1
|
Chen R, Zhou G, Yang J, Yuan R, Sun Y, Liang Y, Wu R, Wen Y, Wang Y, Zhao Q, Du S, Yan Q, Cao S, Huang X. A novel neutralizing antibody recognizing a conserved conformational epitope in PDCoV S1 protein and its therapeutic efficacy in piglets. J Virol 2025; 99:e0202524. [PMID: 39840987 PMCID: PMC11853068 DOI: 10.1128/jvi.02025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.537 and 8.487 µg/mL, respectively. A phage-display peptide library was used to determine the epitope recognized by mAb 4A6, and two mimotopes, QYPVSYA (P1) and FPHWPTI (P2), were identified. KLH-P1 reacted with PDCoV-positive sera but failed to induce PDCoV-specific IgG and neutralizing antibodies in mice, suggesting P1 does not fully mimic the conformational epitope. Molecular docking and alanine scanning mutagenesis revealed that S461, P462, T463, E465, and Y467 on the S protein are essential for mAb 4A6 binding. Antibody therapy experiments in PDCoV-infected piglets showed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Taken together, our findings demonstrate that mAb 4A6 holds promise as a treatment against PDCoV, and the amino acids recognized by mAb 4A6 will be valuable for developing novel epitope-based vaccines or antiviral drugs. IMPORTANCE Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that poses a potential threat to public health. Developing effective antiviral therapies is crucial for its prevention and control. Here, we demonstrated that mAb 4A6 shows promise as a treatment against PDCoV. Antibody therapy experiments conducted on PDCoV-infected piglets revealed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Furthermore, we characterized the conformational epitope (S461, P462, T463, E465, and Y467) recognized by mAb 4A6 through an integrated approach involving phage display peptide library, molecular docking, and alanine scanning mutagenesis. More importantly, mAb 4A6 exhibits a broad-spectrum neutralizing activity against different PDCoV strains. These findings indicate that mAb 4A6 has promising therapeutic value for PDCoV-infected piglets, and the identification of mAb 4A6 recognized epitope may provide a new idea for the identification of conformational epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Swine
- Epitopes/immunology
- Epitopes/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Swine Diseases/virology
- Swine Diseases/immunology
- Swine Diseases/therapy
- Swine Diseases/drug therapy
- Mice
- Molecular Docking Simulation
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Deltacoronavirus/immunology
- Peptide Library
- Protein Conformation
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guiping Zhou
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Ying Sun
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Huang S, Sun Q, Zhu J, Wu X, Liu R, Shen W, Liu X, Yue Y, Gao F, Jiang Y, Tong G, Zhou Y. Identification of new antigenic epitopes of porcine reproductive and respiratory syndrome virus nsp12 protein using monoclonal antibodies. Int J Biol Macromol 2024; 283:137496. [PMID: 39542336 DOI: 10.1016/j.ijbiomac.2024.137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the arteritis virus family, significantly impacts the swine industry due to its high infectiousness. nsp12, the nonstructural protein encoded by PRRSV, is a membrane-associated protein, with limited knowledge about its antigenic properties and functions. In this study, we used the expressed and purified nsp12 protein as antigen to immunize mice, and successfully screened five positive hybridoma cell lines that stably secrete anti-nsp12 monoclonal antibodies using immunological assays such as indirect ELISA and IFA. The antigenic epitopes recognized by the five monoclonal antibodies were identified using the fusion expression of peptides derived from the overlapping truncators of the nsp12 gene. The results showed that monoclonal antibodies 3G11 and 9C2 recognized the antigenic epitope 93TWGFESDTAY102, 2E3 recognized 115DYNDAFRARQ124, and 10G6 and 2A4 recognized 142PGPVIEPTL150. Furthermore, the three newly identified antigenic epitopes were all immunodominant and located on the surface of nsp12 protein. Notably, the antigenic epitopes 93-102 aa are all highly conserved across PRRSV-2 strains, making them suitable targets for PRRSV-2 detection. In conclusion, our findings advance the understanding of the antigenic properties of the PRRSV nsp12 protein and facilitate the development of assays for PRRSV detection.
