1
|
Jia-Qin F, Tong Z, Chang-Li H, Ping-Ping W, Chin-Ping T, Chuang L, Wei-Ting F, Xiong F, Chun C. Optimization for ultrasound combined with flash extraction of polysaccharides from Phyllanthus emblica L. with antioxidant and hyperglycemic activity in vitro. Int J Biol Macromol 2025; 311:143940. [PMID: 40334896 DOI: 10.1016/j.ijbiomac.2025.143940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Ultrasound-assisted flash extraction was used to rapidly extract polysaccharides from Phyllanthus emblica L. fruits (PEPs) with a good yield of 9.73 % ± 0.75 %. Furthermore, the PEPs were fractionated by graded precipitation of 30 %, 60 %, and 90 % (v/v) ethanol solution, and the respective molecular weight polysaccharide fractions, namely PEP-30 (166.88 kDa), PEP-60 (109.14 kDa), and PEP-90 (34.59 kDa) were obtained. The three fractions were composed of similar monosaccharides with galacturonic acid as the main constituent. The slope of R.M.S. radius-Mw curve showed that the three polysaccharide fractions were high-branched molecules with solid spherical conformation, and PEP-90 adopted a more compact conformation in aqueous solution. The three polysaccharide fractions had strong antioxidant activity, with PEP-60 showing the strongest antioxidant effect in vitro. PEP-30 (IC50 = 1.56 ± 0.14 mg/mL), PEP-60 (IC50 = 0.99 ± 0.09 mg/mL), and PEP-90 (IC50 = 0.63 ± 0.09 mg/mL) all exhibited mixed-type inhibition of α-glucosidase. Notably, PEP-90 showed the strongest inhibitory effect on α-glucosidase with the strongest binding ability to α-glucosidase and α-glucosidase-substrate complex, which are mainly related to different molecular weight. The results suggest the molecular weight of PEPs had great impact on their biological activities, providing important theoretical guiding for developing Phyllanthus emblica L. food products with the functional activity.
Collapse
Affiliation(s)
- Fang Jia-Qin
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Zhang Tong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hu Chang-Li
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Wang Ping-Ping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Liu Chuang
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Feng Wei-Ting
- Guangzhou Restaurant Group Likofu Food Company Ltd., Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
2
|
Bhattacharyya J, Saikia L, Kalita V, Dutta PP. An Updated Review on the Anti-Inflammatory Potential of Phyllanthus Genus. Chem Biodivers 2025:e202402483. [PMID: 40271556 DOI: 10.1002/cbdv.202402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
The Phyllanthus genus, known for its therapeutic efficacy in traditional and folk medicine, has been extensively investigated for its anti-inflammatory properties. This review systematically evaluates the existing literature on various Phyllanthus species, with a focus on their potential as medicinal agents for managing inflammatory conditions. Notably, extracts, fractions and bioactive phytoconstituents, predominantly phenolic derivatives and cleistanthane-type diterpenoids from species such as Phyllanthus emblica, Phyllanthus niruri, Phyllanthus amarus, Phyllanthus acidus, Phyllanthus muellerianus, Phyllanthus reticulatus, Phyllanthus rheophyticus, Phyllanthus fraternus, Phyllanthus glaucus, Phyllanthus urinaria, Phyllanthus nivosus and Phyllanthus orbicularis, have demonstrated anti-inflammatory activity. These effects are primarily facilitated through the reduction of pro-inflammatory cytokine production, inhibition of prostaglandin and nitric oxide synthesis, inhibition of inflammatory mediators such as COX-2, NOX, and LOX, and increase the production of anti-inflammatory cytokines. In addition, the suppression of inflammation is achieved via the modulation of critical signalling pathways, including NF-κB, Nrf2, extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK). Despite these promising findings, limited clinical studies assessing the anti-inflammatory efficacy of Phyllanthus species, underscoring the need for rigorous future research to fully elucidate their therapeutic potential.
