1
|
Alizadeh Sani M, Khezerlou A, Rezvani-Ghalhari M, McClements DJ, Varma RS. Advanced carbon-based nanomaterials: Application in the development of multifunctional next-generation food packaging materials. Adv Colloid Interface Sci 2025; 339:103422. [PMID: 39904277 DOI: 10.1016/j.cis.2025.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Carbon-based nanomaterials (CNMs) hold great promise for food packaging applications due to their ability to improve barrier properties, mechanical strength, sensing capabilities, and resistance to environmental factors. CNMs, such as graphene and carbon nanotubes, can also be used as preservatives to extend the shelf life of food products by preventing spoilage and maintaining freshness. Additionally, their ability to respond to changes in environmental conditions means they can be used as sensors to provide information about food quality, freshness, or safety. SCOPE AND APPROACH This article reviews the properties of CNMs, their impact on packaging film properties, their utilization in smart and active food packaging systems in the food sector, and their potential safety concerns. KEY FINDINGS AND CONCLUSIONS These innovative nanomaterials offer a range of unique properties that can enhance the safety, shelf-life, quality, and sustainability of packaged food products. However, CNMs have their own set of challenges that need to be addressed, including their functional performance and safety assessment. Collaborations among material scientists, food technologists, and regulatory bodies are required to drive the development of safe and effective CNM-based food packaging solutions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Mohammad Rezvani-Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Sangeetha UK, De S, Khatun S, Das S, Sahoo SK. Carbon dots embedded carrageenan based compostable functional packaging films with barrier bio-coating for prawns freshness monitoring. Int J Biol Macromol 2025; 310:143533. [PMID: 40306506 DOI: 10.1016/j.ijbiomac.2025.143533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Biopolymer based intelligent packaging films with barrier properties are gaining significant attention in the food industry due to the compostability, food freshness monitoring potential and shelf life increment capability. In this work, ~10 nm sized urea- dithiosalicilic acid based carbon dots (UCDs) with aggregation-induced emission (AIE) property are prepared and incorporated into carrageenan biopolymer to develop amine sensing packaging material. Composite film is coated with zein-stearic acid (Z/SA) mixture to improve the water barrier property with water vapour transmission rate value ≤40 g/(m2.day). The coated composite film (CAR3UCD-C) exhibited ammonia sensing capability with a limit of detection (LOD) of 0.6 μM and showed good free radical scavenging activity (70 % against ABTS radicals), high UV blocking property (~92 % reduction) as well as antibacterial activity against E. coli and S. aureus. The developed films showed better tensile strength (>50 MPa) and good thermal stability (till 200 °C). The material effectively distinguished the freshness states of prawns through fluorescent color change from orange to blue upon spoilage. The coated film is completely degradable in soil within 35 days under ambient conditions. This film can be utilised as a promising intelligent barrier packaging material for monitoring real-time freshness of prawns and other protein-rich foods.
Collapse
Affiliation(s)
- U K Sangeetha
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, India
| | - Sultana Khatun
- Department of Allied Health Sciences, Brainware University, Kolkata 700125, India
| | - Subrata Das
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushanta K Sahoo
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Chen M, Wu D, Deng X, Li Y, Sun X, Ma J, Chen C, Liao X, Liu X. Chitin-rich shrimp shells-based nitrogen-doped green fluorescence carbon dots: New insights for multi-orbital applications. Int J Biol Macromol 2025; 304:141029. [PMID: 39954882 DOI: 10.1016/j.ijbiomac.2025.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Carbon dots (CDs), revolutionary carbon-based nanomaterial, have demonstrated tremendous potential for applications across multiple areas. Chitin-rich shrimp shells are a sustainable and renewable resource, and their utilization can turn waste into treasure. This work is dedicated to efficiently preparing nitrogen-doped green fluorescent CDs (N-CDs) for multi-modal applications from waste shrimp shells by hydrothermal methods. The detailed spectroscopic characterization reveals that the N-CDs possess excellent optical properties. The quantum yield is as high as 33.2%. Specifically, the N-CDs show excellent selectivity and sensitivity in the quantitative detection of Fe3+. Additionally, in response to pH changes, the surface functional groups of the N-CDs undergo protonation and deprotonation, leading to corresponding alterations in fluorescence colors. Capitalizing on this characteristic, a visual portable pH-measuring platform is developed. This platform ingeniously integrates nanoscale optical sensors with smartphone image processing technology, enabling real-time and highly accurate monitoring of environmental pH levels. Furthermore, they are ideal materials for fluorescence anti-counterfeiting detection due to their unique optical properties. This work simultaneously accomplishes the reuse of waste biomass and provides novel insights for multi-orbital applications, including metal ion detection, pH monitoring, and the anti-counterfeiting field.