Collapse
Affiliation(s)
- Shijing Huang
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Qi Sun
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Junrun Zhu
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Xia Wu
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Ruilin Liu
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Wei Shen
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Xingyu Liu
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Ying Yue
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - YiFeng Jiang
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute of Chinese Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
3
|
Zhang L, Liu HZ, Lian Y, Zhu Y, Wu M, Liu J, Cong F. A novel neutralizing monoclonal antibody recognizes a linear antigenic epitope of the spike protein of swine acute diarrhoea syndrome coronavirus. Virol J 2024; 21:279. [PMID: 39501289 PMCID: PMC11539425 DOI: 10.1186/s12985-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV) causes vomiting, severe diarrhoea and death in newborn piglets. The spike (S) protein plays a crucial role in promoting virus invasion and inducing neutralizing antibody production. In this study, the extracellular region of the S protein was used as an immunogen to immunize BALB/c mice. After immunization, B cells were collected, fused with SP2/0 myeloma cells, cultured and subcloned, and a cell line capable of secreting neutralizing antibodies was obtained and named as 5D6. Additionally, it was determined that the 5D6 mAb could be used as the primary antibody for western blotting and indirect immunofluorescence assay (IFA) to detect SADS-CoV. Further studies indicated that the 5D6 mAb binds to the 136STSHAAD142 motif, which located in the N-terminal domain (NTD) of the spike protein. This result suggested that the NTD of the S protein can induce the production of neutralizing antibodies. Amino acid sequence alignment revealed that the epitope of the 5D6 mAb was conserved among SADS-CoV strains. This study helps elucidate the S protein function of SADS-CoV, and the 5D6 mAb may be used to develop diagnostic and treatment tools for detecting SADS-CoV infection.
Collapse
Affiliation(s)
- Lin Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hui-Zhen Liu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China
| | - Yuexiao Lian
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China
| | - Yujun Zhu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China
| | - Jianbo Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, PR China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, PR China.
| |
Collapse
|
4
|
Yuan J, Li J, Du S, Wen Y, Wang Y, Lang YF, Wu R, Yan QG, Zhao S, Huang X, Zhao Q, Cao SJ. Revealing the lethal effects of Pasteurella multocida toxin on multiple organ systems. Front Microbiol 2024; 15:1459124. [PMID: 39257615 PMCID: PMC11385013 DOI: 10.3389/fmicb.2024.1459124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Pasteurella multocida toxin (PMT) is one of the most important virulence factors of Pasteurella multocida type D. Pasteurella multocida infection has caused enormous economic losses in the pig farming industry. Although it is well known that this bacterial infection causes progressive atrophic rhinitis, its effects on other organ tissues in pigs are unclear. In this study, PMT was expressed and purified, and the cytotoxic effects of PMT on four types of swine cells, LLC-PK1, PAM, IPEC, and ST, were investigated. LLC-PK1 exhibited the highest sensitivity to the cytotoxic effects of PMT. Our studies revealed that a PMT concentration of 0.1 μg/kg can lead to weight loss, whereas a PMT concentration of 0.5 μg/kg can lead to death in mice. PMT causes damage to the intestines, kidneys, lungs, livers, and spleens of mice. Furthermore, PMT caused acute death in pigs at treatment concentrations greater than 5 μg/kg; at PMT concentration of 2.5 μg/kg, weight loss occurred until death. PMT mainly caused damage to the hearts, lungs, livers, spleens and kidneys of pigs. The organ coefficient showed that damage to the heart and kidneys was the most severe and caused the renal pelvis and renal pyramid to dissolve and become cavitated. Pathology revealed hemorrhage in the lungs, liver, and spleen, and the kidneys were swollen and vacuolated, which was consistent with the damaged target organs in the mice. In conclusion, these findings demonstrate that PMT is extremely toxic in vitro and in vivo, causing damage to various organs of the body, especially the kidneys and lungs. This study provides a theoretical basis for the in-depth exploration of the cytotoxic effects of PMT on target organs.
