1
|
Cibotaru S, Anisiei A, Platon VM, Rosca I, Sandu IA, Coman CG, Mititelu-Tartau L, Andreica BI, Marin L. Imino-quaternized chitosan/chitosan nanofibers loaded with norfloxacin as potential bandages for wound healing. Int J Biol Macromol 2025; 314:144304. [PMID: 40383342 DOI: 10.1016/j.ijbiomac.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Due to the critical need for effective wound dressings for the management of burn injuries, this paper focuses on addressing key gaps in infection prevention and control. The study aims to develop advanced nanofibrous dressings based on quaternized chitosan/chitosan, loaded with norfloxacin and modified with 2-formylphenylboronic acid to enhance antimicrobial and antioxidant activity and promote healing. The materials combine beneficial properties of chitosan/quaternized chitosan, such as biocompatibility, biodegradability, and antimicrobial activity. The characterization was performed from structural (NMR, FTIR, UV-Vis spectroscopy and thermogravimetric analysis), morphological (SEM, water vapor sorption) and supramolecular points of view (X-Ray Diffraction and Polarized Microscopy). Essential properties for wound dressings were evaluated and proved excellent performances, such as Young's modulus up to 1250 MPa, swelling capacity till 6 g/g, radical scavenging activity of 70 % and enzymatic degradability till 53 % in 21 days. The fibers presented antibacterial properties, reflected by high inhibition zones against Escherichia coli (40 mm) and Staphylococcus aureus (34 mm) and antifungal activity against Candida glabrata (15 mm). Preliminary studies demonstrated the in vitro safety of the materials on Human Gingival Fibroblasts, while in vivo experiments on Wistar rats confirmed the biocompatibility of the materials, emphasizing their potential as effective wound dressings for burns.
Collapse
Affiliation(s)
- Sandu Cibotaru
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| | - Alexandru Anisiei
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| | - Vera-Maria Platon
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| | - Irina Rosca
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| | - Isabela-Andreea Sandu
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| | - Corneliu-George Coman
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115, Iasi, Romania; Faculté de Médecine, Pharmacie et Sciences Biomédicales, Université de Mons, 7000 Mons, Belgium
| | - Liliana Mititelu-Tartau
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115, Iasi, Romania
| | - Bianca-Iustina Andreica
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania.
| | - Luminita Marin
- Petru Poni Institute of Macromolecular Chemistry of Romanian Academy, 700487, Iasi, Romania
| |
Collapse
|
2
|
Su Z, Peng Y, Yu Y, Zhong Y, Zeng J, Chen Y, Vijayakumar S, Mao Y, Wang L, Xin M, Li M. Regulatory effects of different spacer alkyl chains on the in vitro antioxidant and antibacterial activities of chitosan quaternary ammonium/phosphonium salt derivatives. Int J Biol Macromol 2025; 307:142098. [PMID: 40089231 DOI: 10.1016/j.ijbiomac.2025.142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
In this study, three chitosan quaternary phosphonium salts and three chitosan quaternary ammonium salts with varying spacer chain lengths were synthesized. Structure characterization of the obtained products was conducted using Fourier-transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, and elemental analysis. Additionally, the in vitro scavenging efficiency of these derivatives against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as their antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), were evaluated. The results indicated that the scavenging efficiency of the chitosan quaternary phosphonium salt at a concentration of 1.6 mg/mL ranged from 36.9 % to 48.7 % for DPPH free radicals and from 48.3 % to 66.3 % for superoxide free radicals, outperforming that of the chitosan quaternary ammonium salt with long alkyl chains. Furthermore, an increase in the length of the spacer alkyl chain was associated with enhanced antibacterial activities of the corresponding chitosan derivatives. At a concentration of 1.0 mg/mL, the synthesized chitosan derivatives demonstrated antibacterial rates exceeding 90 % against both E. coli and S. aureus. Notably, the CCK-8 assay confirmed that these derivatives are non-toxic to 293 T cells. Among the six derivatives, TPPBOC and DMDOC, characterized by longer spacer alkyl chains, demonstrated superior antioxidant and antibacterial activities. This research establishes a robust theoretical foundation for the development of more effective and safer antioxidants and antibacterial agents, thereby enriching the knowledge base in chitosan chemistry and functional materials, and paving new pathways for the innovation of novel antioxidant and antibacterial materials.