Collapse
Affiliation(s)
| | - Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| | - Violina Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
- Department of Pharmaceutics, NEF College of Pharmacy, Guwahati, Assam, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
| |
Collapse
|
3
|
Li X, Duan W, Zhu Y, Ji R, Feng K, Kathuria Y, Xiao H, Yu Y, Cao Y. Transcriptomics and metabolomics reveal the alleviation effect of pectic polysaccharide on dextran sodium sulfate-induced colitis mice. Int J Biol Macromol 2025; 288:138755. [PMID: 39674473 DOI: 10.1016/j.ijbiomac.2024.138755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Ulcerative colitis (UC) is a relapsing disease with an increasing morbidity and prevalence. Dietary polysaccharides have recently become a research hotspot because of their therapeutic effects and safety on UC. Our previous research elucidated that pectic polysaccharide from Phyllanthus emblica L. (PEP-1) could alleviate dextran sodium sulfate-induced UC mice. Herein, metabolomics and transcriptomics were further applied to disclose the underlying mechanisms behind PEP-1's anti-inflammatory effects. PEP-1 intervention altered the serum metabolite contents and pathways represented by decreasing xanthine and sphinganine levels. Changes in gene expressions correlated with metabolite variations led by the suppression of the expression of the inflammatory factors, colorectal cancer promoter, and NF-κB pathway as well as the enhancement of tight junctions. This study demonstrated that the ameliorating effect of chronic UC was partially ascribed to the alteration of the serum metabolites and changes in gene expression.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wen Duan
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Foshan University, Foshan 528000, China
| | - Yukti Kathuria
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Li X, Chen Y, Peng X, Zhu Y, Duan W, Ji R, Xiao H, Li X, Liu G, Yu Y, Cao Y. Anti-inflammation mechanisms of a homogeneous polysaccharide from Phyllanthus emblica L. on DSS induced colitis mice via the gut microbiota and metabolites alteration. Food Chem 2024; 459:140346. [PMID: 38981378 DOI: 10.1016/j.foodchem.2024.140346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Phyllanthus emblica L. offers promising therapeutic potential for inflammatory diseases. This study revealed the molecular structure of a homogeneous polysaccharide purified from Phyllanthus emblica L. (PEP-1) and evaluated its anti-inflammatory effects on ulcerative colitis (UC) in mice. In the in vivo experiment, administered in varying dosages to dextran sulfate sodium (DSS)-induced UC models, PEP-1 significantly alleviated colonic symptoms, histological damages and reshaped the gut microbiota. Notably, it adjusted the Firmicutes/Bacteroidetes ratio and reduced pro-inflammatory species, closely aligning with shifts in the fecal metabolites and metabolic pathways such as the metabolism of pyrimidine, beta-alanine, and purine. These findings underscore the potential of PEP-1 as a therapeutic agent for UC, providing insights into the mechanisms through gut microbiota and metabolic modulation.
Collapse
Affiliation(s)
- Xiaoqing Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China,; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xinan Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Duan
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ruya Ji
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xueli Li
- Eastroc Beverage Group Co., Ltd., Shenzhen, 518057, China
| | - Guo Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China,.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Gao F, Zhang X, Xu Z, Zhang K, Quan F. Goat milk derived small extracellular vesicles ameliorate LPS-induced intestinal epithelial barrier dysfunction, oxidative stress, and apoptosis by inhibiting the MAPK signaling pathway. Food Funct 2024; 15:11590-11607. [PMID: 39508525 DOI: 10.1039/d4fo04067h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intestinal injury is often accompanied by epithelial barrier dysfunction, oxidative stress, and apoptosis. Previous research studies have demonstrated that small extracellular vesicles (sEVs) from animal milk play a crucial role in regulating intestinal injury. Nonetheless, there has been limited research on the impact of goat milk sEVs on intestinal damage. This study aims to explore the functional differences between proteins in colostrum-derived sEVs (CME) and mature milk-derived sEVs (MME) from goat and elucidate their effects and mechanisms on lipopolysaccharide (LPS)-induced injury in IEC-6. Proteomic analysis revealed that both CME and MME are rich in various bioactive proteins that have regulatory effects on cell damage. CME and MME significantly improved LPS-induced IEC-6 barrier dysfunction and oxidative stress. Additionally, CME and MME alleviated LPS-induced IEC-6 proliferation inhibition and apoptosis. Notably, CME exhibited a more significant improvement effect. RNA-Seq analysis indicated that CME ameliorates IEC-6 injury by inhibiting multiple genes and signaling pathways associated with cell damage, particularly the MAPK signaling pathway. In summary, goat milk-derived sEVs improve LPS-induced IEC-6 injury by targeting the MAPK signaling pathway, significantly restoring the intestinal epithelial barrier function, reducing oxidative stress, and alleviating apoptosis. These findings offer scientific evidence supporting the potential application of goat milk-derived sEVs as protective agents against intestinal injury.