Collapse
Affiliation(s)
- Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
5
|
Zhang L, Yu R, Wang L, Zhang Z, Lu Y, Zhou P, Wang Y, Guo H, Pan L, Liu X. Serial cell culture passaging in vitro led to complete attenuation and changes in the characteristic features of a virulent porcine deltacoronavirus strain. J Virol 2024; 98:e0064524. [PMID: 39012141 PMCID: PMC11334472 DOI: 10.1128/jvi.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused enormous economic losses in the pig industry worldwide. However, no commercial vaccine is currently available. Therefore, developing a safe and efficacious live-attenuated vaccine candidate is urgently needed. In this study, the PDCoV strain CH/XJYN/2016 was continuously passaged in LLC-PK cells until passage 240, and the virus growth kinetics in cell culture, pathogenicity in neonatal piglets, transcriptome differences after LLC-PK infection, changes in the functional characteristics of the spike (S) protein in the high- and low-passage strains, genetic variation of the virus genome, resistance to pepsin and acid, and protective effects of this strain when used as a live-attenuated vaccine were examined. The results of animal experiments demonstrated that the virulent PDCoV strain CH/XJYN/2016 was completely attenuated and not pathogenic in piglets following serial cell passage. Genome sequence analysis showed that amino acid mutations in nonstructural proteins were mainly concentrated in Nsp3, structural protein mutations were mainly concentrated in the S protein, and the N, M, and E genes were conserved. Transcriptome comparison revealed that compared with negative control cells, P10-infected LLC-PK cells had the most differentially expressed genes (DEGs), while P0 and P240 had the least number of DEGs. Analysis of trypsin dependence and related structural differences revealed that the P10 S protein interacted more strongly with trypsin and that the P120 S protein interacted more strongly with the APN receptor. Moreover, the infectivity of P240 was not affected by pepsin but was significantly decreased after exposure to low pH. Furthermore, the P240-based live-attenuated vaccine provided complete protection to piglets against the challenge of virulent PDCoV. In conclusion, we showed that a PDCoV strain was completely attenuated through serial passaging in vitro. These results provide insights into the potential molecular mechanisms of PDCoV attenuation and the development of a promising live-attenuated PDCoV vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens that cause diarrhea in pigs of various ages, especially in suckling piglets, and causes enormous economic losses in the global commercial pork industry. There are currently no effective measures to prevent and control PDCoV. As reported in previous porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus studies, inactivated vaccines usually elicit less robust protective immune responses than live-attenuated vaccines in native sows. Therefore, identifying potential attenuation mechanisms, gene evolution, pathogenicity differences during PDCoV passaging, and immunogenicity as live-attenuated vaccines is important for elucidating the mechanism of attenuation and developing safe and effective vaccines for virulent PDCoV strains. In this study, we demonstrated that the virulence of the PDCoV strain CH/XJYN/2016 was completely attenuated following serial cell passaging in vitro, and changes in the biological characteristics and protection efficacy of the strain were evaluated. Our results help elucidate the mechanism of PDCoV attenuation and support the development of appropriate designs for the study of live PDCoV vaccines.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Lianshun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Yanzhen Lu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Peng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Disease and Biosafety Control, National Center of Technology Innovation for Pigs, Lanzhou, China
| |
Collapse
|
6
|