Collapse
Affiliation(s)
- Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Yonggang Peng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Ying Yu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Yujing Zhong
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Junyue Zeng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Yikai Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Sekar Vijayakumar
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen 361021, China
| | - Lin Wang
- School of Chemistry and Environment, Ankang University, Shaanxi Provincial University Key Laboratory of Interfacial Porous Materials, Ankang 725000, China.
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, China.
| |
Collapse
|
3
|
Wu D, Li Y, Dai Y, Tian H, Chen Y, Shen G, Yang G. Stabilization of chitosan-based nanomedicines in cancer therapy: a review. Int J Biol Macromol 2025; 309:143016. [PMID: 40216118 DOI: 10.1016/j.ijbiomac.2025.143016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Chitosan (CS), a versatile and alkaline polysaccharide, has gained significant attention in nanomedicine due to its biocompatibility and biodegradability. In recent years, its applications in cancer therapy, particularly for the delivery of chemotherapeutic drugs, diagnostic agents, and genes, have advanced considerably. However, many CS-based nanomedicines suffer from poor stability in biological fluids, especially under physiological conditions. The neutral pH and the presence of electrolytes in physiological environments reduce the charge density of CS, which can account for this application limitation of CS-based nanomedicines. To improve the stability and prevent dissociation or aggregation of these nanomedicines before reaching the target sites, this review summarizes common stabilization strategies including hydrophilic or hydrophobic modification of CS, as well as incorporation with metal ions (e.g. Fe3+ or Zn2+), complexation with anionic cross-linkers (e.g. TPP) or anionic polymers. Additionally, the review highlights the application of stabilized CS-based nanocarriers in drug delivery, with a particular focus on cancer therapy. The challenges and future perspectives for accelerating the clinical translation of these nanomedicines are also discussed.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yazhen Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwei Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Tian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gongmin Shen
- Hangzhou Guoguang Pharmaceutical Co., Ltd., Hangzhou 310018, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Hou P, Lei K, Zhang Z, Zhao P, Li J, Li G, Bao J, Li X, Xue Y, Quan C, Fu F. Adhesive transparent antimicrobial quaternized chitosan/oxidized dextran/polydopamine nanoparticle hydrogels for accelerated wound healing. BIOMATERIALS ADVANCES 2025; 169:214176. [PMID: 39798276 DOI: 10.1016/j.bioadv.2025.214176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa. Moreover, these hydrogels exhibit a well-defined porous structure, rapid gelling ability (<50 s), exceptional self-healing capacity, and a swelling rate surpassing 760 %. Furthermore, the QOP hydrogels demonstrate outstanding hemocompatibility (hemolysis rate < 3 %) and cytocompatibility (cell viability >100 %). In addition, they display potent inhibition against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus pasteuri and Escherichia coli, with bactericidal rates exceeded 90 %. The closure of MRSA-infected wounds along with H&E and Masson staining analysis revealed that QOP hydrogels can expedite wound healing by stimulating collagen deposition and facilitating angiogenesis.
Collapse
Affiliation(s)
- Pu Hou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu 610065, China
| | - Zhishen Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianfeng Bao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng University, 044000, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian 116600, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
5
|
Zhu S, Miao Q, Chen Q, Tian L, Dong F, Guo Z, Li Q. Synthesis and antioxidant evaluation of coumarin-functionalised chitosan: A potent, non-toxic free radical scavenging compound. Carbohydr Res 2025; 548:109311. [PMID: 39644713 DOI: 10.1016/j.carres.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
In the present study, we designed to link the coumarin molecule to chitosan via a triazole group and synthesized chitosan-coumarin derivatives, which were further quaternized in one step in order to further improve their solubility to obtain a second series of chitosan-coumarin ammonium salt derivatives. The structures of these chitosan derivatives were verified by FT-IR and 1H NMR. They were tested for their antioxidant activities. The experimental results showed that the derivatives had excellent free radical scavenging ability. The introduction of the coumarin moiety significantly improved the antioxidant activity, and the scavenging capacity was much higher than that of the chitosan feedstock in all three antioxidant tests. Overall, the scavenging capacity of chitosan-coumarin ammonium salt derivatives was slightly higher than that of chitosan-coumarin derivatives, with the highest scavenging rates in all three tests. Compound 8B scavenged 98.74 % (0.01 mg/mL) of superoxide anion radicals, compound 8D scavenged 95.5 % (0.3 mg/mL) of DPPH radicals and compound 8A scavenged 92.97 % (0.2 mg/mL) of hydroxyl radicals. Toxicity assays used L929 cells demonstrated that there was no significant toxicity of the derivatives. The results indicated that the chitosan derivatives described herein were safe and non-toxic and have good antioxidant activity.
