1
|
Bhiri N, Masquelez N, Nasri M, Nasri R, Hajji M, Li S. Synthesis, Characterization, and Stability Study of Selenium Nanoparticles Coated with Purified Polysaccharides from Ononis natrix. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:435. [PMID: 40137608 PMCID: PMC11946226 DOI: 10.3390/nano15060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Selenium nanoparticles (SeNPs) attract considerable attention for their promising applications in the biomedical field, driven by their unique properties and antioxidant activities. However, their practical use is often hindered by issues such as instability and aggregation. In this study, a polysaccharide, P2, extracted from Ononis natrix, was used to stabilize SeNPs to address these limitations. P2-SeNPs were prepared through a green synthesis method involving sodium selenite, P2, and ascorbic acid, and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). P2-SeNPs exhibited a smaller particle size and enhanced stability compared to unmodified SeNPs. UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) demonstrated the presence of Se-O bonds, suggesting effective stabilization by covalent bonding between SeNPs and P2. Stability tests revealed that P2-SeNPs maintained good dispersion under various conditions, with optimal stability observed at refrigerated temperatures and neutral pH. Moreover, P2-SeNPs exhibited better antioxidant activities than unmodified SeNPs, as evidenced by higher DPPH radical scavenging, ABTS radical scavenging, and metal chelation ratios. This difference is attributed to both the reduced aggregation and smaller size of P2-SeNPs. Therefore, it is concluded that P2-SeNPs exhibit significant potential as an effective antioxidant agent for biomedical applications.
Collapse
Affiliation(s)
- Nour Bhiri
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Suming Li
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| |
Collapse
|
2
|
Chen F, Zeng H, Li Y, Xiao B, Zhang X, Shi Y, Cai Z, Wei L, Ou H, Xin J, Ding D, Zhou L, Li K. Synergistically Promoted Antitumor Photoimmunotherapy Using Immune-Stimulating Peach Gum Polysaccharides as Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10417-10431. [PMID: 39929728 DOI: 10.1021/acsami.4c19529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Nanomaterial-based mild photothermal therapy (mPTT, 42-45 °C) with controllable light-triggered thermal diffusion holds potential in reversing immunosuppressive microenvironments and activating antitumor immunity in tumors. However, the limited antitumor efficacy of mPTT alone always requires sophisticated synergistic strategies to promote its overall therapeutic outcome. Herein, we employ an immune-active natural polymer, peach gum polysaccharide (PGP), as the nanocarrier to encapsulate the photothermal reagent of TTQPL to yield PLA-T nanoparticles (NPs). We demonstrate the capability of a PGP-based encapsulation matrix in stimulating the polarization of M0/M2-like macrophages to the pro-inflammatory M1 phenotype. Under NIR light irradiation, PLA-T NPs induce profound apoptosis of CT26 cells by a mitochondrial pathway, which leads to upregulated Bax, downregulated Bcl-2, and released cytochrome C (Cyt C) from the mitochondria to the cytoplasm. Additionally, such a formulation synergistically exploits the intrinsic immunoregulatory function of PGP and NIR light-triggered mPTT, showing superior in vivo antitumor effects by evoking the adaptive immune response with a reversed immunosuppressive tumor microenvironment. In summary, this work highlights the potential of PGP as a natural polymer carrier to deliver therapeutic reagents, offering synergistically enhanced immune activation with superior antitumor performance of phototherapy.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Zeng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yaxi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingrui Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xianming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of MacauTaipa, Macau 999078, China
| | - Yuxin Shi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhipeng Cai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Wei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Sishu NK, Selvaraj CI. Phytochemistry, pharmacological applications, and therapeutic effects of green synthesized nanomaterials using Cichorium species-a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8527-8559. [PMID: 38900250 DOI: 10.1007/s00210-024-03221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cichorium is a genus of potential medicinal herbs that finds widespread cultivation in regions spanning Asia and Europe. Belonging to the Asteraceae family, these plants are typically biennial or perennial in nature. Among the various explored varieties of chicory plants, the most commonly studied ones include Cichorium intybus, Cichorium endivia, and Cichorium pumilum. In Ayurveda, chicory has