Collapse
Affiliation(s)
- Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Li Y, Chen Y, Liao Z, Liu Y, Liu C, Yang W, Bai J, Huang X, Hao Y, Liu S, Liu Y. WenTongGanPi decoction alleviates diarrhea-predominant irritable bowel syndrome by improving intestinal barrier. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118544. [PMID: 39013542 DOI: 10.1016/j.jep.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE WenTongGanPi Decoction (WTGPD) is a representative medical practice of the Fuyang School of Traditional Chinese Medicine (TCM), which originated from the classical Lu's Guizhi method. WTGPD places emphasis on the balance and functionality of yang qi, and is effective in treating TCM symptoms related to liver qi stagnation and spleen yang deficiency. In TCM, diarrhea-predominant irritable bowel syndrome (IBS-D) is often diagnosed as liver depression and spleen deficiency, and the use of WTGPD has shown significant therapeutic effect. However, the underlying mechanism of WTGPD treating IBS-D remains unclear. AIM OF THE STUDY To explore the effect and mechanism of WTGPD in the treatment of IBS-D. MATERIALS AND METHODS An IBS-D model with liver depression and spleen deficiency was constructed by chronic immobilization stress stimulation and sennae folium aqueous gavage. The impact of WTGPD on IBS-D rats was evaluated through measurements of body weight, fecal water content, and abdominal withdrawal reflex (AWR). Intestinal permeability was assessed using hematoxylin-eosin (HE), alcian blue-periodic acid schiff (AB-PAS), immunofluorescence (IF) staining, and quantitative real-time PCR (qRT-PCR). The components of WTGPD were analyzed using UPLC-Q-TOF-MS. The underlying mechanisms were investigated through network pharmacology, transcriptomics sequencing, western blot (WB), molecular docking, and 16S rRNA sequencing. RESULTS WTGPD treatment effectively alleviated diarrhea and abnormal pain in IBS-D rats (P < 0.05). It enhanced the intestinal barrier function by improving colonic structure and increasing the expression of tight junction proteins (P < 0.05). A total of 155 components were identified in WTGPD. Both network pharmacology and transcriptomics sequencing analysis highlighted MAPK as the key signaling pathway in WTGPD's anti-IBS-D effect. The WB results showed a significant decrease in p-p38, p-ERK and p-JNK expression after WTGPD treatment (P < 0.0001). Guanosine, adenosine and hesperetin in WTGPD may be involved in regulating the phosphorylation of p38, ERK and JNK. Additionally, WTGPD significantly enhanced microbial diversity and increased the production of colonic valeric acid in IBS-D rats (P < 0.01). CONCLUSION In conclusion, our findings suggest that WTGPD can effectively alleviate IBS-D and improve intestinal barrier likely via inhibiting MAPK signal pathway and improving micobial dysbiosis.
Collapse
Affiliation(s)
- Yaoguang Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yangyang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Zhengyue Liao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yixin Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Chenhao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Wenjing Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Xinggui Huang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Yule Hao
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China
| | - Sijing Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China.
| | - Yi Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611103, China.
| |
Collapse
|
7
|
de Lima JS, Leão AD, de Jesus Oliveira AC, Chaves LL, Ramos RKLG, Rodrigues CFC, Soares-Sobrinho JL, Soares MFDLR. Potential of plant-based polysaccharides as therapeutic agents in ulcerogenic diseases of the gastrointestinal tract: A review. Int J Biol Macromol 2024; 281:136399. [PMID: 39395521 DOI: 10.1016/j.ijbiomac.2024.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
In recent years, natural polysaccharides (PSs) have attracted increasing interest because of their remarkable biological properties and potential in various areas, such as medicine, and food. This study aimed to present a detailed review of the evidence on the therapeutic potential of PSs for the treatment of gastrointestinal diseases. The main evidence was correlated with their chemical composition, mechanism of action and therapeutic effect. The main results showed that the action can be attributed to their ability to suppress excessive inflammatory responses, regulating the expression of cytokines and interleukins, reducing intestinal inflammation and promoting wound healing. Furthermore, we discussed how PSs help in the repair of the intestinal mucosa and related these effects with the composition of monosaccharides. A detailed analysis was performed on the ability of PSs to modulate the intestinal microbiota, promoting the growth of beneficial bacteria and suppressing inflammatory bacteria, in addition to its probiotic action with production of short-chain fatty acids. All this evidence was also taken into a broader context, in which the main challenges in processing PSs were considered and strategies to circumvent them were pointed out. Therefore, this review sought to demonstrate the great potential and viability of PSs as innovative and effective therapeutic agents.