Collapse
Affiliation(s)
- Siyu Zhu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China; Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qiuhong Chen
- Jiangsu Ocean University, Lianyungang, 222000, China; Shandong Yinuokang Pharmaceutical Co., Ltd., Dongying, 257091, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai, 264001, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
6
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
8
|
Coman CG, Anisiei A, Cibotaru S, Ailincai D, Pasca SA, Chabot C, Gardikiotis I, Mititelu-Tartau L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. Int J Mol Sci 2024; 25:12709. [PMID: 39684419 DOI: 10.3390/ijms252312709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the impact of chitosan-based nanofibers on burn wound healing in a rat model. Two formulations of chitosan nanofibers were prepared through electrospinning. The formulations were then incorporated with different amounts of norfloxacin and underwent surface modifications with 2-formylphenylboronic acid. The burn model was applied to Wistar male rats by the contact method, using a heated steel rod attached to a thermocouple. The effectiveness of the nanofibers was tested against a negative control group and a standard commercial dressing (Atrauman Ag) on the described model and evaluated by wound diameter, histological analysis and biochemical profiling of systemic inflammatory markers. The results showed that chitosan-based dressings significantly accelerated burn healing compared to the control treatments. The high-concentration norfloxacin-infused chitosan coated with 2-formylphenylboronic acid' groups exhibited significant improvements in wound closure and reduced inflammation compared to the other groups; antioxidant enzymes SOD and GPx expression was significantly higher, p < 0.05, whereas pro-oxidative markers such as cortisol were lower (p < 0.05). Macroscopically, the wound area itself was significantly diminished in the chitosan-treated groups (p < 0.05). Furthermore, a histological evaluation indicated enhanced epithelialization and granulation tissue formation within the experiment time frame, while the biochemical panel revealed lower levels of inflammatory cytokines and lower leukocyte counts in the treated groups. These findings highlight the potential of the studied chitosan nanofibers as novel nanosystems for next-generation wound therapies, as well as the clinical utility of the novel chitosan fibers obtained by electrospinning technique.
Collapse
Affiliation(s)
- Corneliu-George Coman
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Faculté de Médecine, Pharmacie et Sciences Biomédicales, Université de Mons, 7000 Mons, Belgium
| | - Alexandru Anisiei
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sandu Cibotaru
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Daniela Ailincai
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sorin Aurelian Pasca
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine 'Ion Ionescu de la Brad', 700490 Iasi, Romania
| | - Caroline Chabot
- Department de Radiologie, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Ioannis Gardikiotis
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Surgery Department, Advanced Research and Development Center for Experimental Medicine ''Prof. Ostin C. Mungiu'', University of Medicine and Pharmacy ''Grigore T. Popa'' of Iasi, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
| |
Collapse
|
9
|
Andreica BI, Mititelu-Tartau L, Rosca I, Pelin IM, Nicol E, Marin L. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection. Carbohydr Polym 2024; 342:122389. [PMID: 39048229 DOI: 10.1016/j.carbpol.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.
