and nanoconfinement effect, significantly boosting target molecule loading capacity and affinity reaction kinetics. Compared to traditional BAMs, FHP-DBAM exhibits over ten times higher loading capacity. As a proof-of-concept, FHP-DBAM successfully captures the biomarker GM1 in breast cancer cells MCF-7 with high efficiency. SIGNIFICANCE AND NOVELTY This work introduces diboronate affinity mechanism and flower-like hierarchical porous structure as new solution to overcome the limitations of conventional BAMs. FHP-DBAMs achieve lower binding pH, enhanced selectivity, and stronger binding stability through diboronate affinity mechanism. The unique flower-like porous structure maximizes surface area and active sites, addressing low enrichment efficiency and loading capacity. These advancements are critical for the efficient and biocompatible separation of cis-diol-containing biomolecules.
Collapse
Affiliation(s)
- Jinhua Xu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Minghui Tang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Shiye Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qianqian Gu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
2
|
Banerjee A, Kajol, Biswas M, Das NR, Pathak RK. Supra-Hybrid Nanocarriers of Calix[4]Arene and PLGA for Enhanced Encapsulation and Extended Delivery of Gossypol in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501235. [PMID: 40370280 DOI: 10.1002/smll.202501235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Indexed: 05/16/2025]
Abstract
In this study, supra-hybrid nanocarriers Cal-P NPs are developed by combining amphiphilic macrocyclic calix[4]arene and PLGA, offering adequate stability and multifunctionality as a single-platform nanocarrier resulting in monodispersed nanoparticles with unique synthetic tunability and an optimized hydrophobic core for therapeutic encapsulation. Unlike conventional multicomponent systems, the design eliminates the need for many external stabilizers while enabling tailored PEGylation for controlled drug release, as demonstrated with hydrophobic gossypol. This innovation addresses key limitations in cancer nanomedicine, including premature drug leakage and dose frequency, through a synthetically tunable and structurally optimized, bioresistant core. Gossypol, a model bioactive molecule with poor water solubility, is effectively loaded into the Cal-P NPs, significantly enhancing its aqueous solubility to millimolar concentrations. The encapsulation is driven by favorable interactions between gossypol and the hydrophobic groups of calixarene and PLGA, resulting in a stable core with sustained release properties. Validated through in vivo pharmacokinetic studies and detailed anticancer experiments in two distinct cancer cell lines, GP-Cal-P NPs demonstrated their potential as a robust platform for therapeutic delivery. These findings emphasize the versatility of Cal-P NPs in addressing challenges associated with hydrophobic drugs and highlight their promise for further preclinical and clinical development.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Kajol
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Megha Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| | - Nihar Ranjan Das
- Department of Pharmacology, GITAM School of Pharmacy, GITAM deemed to be University, Gandhi Nagar, Visakhapatnam, Andhra Pradesh, 530045, India
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, 760010, India
| | - Rakesh Kumar Pathak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER Berhampur), Berhampur, Odisha, 760010, India
| |
Collapse
|
3
|
Cheng G, Zeng F, Liu X, Yang Q, Wei S, Huang Q. Mussel-inspired adhesive and tough hydrogel for drug release based on lignin-containing cellulose nanofiber. Int J Biol Macromol 2025; 306:141458. [PMID: 40010454 DOI: 10.1016/j.ijbiomac.2025.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Lignin-containing cellulose nanofiber (LCNF)-based hydrogels are promising eco-friendly biomaterials, yet the role of lignin in enhancing their adhesion and mechanics remains to be explored. Herein, quaternized lignin-containing cellulose nanofibers (QALCNFs) with varying lignin contents were synthesized from bagasse using a deep eutectic solvent (DES). The relationship between lignin content and the adhesion and mechanical properties of QALCNF hydrogels was systematically investigated. Results demonstrated that lignin in QALCNFs enhanced the hydrogel's gelation time, adhesion and mechanical properties through the provision of quinone/catechol groups, which undergo reversible free radical transformations. As the lignin content decreased, the nanofiber bundles gradually transitioned into more uniform nanofibers, forming a hydrogel with a hierarchical porous structure, superior adhesion, and mechanical properties. Conversely, insufficient lignin content weakened the hydrogel's performance by reducing the quinone/catechol content and decreasing hydrogel porosity. Consequently, QAMLCNF-H exhibited outstanding toughness (2400 J/m2), adhesion strength (114.6 kPa), and high porosity (∼86 %), along with sustained drug release performance, effective antibacterial properties, and excellent cytocompatibility. This study provides a comprehensive understanding of how lignin content in QALCNFs influences hydrogel adhesion, mechanical properties, and drug release behavior, offering valuable insights for the development of high-performance LCNF-based hydrogel biomaterials.