Collapse
Affiliation(s)
- Jucielma Silva de Lima
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Amanda Damaceno Leão
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Carla Fernanda Couto Rodrigues
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
8
|
Liu H, Lu H, Wang Y, Yu C, He Z, Dong H. Unlocking the power of short-chain fatty acids in ameliorating intestinal mucosal immunity: a new porcine nutritional approach. Front Cell Infect Microbiol 2024; 14:1449030. [PMID: 39286812 PMCID: PMC11402818 DOI: 10.3389/fcimb.2024.1449030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs), a subset of organic fatty acids with carbon chains ranging from one to six atoms in length, encompass acetate, propionate, and butyrate. These compounds are the endproducts of dietary fiber fermentation, primarily catalyzed by the glycolysis and pentose phosphate pathways within the gut microbiota. SCFAs act as pivotal energy substrates and signaling molecules in the realm of animal nutrition, exerting a profound influence on the intestinal, immune system, and intestinal barrier functions. Specifically, they contibute to 60-70% of the total energy requirements in ruminants and 10-25% in monogastric animals. SCFAs have demonstrated the capability to effectively modulate intestinal pH, optimize the absorption of mineral elements, and impede pathogen invasion. Moreover, they enhance the expression of proteins associated with intestinal tight junctions and stimulate mucus production, thereby refining intestinal tissue morphology and preserving the integrity of the intestinal structure. Notably, SCFAs also exert anti-inflammatory properties, mitigating inflammation within the intestinal epithelium and strengthening the intestinal barrier's defensive capabilities. The present review endeavors to synthesize recent findings regarding the role of SCFAs as crucial signaling intermediaries between the metabolic activities of gut microbiota and the status of porcine cells. It also provides a comprehensive overview of the current literature on SCFAs' impact on immune responses within the porcine intestinal mucosa.
Collapse
Affiliation(s)
- Haoyang Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hongde Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yuxuan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Chenyun Yu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Zhiyuan He
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Engineering Research Center of Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
9
|
Lu D, Yao D, Hu G, Zhou J, Shen X, Qian L. Maternal docosahexaenoic acid supplementation during lactation improves exercise performance, enhances intestinal glucose absorption and modulates gut microbiota in weaning offspring mice. Front Nutr 2024; 11:1423576. [PMID: 39036494 PMCID: PMC11258037 DOI: 10.3389/fnut.2024.1423576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Intestinal dysfunction induced by weaning stress is common during breastfeeding period. Docosahexaenoic acid (DHA) is well known for promoting visual and brain development, but its effects on early intestinal development remain unknown. This study investigated the impact of maternal DHA supplementation during lactation on intestinal glucose absorption and gut microbiota in weaning offspring mice. Materials and methods Dams were supplemented with vehicle (control), 150 mg/(kg body weight · day) DHA (L-DHA), or 450 mg/(kg body weight · day) DHA (H-DHA) throughout lactation by oral administration. After weaning, pups were randomly divided into three groups for athletic analysis, microbial and proteomic analysis, biochemical analysis, 4-deoxy-4-fluoro-D-glucose (4-FDG) absorption test, and gene expression quantitation of glucose transport-associated proteins and mTOR signaling components. Results The H-DHA group exhibited enhanced grip strength and prolonged swimming duration compared to the control group. Additionally, there were significant increases in jejunal and ileal villus height, and expanded surface area of jejunal villi in the H-DHA group. Microbial analyses revealed that maternal DHA intake increased the abundance of beneficial gut bacteria and promoted metabolic pathways linked to carbohydrate and energy metabolism. Proteomic studies indicated an increased abundance of nutrient transport proteins and enrichment of pathways involved in absorption and digestion in the H-DHA group. This group also showed higher concentrations of glucose in the jejunum and ileum, as well as elevated glycogen levels in the liver and muscles, in contrast to lower glucose levels in the intestinal contents and feces compared to the control group. The 4-FDG absorption test showed more efficient absorption after oral 4-FDG gavage in the H-DHA group. Moreover, the expressions of glucose transport-associated proteins, GLUT2 and SGLT1, and the activation of mTOR pathway were enhanced in the H-DHA group compared to the control group. The L-DHA group also showed similar but less pronounced improvements in these aspects relative to the H-DHA group. Conclusion Our findings suggested that maternal DHA supplementation during lactation improves the exercise performance, enhances the intestinal glucose absorption by increasing the expressions of glucose transporters, and beneficially alters the structure of gut microbiome in weaning offspring mice.
Collapse
Affiliation(s)
- Dalu Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaoli Hu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Qian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|