Collapse
Affiliation(s)
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans, France
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
10
|
de la Rosa O, Aguayo-Acosta A, Valenzuela-Amaro HM, Meléndez-Sánchez ER, Sosa-Hernández JE, Parra-Saldívar R. Development of biomaterial composite hydrogel as a passive sampler with potential application in wastewater-based surveillance. Heliyon 2024; 10:e37014. [PMID: 39296035 PMCID: PMC11407980 DOI: 10.1016/j.heliyon.2024.e37014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Nowadays, the need to track fast-spreading infectious diseases has raised due to the recent COVID-19 disease pandemic. As a response, Wastewater-based Surveillance (WBS) has emerged as an early detection and disease tracking method for large populations that enables a comprehensive overview of public health allowing for a faster response from public health sector to prevent large outbreaks. The process to achieve WBS requires a highly intensive sampling strategy with either expensive equipment or trained personnel to continuously sample. The sampling problem can be addressed by passive sampler development. Chitosan-based hydrogels are recognized for their capability to sample and remove various contaminants from wastewater, including metals, dyes, pharmaceuticals, among others. However, chitosan-based hydrogels unique characteristics, can be exploited to develop passive samplers of genetic material that can be a very valuable tool for WBS. This study aimed to develop a novel chitosan hydrogel formulation with enhanced characteristics suitable for use as a passive sampler of genetic material and its application to detect disease-causing pathogens present in wastewater. The study evaluates the effect of the concentration of different components on the formulation of a Chitosan composite hydrogel (Chitosan, Glutaraldehyde, Microcrystalline cellulose (MCC), and Polyethylene glycol (PEG)) on the hydrogel properties using a Box Hunter & Hunter experimental matrix. Hydrogels' weight, thickness, swelling ratio, microscopic morphology (SEM), FTIR assay, and zeta potential were characterized. The resulting hydrogel formulations were shown to be highly porous, positively charged (Zeta potential up to 35.80 ± 1.44 mV at pH 3) and with high water swelling capacity (up to 703.89 ± 15.00 %). Based on the results, a formulation from experimental design was selected and then evaluated its capacity to adsorb genetic material from a control spiked water with Influenza A virus synthetic vector. The adsorption capacity of the selected formulation was 4157.04 ± 64.74 Gene Copies/mL of Influenza A virus synthetic vector. The developed hydrogel showed potential to be used as passive sampler for pathogen detection in wastewater. However, deeper research can be conducted to improve adsorption, desorption and extraction techniques of genetic material from chitosan-hydrogel matrices.
Collapse
Affiliation(s)
- Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Hiram Martín Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|
11
|
Zhao K, Hu Z, Chen X, Chen Y, Zhou M, Ye X, Zhou F, Zhu B, Ding Z. Bletilla striata Polysaccharide-/Chitosan-Based Self-Healing Hydrogel with Enhanced Photothermal Effect for Rapid Healing of Diabetic Infected Wounds via the Regulation of Microenvironment. Biomacromolecules 2024; 25:3345-3359. [PMID: 38700942 DOI: 10.1021/acs.biomac.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The management of diabetic ulcers poses a significant challenge worldwide, and persistent hyperglycemia makes patients susceptible to bacterial infections. Unfortunately, the overuse of antibiotics may lead to drug resistance and prolonged infections, contributing to chronic inflammation and hindering the healing process. To address these issues, a photothermal therapy technique was incorporated in the preparation of wound dressings. This innovative solution involved the formulation of a self-healing and injectable hydrogel matrix based on the Schiff base structure formed between the oxidized Bletilla striata polysaccharide (BSP) and hydroxypropyltrimethylammonium chloride chitosan. Furthermore, the introduction of CuO nanoparticles encapsulated in polydopamine imparted excellent photothermal properties to the hydrogel, which promoted the release of berberine (BER) loaded on the nanoparticles and boosted the antibacterial performance. In addition to providing a reliable physical protection to the wound, the developed hydrogel, which integrated the herbal components of BSP and BER, effectively accelerated wound closure via microenvironment regulation, including alleviated inflammatory reaction, stimulated re-epithelialization, and reduced oxidative stress based on the promising results from cell and animal experiments. These impressive outcomes highlighted their clinical potential in safeguarding the wound against bacterial intrusion and managing diabetic ulcers.
