1
|
Liu Y, Luo Y, Zhang J, Zhang L, Guan Y, Zhang Y. Sequential release of vascular endothelial growth factor and platelet-derived growth factor at the appropriate time for improved angiogenesis. Acta Biomater 2025; 196:171-181. [PMID: 40058618 DOI: 10.1016/j.actbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Sequential release of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was proposed to enhance therapeutic angiogenesis, however, it remains a challenge to accomplish distinct sequential release of the two proteins. More importantly, the appropriate timing of PDGF release remains an open question. Herein to solve these problems, a new time-controlled release system was designed in which tannic acid/Pluronic F127 (TA/F127) layer-by-layer (LBL) films were used as erodible coatings. The hydrogen-bonded TA/F127 films disintegrate in water at a constant rate. Therefore this system can not only achieve distinct sequential release of two proteins, but can finely control the lag time of the second protein by the TA/F127 coating thickness. In this way drug carriers for sequential release of VEGF and PDGF were prepared. Their angiogenic effects were evaluated using a mouse model of lower limb ischemia. Improved therapeutic efficiency was observed when VEGF and PDGF were sequentially released. More importantly, it was observed that the therapeutic efficiency first increased with increasing TA/F127 film thickness, reached a maximum, and then dropped with further increased TA/F127 film thickness. The results demonstrated that it is important to release PDGF at the appropriate time point to further improve angiogenesis. For the first time, the appropriate timing for PDGF application was determined to be 5-7 days after the application of VEGF. STATEMENT OF SIGNIFICANCE: It remains a challenge to accomplish distinct sequential release of VEGF and PDGF to enhance therapeutic angiogenesis. The appropriate timing for PDGF release is also an open question. In this study, a new time-controlled release system using a TA/F127 layer-by-layer film as an erodible coating was designed. Not only can distinct sequential release of VEGF and PDGF be achieved, but the lag time of PDGF release can also be finely controlled by the coating thickness. In this way, the appropriate timing for PDGF application was successfully determined.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Centre Hospital, Tianjin 300170, PR China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Lei Zhang
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Feng L, Zhang J, Ma C, Li K, Zhai J, Cai S, Yin J. Application prospect of polysaccharide in the development of vaccine adjuvants. Int J Biol Macromol 2025; 297:139845. [PMID: 39824409 DOI: 10.1016/j.ijbiomac.2025.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system. Adjuvants have long been incorporated into vaccines to enhance the body's immune response, allowing for reduced dosage and lower production costs. Despite the development of numerous vaccine adjuvants, few exhibit the necessary potency and low toxicity for clinical use, often due to limited efficacy or adverse side effects. This underscores the urgent need for novel human vaccine adjuvants that are safe, effective, and cost-efficient. Recent studies have identified certain natural polysaccharides as promising human vaccine adjuvants due to their immunostimulatory properties, low toxicity, and high safety profiles, which enhance both humoral and cellular immunity. These natural polysaccharides are primarily derived from traditional Chinese medicine (TCM) plants, bacteria, and yeast. This review comprehensively analyzes several promising polysaccharide adjuvants, discussing their clinical applications, market potential, and immunoregulatory activities. In summary, the future prospects of polysaccharides provide valuable insights for the application and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jiarui Zhang
- Department of Intensive Care Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Chen SJ, Rai CI, Wang SC, Chen YC. Infection and Prevention of Rabies Viruses. Microorganisms 2025; 13:380. [PMID: 40005749 PMCID: PMC11858514 DOI: 10.3390/microorganisms13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Rabies is a fatal zoonotic disease and causes about 59,000 human deaths globally every year. Especially, its mortality is almost 100% in cases where the rabies virus has transmitted to the central nervous system. The special virus life cycle and pathogenic mechanism make it difficult for the host immune system to combat rabies viruses. Vaccination including pre-exposure and post-exposure prophylaxis is an effective strategy for rabies prevention. The pre-exposure vaccination is mainly applied for animals and the post-exposure vaccination is the most application for humans. Although rabies vaccines are widely used and seem to be safe and effective, there are some disadvantages, limitations, or challenges affecting vaccine promotion and distribution. Therefore, more effective, convenient, safer, and cheaper rabies vaccines have been developed or are being developed. The development of novel human rabies vaccine is mainly focusing on vaccines based on a purified Vero cell-cultured freeze-dried rabies vaccine (PVRV). PVRV has been demonstrated to be promising to make the rabies vaccine more effective and secure in animal studies or clinical trials. Moreover, mRNA-based vaccines have been shown to have the potential to enhance the safety and efficacy of rabies vaccines for both animal and human uses.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chung-I Rai
- Department of Cosmetic Science, Vanung University, 1 Van Nung Road, Chung-Li City, Taoyuan 320676, Taiwan;
| | - Shao-Cheng Wang
- Department of Psychiatric, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Psychiatry, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yuan-Chuan Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