Collapse
Affiliation(s)
- Mingying Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Danni Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoye Deng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yingjie Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoqin Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Junjie Ma
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Congjin Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Xiufen Liao
- Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Xijun Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
4
|
Charles AL, Nero Z, Sulmartiwi L, Triningtyas PH, Putra NR, Abdillah AA, Alamsjah MA. Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties. Int J Biol Macromol 2025; 292:139161. [PMID: 39730049 DOI: 10.1016/j.ijbiomac.2024.139161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato. The results showed CJP improved tensile strength from 1.84 to 9.35 MPa and lowered moisture content from 33.44 to 18.92 %, and revealed compatibility within a semi-crystalline film matrix of high thermal stability, which depicted smooth surface areas and opacity suitable for packaging. The findings demonstrated faster biodegradability rates in soils (14-35 days) than water tests (152-180 days). Furthermore, coating significantly delayed weight loss while preserving visible color and flesh quality of the cherry tomato. In conclusion, the CJP-based biocomposite films presented a potential biodegradable eco-friendly alternative to the food packaging industry.
Collapse
Affiliation(s)
- Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Zoannie Nero
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Laksmi Sulmartiwi
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Putranti Hikmah Triningtyas
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Nanda Rizki Putra
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Annur Ahadi Abdillah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
5
|
Zhang P, Gao S, Xu L, Xu C. Application of biomass carbon dots in food packaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1710-1733. [PMID: 39755862 DOI: 10.1007/s11356-024-35818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 01/06/2025]
Abstract
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties. From this perspective, eco-friendly biomass and its derivatives are perfect carbon precursors for CDs because they contain the heteroatoms needed to modify CDs, and their complex chemical composition gives CDs a wide variety of surface functional groups. Besides, converting biomass waste into high-value-added CDs is also an innovation in biomass waste treatment. Therefore, this paper focuses on the carbon precursors of biomass CDs. At the same time, food packaging occupies an essential position in the industry, and fluorescent CDs with good fluorescence properties, high chemical stability, and good photobleaching properties have great application potential in packaging innovation techniques that have emerged in recent years, but relevant reports are scarce and scattered. Considering that the surface morphology, chemical structure, and optical and electrical properties of biomass CDs are primarily affected by the carbon precursors' chemical structure and preparation method, this paper also focuses on the synthesis method of biomass CDs and its application in anti-counterfeiting packaging, intelligent packaging, antioxidant packaging, and antibacterial packaging.
Collapse
Affiliation(s)
- Peipei Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shiyu Gao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyan Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Zhang C, Zhang J, Cao S, Tang Y, Wang M, Qu C. Photodynamic bactericidal nanomaterials in food packaging: From principle to application. J Food Sci 2025; 90:e17606. [PMID: 39801222 DOI: 10.1111/1750-3841.17606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 05/02/2025]
Abstract
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation. Furthermore, we delve into the application potential of PDI nanomaterials, such as quantum dots, titanium dioxide, and graphene, in packaging and films. Special attention is given to the impact of PDI treatment on food quality and the potential for microbial tolerance development. Last, we discuss the migration and safety of PDI nanomaterials. The chemical basis of PDI involves the generation of reactive oxygen species through the activation of endogenous or exogenous photosensitizers. Its primary antibacterial mechanisms encompass the disruption of cell membranes, impairment of cellular functions, and inhibition of quorum sensing. The multi-target action of PDI significantly reduces the likelihood of resistance development. PDI has great potential for application in the field of antibacterial packaging. The information contained in this paper will provide effective reference for the design of new antibacterial packaging.
Collapse
Affiliation(s)
- Chushu Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Jiancheng Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Shining Cao
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Yueyi Tang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Mian Wang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China
| |
Collapse
|
7
|
Mu Y, Lv S, Liu J, Tong J, Liu L, Wang J, He T, Wei D. Recent advances in research on biomass-based food packaging film materials. Compr Rev Food Sci Food Saf 2025; 24:e70093. [PMID: 39812511 DOI: 10.1111/1541-4337.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.g., solution casting, extrusion blow molding, layer-by-layer assembly, and electrostatic spinning), and applications in food packaging. Through these preparation methods, the paper analyzes how the properties of the films can be effectively tuned and optimized to meet specific packaging needs. It was found that biomass film materials for food packaging not only possess functional properties such as antimicrobial, preservation, and indication, but also that their continued material innovation and technological improvements offer promising prospects for their use in commercial applications. These advances could help advance the global sustainable development goals, while showing great potential for improving food safety and extending shelf life. Future research will further explore new functions and applications of biomass films, providing additional solutions for environmental protection and sustainability.