Collapse
Affiliation(s)
- Kai Zhao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhengbo Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xingcan Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, The People's Republic of China
| |
Collapse
|
12
|
Bejan A, Anisiei A, Andreica BI, Rosca I, Marin L. Chitosan nanofibers encapsulating copper oxide nanoparticles: A new approach towards multifunctional ecological membranes with high antimicrobial and antioxidant efficiency. Int J Biol Macromol 2024; 260:129377. [PMID: 38262824 DOI: 10.1016/j.ijbiomac.2024.129377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
This paper focuses on the preparation of chitosan-based nanofibers embedding copper oxide nanoparticles to create multifunctional materials that meet the demands of contemporary applications. To this end, a mixture of chitosan, quaternized chitosan and poly (ethylene glycol) was used as polymeric matrix, considering their own contribution to the final material's properties and their ability to stabilize the copper oxide nanoparticles. An exhaustive investigation of the nanofibers was done in order to assess their composition and morphology (FTIR, 1H NMR, WXRD, TGA, SEM, TEM, POM, UV-vis) and to study their mechanical, antimicrobial and antioxidant properties, air and water permeability and ability for air filtration. It was shown that the copper oxide nanoparticles were anchored into the polymeric matrix via strong hydrogen bonding and electrostatic interactions, which induced the improvement of the mechanical properties and antioxidant activity. The copper oxide nanoparticles favored the thinning of the fibers during electrospinning process and improved the antibacterial activity and dust filtration capacity. Besides, the fibers displayed air permeability and vapor water transmission rate similar to synthetic nanofibers, while being biodegradable. All these performances recommend the new materials for developing antibacterial eco-materials with good breathability to be used as hygienic textiles, masks, or air filters.
Collapse
Affiliation(s)
- Andrei Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
13
|
Wang Y, Wang Z, Lu W, Hu Y. Review on chitosan-based antibacterial hydrogels: Preparation, mechanisms, and applications. Int J Biol Macromol 2024; 255:128080. [PMID: 37977472 DOI: 10.1016/j.ijbiomac.2023.128080] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Chitosan (CS) is known for its remarkable properties, such as good biocompatibility, biodegradability, and renewability, in addition to its antibacterial and biological activities. However, as CS is insoluble in water, it displays limited antibacterial performance under neutral and physiological conditions. A viable solution to this problem is grafting chemically modified groups onto the CS framework, thereby increasing its solubility and enhancing its antibacterial effect. Herein, the antibacterial action mechanism of CS and its derivatives is reviewed, confirming the prevalent use of composite materials comprising CS and its derivatives as an antibacterial agent. Generally, the antimicrobial ability of CS-based biomaterials can be enhanced by incorporating supplementary polymers and antimicrobial agents. Research on CS-based composite biomaterials is ongoing and numerous types of biomaterials have been reported, including inorganic nanoparticles, antibacterial agents, and CS derivatives. The development of these composite materials has considerably expanded the application of CS-based antibacterial materials. This study reviews the latest progress in research regarding CS-based composite hydrogels for wound repair, tissue engineering, drug release, water purification, and three-dimensional printing applications. Finally, the summary and future outlook of CS-based antibacterial hydrogels are presented in anticipation of a broader range of applications of CS-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yixi Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenya Lu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| |
Collapse
|
14
|
Anisiei A, Andreica BI, Mititelu-Tartau L, Coman CG, Bilyy R, Bila G, Rosca I, Sandu AI, Amler E, Marin L. Biodegradable trimethyl chitosan nanofiber mats by electrospinning as bioabsorbable dressings for wound closure and healing. Int J Biol Macromol 2023; 249:126056. [PMID: 37524280 DOI: 10.1016/j.ijbiomac.2023.126056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail. Thus, the nanofiber behavior was investigated by swelling, dynamic vapor sorption, and in vitro biodegradation in media mimicking the wound exudate. The mechanical properties were analysed from the stress-strain curves, the bioadhesivity from the texture analysis and the mucoadhesivity from the Zeta potential and transmittance measurements. The antimicrobial activity was assessed against S. aureus and E. coli strains, and the biocompatibility was tested in vitro on normal human dermal fibroblasts, and in vivo on rats. The application of the fiber mats with the best balance of properties as dressings on deep burn wound models in rats showed wound closure and active healing, with fully restoration of epithelia. It was concluded that the combination of chitosan with TMC into nanofibers provides new potential bioabsorbable wound dressing, opening new perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | | | - Corneliu G Coman
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Galyna Bila
- Lectinotest R&D, Mechamichna Str 2, 79022, Ukraine; Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Evžen Amler
- Research and Development Department Inocure, Prague, Czech Republic; Charles University, Prague, Czech Republic
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|