long been used as a remedy for many health problems. This versatile plant is renowned for its efficacy in managing conditions such as gallstones, gastroenteritis, sinus ailments, and the treatment of skin abrasions and wounds. Numerous bioactives, including polysaccharides, caffeic acid, flavonoids, coumarins, steroids, alkaloids, organic acids, triterpenoids, sesquiterpenoids, and essential oils, are present, according to a thorough phytochemical examination. The phytochemicals isolated from chicory have displayed significant therapeutic activities, including antidiabetic effects, hepatoprotective benefits, anti-obesity properties, and anti-cancer potential, as extensively documented by numerous researchers. The incorporation of these bioactive compounds into one's diet as part of a healthy lifestyle has demonstrated considerable advantages for human well-being. Green synthesis is a recent technology in which plant extracts or phytochemicals are used for synthesizing nanoparticles since plant extracts are generally less toxic and contain capping and reducing agents. This review summarizes current developments in green synthesis employing phytoconstituents from Cichorium species and extracts from various plant parts and their application to scientific problems. In order to preserve lifestyles and cure human diseases, the investigation emphasizes the therapeutic effects of the chemical components and nanoparticles obtained from the extract of Cichorium species.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
5
|
Zhang S, Li C. A curcumin-loaded biopolymeric nanocomposite alleviates dextran sulfate sodium induced ulcerative colitis via suppression of inflammation and oxidative stress. Int J Biol Macromol 2024; 275:133665. [PMID: 38971294 DOI: 10.1016/j.ijbiomac.2024.133665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Functional drugs nano delivery systems manufactured from natural active products are promising for the field of biomedicines. In this study, an anti-ulcerative colitis (UC) curcumin loaded biopolymeric nanocomposite (CZNH) was fabricated and investigated. CZNH nanocomposite was obtained using the anti-solvent precipitation method, wherein curcumin-loaded zein colloidal particles served as the core, while sodium casein (NaCas) and hyaluronic acid (HA) formed the outermost layer of CZNH nanocomposite. Fourier transform infrared (FT-IR) spectrum and transmission electron microscopy (TEM) findings demonstrated that CZNH nanocomposite was a double-layer spherical micelle (250 nm) resulting from the hydrogen bond interactions and electrostatic adsorptions between zein, NaCas, and HA. Furthermore, CZNH nanocomposite exhibited prominent resuspension and storage stability in aqueous solution, which can be stored at 4 °C for approximately 30 days. In vivo anti-UC studies showed that CZNH nanocomposite could effectively alleviate UC symptoms via mediating inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6], myeloperoxidase (MPO), and oxidative stress factor [malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)]. This study suggested that the CZNH nanocomposite showed great promise as an efficient curcumin nanocarrier for UC therapy.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
6
|
Nadile M, Kornel A, Sze NSK, Tsiani E. A Comprehensive Review of Genistein's Effects in Preclinical Models of Cervical Cancer. Cancers (Basel) 2023; 16:35. [PMID: 38201463 PMCID: PMC10778482 DOI: 10.3390/cancers16010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cervical cancer is associated with persistent Human Papilloma Virus (HPV) infections and is the fourth most common cancer in women worldwide. Current treatment options; surgery, chemotherapy, and radiation, are often associated with severe side effects including possible infertility. Novel treatment options are required to help combat this disease and reduce side effects. Many plant-derived chemicals, including paclitaxel and docetaxel, are already in use as treatments for various cancers. Genistein is a polyphenolic isoflavone found in foods including soybeans and legumes, and studies have shown that it has various biological effects and anti-cancer properties. This review aims to summarize the existing studies examining the effects of genistein on cervical cancer. All relevant in vitro and in vivo studies are summarized, and the key findings are highlighted in the associated tables. Based on the available in vitro/cell culture studies reported here, genistein inhibits cervical cancer cell proliferation and induces apoptosis. Use of genistein in combination with radiation or chemotherapy agents resulted in enhanced response indicating radio- and chemo-sensitization properties. More animal studies are required to examine the effectiveness of genistein in vivo. Such studies will form the basis for future human studies exploring the potential of genistein to be used in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|