Collapse
Affiliation(s)
- Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiaqi Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
8
|
Nesic A, Meseldzija S, Benavides S, Figueroa FA, Cabrera-Barjas G. Seaweed as a Valuable and Sustainable Resource for Food Packaging Materials. Foods 2024; 13:3212. [PMID: 39410246 PMCID: PMC11475904 DOI: 10.3390/foods13193212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Plastic food packaging causes massive pollution in the environment via resource extraction, gas emissions, and the enduring plastic waste accumulation. Hence, it is of crucial importance to discover sustainable alternatives in order to protect ecosystems and conserve precious resources. Recently, seaweed has been emerging as a promising sustainable solution to plastic pollution. Seaweed is a fast-growing marine plant that is abundant in tropical coastlines and requires minimal resources to cultivate. In addition, seaweed is rich in valuable polysaccharides such as alginate, fucoidan, carrageenan, agar, and ulva, which can be extracted and processed into biodegradable films, coatings, and wraps. This ability allows the creation of an alternative to plastic food packages that are completely biodegradable, made from renewable resources, and do not linger in landfills or oceans for centuries. In this context, this review discusses the main classification of seaweed, their production and abundance in the world, and provides a summary of seaweed-based materials developed in the last 2-5 years for potential usage in the food packaging sector.
Collapse
Affiliation(s)
- Aleksandra Nesic
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12–14, 11000 Belgrade, Serbia;
| | - Sladjana Meseldzija
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica-Alasa 12–14, 11000 Belgrade, Serbia;
| | - Sergio Benavides
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Fabián A. Figueroa
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4060002, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| |
Collapse
|
9
|
Wang R, Zhang S, Zhang J, Wang J, Bian H, Jin L, Zhang Y. State-of-the-art of lignin-derived carbon nanodots: Preparation, properties, and applications. Int J Biol Macromol 2024; 273:132897. [PMID: 38848826 DOI: 10.1016/j.ijbiomac.2024.132897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Lignin-derived carbon nanodots (LCNs) are nanometer-scale carbon spheres fabricated from naturally abundant lignin. Owing to rich and highly heritable graphene like π-π conjugated structure of lignin, to fabricate LCNs from it not only endows LCNs with on-demand tunable size and optical features, but also further broadens the green and chemical engineering of carbon nanodots. Recently, they have become increasingly popular in sensing, bioimaging, catalysis, anti-counterfeiting, energy storage/conversion, and others. Despite the enormous research efforts put into the ongoing development of lignin value-added utilization, few commercial LCNs are available. To have a deeper understanding of this issue, critical impacts on the preparation, properties, and applications of state-of-the-art LCNs are carefully reviewed and discussed. A concise analysis of their unique advantages, limitations for specific applications, and current challenges and outlook is conducted. We hope that this review will stimulate further advances in the functional material-oriented production of lignin.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shilong Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jing Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Jiahai Wang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linghua Jin
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China
| | - Ye Zhang
- School of Chemistry and Chem. Eng., University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Praseptiangga D, Sesari AR, Rochima E, Muhammad DRA, Widyaastuti D, Zaman MZ, Widiyastuti, Syamani FA, Nazir N, Joni IM, Panatarani C. Development and characterization of semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO 2/ZnO nanoparticles. Int J Biol Macromol 2024; 271:132569. [PMID: 38797303 DOI: 10.1016/j.ijbiomac.2024.132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.
Collapse
Affiliation(s)
- Danar Praseptiangga
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| | - Annisa Rizki Sesari
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Emma Rochima
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dimas Rahadian Aji Muhammad
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Dea Widyaastuti
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Muhammad Zukhrufuz Zaman
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Widiyastuti
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, 60111, Indonesia
| | - Firda Aulya Syamani
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, West Java, 16911, Indonesia
| | - Novizar Nazir
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Andalas University, Padang, West Sumatra, 25175, Indonesia
| | - I Made Joni
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Camellia Panatarani
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
11
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|