| |
Collapse
|
4
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
5
|
Wang Z, Yang Q, Wu G, Ma J, Luo L, Yin W, Wu M. Structural analysis and adjuvant activity of a polysaccharide from Urtica macrorrhiza. Int J Biol Macromol 2024; 283:137433. [PMID: 39542334 DOI: 10.1016/j.ijbiomac.2024.137433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Developing new vaccine adjuvants for clinical use remains a significant challenge. Herein, we reported a polysaccharide (UMRG) from Urtica macrorrhiza. It has a molecular weight of 743.35 kDa and is composed of rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), and galactose (Gal) in a molar ratio of 1.94: 1.00: 4.17: 1.79. Structural analysis revealed that UMRG contains a rhamnogalacturonan I backbone with short side chains of β-Galp-(1→4)-β-GlcAp-(1→4)-β-Glap-(1→ linked at the C-4 position of →2,4)-α-Rhap-(1→. In vivo, UMRG significantly increased the production of antigen-specific IgG, IgG1, and IgG2a by 1.91-, 2.09-, and 3.43-fold, respectively, on day 42 post-immunization. It also promoted the proliferation of splenic lymphocytes, increasing the proportion of CD3+ and CD3+CD4+ T lymphocytes from 32.63 ± 1.13 % to 38.13 ± 2.03 % and from 21.05 ± 0.93 % to 24.34 ± 1.21 %, respectively. Further investigation demonstrated that UMRG promoted the phagocytosis of antigens by dendritic cells, improved their maturation, and stimulated the secretion of the cytokines TNF-α, IL-12, and IL-6. Additionally, both in vitro and in vivo experiments demonstrated that UMRG displayed good biosafety. Our results suggested the Urtica macrorrhiza polysaccharide may exhibit the potential to be developed as a highly efficient and low-toxicity immune adjuvant.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Yang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China.; Yunnan Baiyao Group CO.LTD, Kunming 650500, China
| | - Genrui Wu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Jiancheng Ma
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China; School of Pharmacy, Dali University, Dali 671003, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, China.
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.; University of Chinese Academy of Sciences, Beijing 100049, China..
| |
Collapse
|
6
|
Zhang J, Liu Y, Guan Y, Zhang Y. A single-injection vaccine providing protection against two HPV types. J Mater Chem B 2024; 12:11237-11250. [PMID: 39373456 DOI: 10.1039/d4tb00606b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Prophylactic human papillomavirus (HPV) vaccines against cervical cancer were successfully developed; however, challenges such as high cost and low compliance still remain to be overcome. In addition, because many HPV types can cause cervical cancer, antigens of multiple HPV types are needed to achieve broad protection. In this study, a bivalent single-injection HPV vaccine was designed in which virus-like particles (VLPs) of HPV 16 L1 and HPV 18 L1 were used as antigens. A recently developed drug carrier that uses tannic acid/polyethylene glycol films as the erodible layer was employed to accomplish multiple pulsatile releases of the antigens. Monovalent single-injection vaccines for HPV 16 and HPV 18 were first designed. A bivalent single-injection vaccine was then obtained by simply mixing the two monovalent vaccines. The bivalent vaccine provided protection against both HPV types. More importantly, it elicited both humoral and cellular immune responses as potent as those elicited by the corresponding multiple dose vaccine because of their similar release profile of antigens. Cross-reactivity was observed between HPV 16 and 18 in terms of cellular immune responses, while no cross-reactivity was found in terms of humoral immune responses. Note that other multivalent single-injection vaccines could be designed in the same way. These vaccines are expected to help prevent cervical cancer because of their broad protection, enhanced compliance and lowered vaccination cost.
Collapse
Affiliation(s)
- Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu Liu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
7
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
8
|
Brubaker SW, Walters IR, Hite EM, Antunez LR, Palm EL, Funke HH, Steadman BL. Demonstration of Tunable Control over a Delayed-Release Vaccine Using Atomic Layer Deposition. Vaccines (Basel) 2024; 12:761. [PMID: 39066399 PMCID: PMC11281649 DOI: 10.3390/vaccines12070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Many vaccines require multiple doses for full efficacy, posing a barrier for patient adherence and protection. One solution to achieve full vaccination may be attained with single-administration vaccines containing multiple controlled release doses. In this study, delayed-release vaccines were generated using atomic layer deposition (ALD) to coat antigen-containing powders with alumina. Using in vitro and in vivo methods, we show that increasing the coat thickness controls the kinetics of antigen release and antibody response, ranging from weeks to months. Our results establish an in vitro-in vivo correlation with a level of tunable control over the antigen release and antibody response times with the potential to impact future vaccine design.
Collapse
Affiliation(s)
- Sky W. Brubaker
- VitriVax, Inc., 5435 Airport Blvd Suite 106, Boulder, CO 80301, USA; (I.R.W.); (E.M.H.); (L.R.A.); (E.L.P.); (H.H.F.); (B.L.S.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Sun X, Shi Y, Shi D, Tu Y, Liu L. Biological Activities of Secondary Metabolites from the Edible-Medicinal Macrofungi. J Fungi (Basel) 2024; 10:144. [PMID: 38392816 PMCID: PMC10890728 DOI: 10.3390/jof10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Tu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|