Collapse
Affiliation(s)
- Gege Cheng
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Engineering Research Center of Low-carbon and High-quality Utilization of Forest Biomass, University of Guangxi, Nanning 530006, PR China
| | - Fajian Zeng
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China
| | - Xiuyu Liu
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Engineering Research Center of Low-carbon and High-quality Utilization of Forest Biomass, University of Guangxi, Nanning 530006, PR China
| | - Qiuni Yang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China
| | - Shizhen Wei
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China.
| | - Qin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, PR China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Engineering Research Center of Low-carbon and High-quality Utilization of Forest Biomass, University of Guangxi, Nanning 530006, PR China.
| |
Collapse
|
4
|
Zhang Y, Cheng L, Zhang R, Ma W, Qin Z. Effect of rheological behaviors of polyacrylonitrile grafted sericin solution on film structure and mechanical properties. Int J Biol Macromol 2024; 266:131102. [PMID: 38580021 DOI: 10.1016/j.ijbiomac.2024.131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Sericin protein possesses excellent biocompatibility, antioxidation, and processability. Nevertheless, manufacturing large quantities of strong and tough pure regenerated sericin materials remains a significant challenge. Herein, we design a lightweight structural sericin film with high ductility by combining radical chain polymerization reaction and liquid-solid phase inversion method. The resulting polyacrylonitrile grafted sericin films exhibit the ability to switch between high strength and high toughness effortlessly, the maximum tensile strength and Young's modulus values are 21.92 ± 1.51 MPa and 8.14 ± 0.09 MPa, respectively, while the elongation at break and toughness reaches up to 344.10 ± 35.40 % and 10.84 ± 1.02 MJ·m-3, respectively. Our findings suggest that incorporating sericin into regenerated films contributes to the transformation of their mechanical properties through influencing the entanglement of molecular chains within polymerized solutions. Structural analyses conducted using infrared spectroscopy and X-ray diffraction confirm that sericin modulates the mechanical properties by affecting the transition of condensed matter conformation. This work presents a convenient yet effective strategy for simultaneously addressing the recycling of sericin as well as producing regenerated protein-based films that hold potential applications in biomedical, wearable, or food packaging.
Collapse
Affiliation(s)
- Yimin Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| | - Longdi Cheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China.
| | - Ruiyun Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China; Shanghai Frontiers Science Center of Donghua University, China
| | - Wanwan Ma
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| | - Zhihui Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| |
Collapse
|
5
|
Alfatah T, Abdul Khalil HPS. Sustainable lignin nanoparticles from coconut fiber waste for enhancing multifunctional properties of macroalgae biofilms. Int J Biol Macromol 2024; 258:128858. [PMID: 38128796 DOI: 10.1016/j.ijbiomac.2023.128858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Multifunctional and sustainable packaging biofilms felicitous to changeable conditions are in large demand as substitutes to petroleum-derived synthetic films. Macroalgae with noticeable film-formation, abundant, low-cost, and edible properties is a promising bioresource for sustainable and eco-friendly packaging materials. However, the poor hydrophobicity and mechanical properties of sustainable macroalgae biofilms seriously impede their practical applications. Herein, lignin nanoparticles (LNPs) produced by a sustainable approach from black liquor of coconut fiber waste were incorporated in the macroalgae matrix to improve the water tolerance and mechanical characteristics of the biofilms. The effect of different LNPs loadings on the performance of biofilms, such as physical, morphological, surface roughness, structural, water resistance, mechanical, and thermal behaviors, were systematically evaluated and found to be considerably improved. Biofilm with 6 % LNPs presented the optimum enhancement in most ultimate performances. The optimized biofilm exhibited great hydrophobic features with a water contact angle of over 100° and high enhancement in the tensile strength of >60 %. This study proposes a facile and sustainable approach for designing and developing LNPs-macroalgae biofilms with excellent and multifunctional properties for sustainable high-performance packaging materials.
Collapse
Affiliation(s)
- Tata Alfatah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Environment and Forestry Office of the Provincial Government of Aceh, Banda Aceh 23239, Indonesia.
| | - H P S Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
6
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 2023; 252:126281. [PMID: 37572815 DOI: 10.1016/j.ijbiomac.2023.126281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The control of microbial infection transmission often relies on the utilization of synthetic and metal-based antimicrobial agents. However, their non-biodegradability and inadequate disposal practices lead to significant environmental contamination. To address this concern, the quest for natural alternatives has gained paramount importance. Lignin, a widely available renewable aromatic compound, emerges as a promising candidate owing to its inherent phenolic moiety, which lends itself well to acting as a natural antimicrobial agent either independently or in combination with other agents. This article provides a comprehensive account of the structure and primary classes of lignin. Additionally, it elucidates the antimicrobial mechanism of lignin, the factors influencing its efficacy, and the methods employed for its detection. Moreover, it describes the progress made in developing the antimicrobial capacity of lignin in different areas. In conclusion, this paper not only outlines the current state of research on the antimicrobial function of lignin, but also identifies challenges and future possibilities for enhancing its antimicrobial properties. This work holds great significance in the ongoing endeavor to contribute to high-impact research on natural alternatives for controlling infections and fostering environmentally conscious practices.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|