Wu H, Sun X, Li C, Xie S, Chen Z. Preparation and Epitope Identification of Monoclonal Antibodies against the NS6 Protein of Porcine Deltacoronavirus (PDCoV). Int J Mol Sci 2024; 25:7645. [PMID: 39062886 PMCID: PMC11276995 DOI: 10.3390/ijms25147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that causes substantial economic losses in the swine industry worldwide. The PDCoV NS6 protein is an accessory protein that plays a pivotal role in the viral life cycle and immune evasion. However, the functions of NS6 and its role in PDCoV pathogenesis remain largely unknown. In this study, we prepared a monoclonal antibody (mAb) 5-A11 that specifically recognizes the PDCoV NS6 protein. The mAb 5-A11 exhibited high specificity for PDCoV, with no cross-reactivity with several major porcine pathogenic viruses. Furthermore, the epitope recognized by mAb 5-A11 was precisely mapped to residues 70EYGSIYGKDFI80 of the NS6 protein using Western blot analysis. Notably, this epitope is highly conserved among different PDCoV isolates. Substantial variations were observed when comparing this epitope with the corresponding regions in the NS6 proteins of other δ coronaviruses, suggesting potential differences in the structure, function, and antigenicity of their NS6 proteins. Our findings provide valuable tools and insights for further elucidating the functions of the NS6 protein and its role in PDCoV pathogenesis, as well as for developing diagnostic and therapeutic strategies against PDCoV infection.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Sihan Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Li B, Gao Y, Ma Y, Shi K, Shi Y, Feng S, Yin Y, Long F, Sun W. Genetic and Evolutionary Analysis of Porcine Deltacoronavirus in Guangxi Province, Southern China, from 2020 to 2023. Microorganisms 2024; 12:416. [PMID: 38399820 PMCID: PMC10893222 DOI: 10.3390/microorganisms12020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) has shown large-scale global spread since its discovery in Hong Kong in 2012. In this study, a total of 4897 diarrheal fecal samples were collected from the Guangxi province of China from 2020 to 2023 and tested using RT-qPCR. In total, 362 (362/4897, 7.39%) of samples were positive for PDCoV. The S, M, and N gene sequences were obtained from 34 positive samples after amplification and sequencing. These PDCoV gene sequences, together with other PDCoV S gene reference sequences from China and other countries, were analyzed. Phylogenetic analysis revealed that the Chinese PDCoV strains have diverged in recent years. Bayesian analysis revealed that the new China 1.3 lineage began to diverge in 2012. Comparing the amino acids of the China 1.3 lineage with those of other lineages, the China 1.3 lineage showed variations of mutations, deletions, and insertions, and some variations demonstrated the same as or similar to those of the China 1.2 lineage. In addition, recombination analysis revealed interlineage recombination in CHGX-MT505459-2019 and CHGX-MT505449-2017 strains from Guangxi province. In summary, the results provide new information on the prevalence and evolution of PDCoV in Guangxi province in southern China, which will facilitate better comprehension and prevention of PDCoV.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Yeheng Gao
- Institute of Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning 530005, China;
| | - Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (B.L.); (Y.M.); (Y.S.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (S.F.); (Y.Y.); (F.L.)
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Wu H, Li C, Sun X, Cheng Y, Chen Z. Identification of a Monoclonal Antibody against Porcine Deltacoronavirus Membrane Protein. Int J Mol Sci 2023; 24:13934. [PMID: 37762237 PMCID: PMC10530725 DOI: 10.3390/ijms241813934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging virus that poses a significant threat to the global swine industry. Its membrane (M) protein is crucial for virion assembly and virus-host interactions. We selected the hydrophilic region of M protein for prokaryotic expression, purification, and recombinant protein production. Utilizing hybridoma technology, we prepared the monoclonal antibody (mAb) 24-A6 against M protein. The mAb 24-A6 was shown to be suitable for use in immunofluorescence assays, western blotting, and immunoprecipitation, with specificity for PDCoV and no cross-reactivity with other five porcine viruses. The M protein was observed to be expressed as early as 3 h after PDCoV infection, increasing its expression over the duration of infection. Notably, the antigenic epitope of the M protein identified as 103SPESRL108 recognized by mAb 24-A6 was found within a conserved structural domain (SWWSFNPETNNL) of the coronavirus M protein, indicating a crucial overlap between a functionally important viral assembly region and a region recognized by the immune system. Our findings provide valuable insights into mAb 24-A6 targeting the antigenic epitope of M protein and may contribute to the development of diagnostic tools for PDCoV infection and fundamental research into the function of PDCoV M protein.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yue Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|