1
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
2
|
Hu CJ, Laux A, Gandjeva A, Wang L, Li M, Brown RD, Riddle S, Kheyfets VO, Tuder RM, Zhang H, Stenmark KR. The Effect of Hypoxia-inducible Factor Inhibition on the Phenotype of Fibroblasts in Human and Bovine Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:73-86. [PMID: 36944195 PMCID: PMC10324042 DOI: 10.1165/rcmb.2022-0114oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/21/2023] [Indexed: 03/23/2023] Open
Abstract
Hypoxia-inducible factor (HIF) has received much attention as a potential pulmonary hypertension (PH) treatment target because inhibition of HIF reduces the severity of established PH in rodent models. However, the limitations of small-animal models of PH in predicting the therapeutic effects of pharmacologic interventions in humans PH are well known. Therefore, we sought to interrogate the role of HIFs in driving the activated phenotype of PH cells from human and bovine vessels. We first established that pulmonary arteries (PAs) from human and bovine PH lungs exhibit markedly increased expression of direct HIF target genes (CA9, GLUT1, and NDRG1), as well as cytokines/chemokines (CCL2, CSF2, CXCL12, and IL6), growth factors (FGF1, FGF2, PDGFb, and TGFA), and apoptosis-resistance genes (BCL2, BCL2L1, and BIRC5). The expression of the genes found in the intact PAs was determined in endothelial cells, smooth muscle cells, and fibroblasts cultured from the PAs. The data showed that human and bovine pulmonary vascular fibroblasts from patients or animals with PH (termed PH-Fibs) were the cell type that exhibited the highest level and the most significant increases in the expression of cytokines/chemokines and growth factors. In addition, we found that human, but not bovine, PH-Fibs exhibit consistent misregulation of HIFα protein stability, reduced HIF1α protein hydroxylation, and increased expression of HIF target genes even in cells grown under normoxic conditions. However, whereas HIF inhibition reduced the expression of direct HIF target genes, it had no impact on other "persistently activated" genes. Thus, our study indicated that HIF inhibition alone is not sufficient to reverse the persistently activated phenotype of human and bovine PH-Fibs.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, and
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, and
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Liyi Wang
- Department of Craniofacial Biology, School of Dental Medicine, and
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vitaly O. Kheyfets
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rubin M. Tuder
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Novel Molecular Mechanisms Involved in the Medical Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044147. [PMID: 36835558 PMCID: PMC9965798 DOI: 10.3390/ijms24044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe condition with a high mortality rate despite advances in diagnostic and therapeutic strategies. In recent years, significant scientific progress has been made in the understanding of the underlying pathobiological mechanisms. Since current available treatments mainly target pulmonary vasodilation, but lack an effect on the pathological changes that develop in the pulmonary vasculature, there is need to develop novel therapeutic compounds aimed at antagonizing the pulmonary vascular remodeling. This review presents the main molecular mechanisms involved in the pathobiology of PAH, discusses the new molecular compounds currently being developed for the medical treatment of PAH and assesses their potential future role in the therapeutic algorithms of PAH.
Collapse
|
4
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
5
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
6
|
Laenger FP, Schwerk N, Dingemann J, Welte T, Auber B, Verleden S, Ackermann M, Mentzer SJ, Griese M, Jonigk D. Interstitial lung disease in infancy and early childhood: a clinicopathological primer. Eur Respir Rev 2022; 31:31/163/210251. [PMID: 35264412 PMCID: PMC9488843 DOI: 10.1183/16000617.0251-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Children's interstitial lung disease (chILD) encompasses a wide and heterogeneous spectrum of diseases substantially different from that of adults. Established classification systems divide chILD into conditions more prevalent in infancy and other conditions occurring at any age. This categorisation is based on a multidisciplinary approach including clinical, radiological, genetic and histological findings. The diagnostic evaluation may include lung biopsies if other diagnostic approaches failed to identify a precise chILD entity, or if severe or refractory respiratory distress of unknown cause is present. As the majority of children will be evaluated and diagnosed outside of specialist centres, this review summarises relevant clinical, genetic and histological findings of chILD to provide assistance in clinical assessment and rational diagnostics. ILD of childhood is comparable by name only to lung disease in adults. A dedicated interdisciplinary team is required to achieve the best possible outcome. This review summarises the current clinicopathological criteria and associated genetic alterations.https://bit.ly/3mpxI3b
Collapse
Affiliation(s)
- Florian Peter Laenger
- Institute of Pathology, Medical School Hannover, Hannover, Germany .,German Center for Lung Research (DZL), Hannover, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), Hannover, Germany.,Clinic for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Jens Dingemann
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Pediatric Surgery, Medical School Hannover, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Dept of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stijn Verleden
- Antwerp Surgical Training, Anatomy and Research Center, University of Antwerp, Antwerp, Belgium
| | - Maximilian Ackermann
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven J Mentzer
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthias Griese
- German Center for Lung Research (DZL), Hannover, Germany.,Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical School Hannover, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
7
|
Ding XH, Chai X, Zheng J, Chang H, Zheng W, Bian SZ, Ye P. Baseline Ratio of Soluble Fas/FasL Predicts Onset of Pulmonary Hypertension in Elder Patients Undergoing Maintenance Hemodialysis: A Prospective Cohort Study. Front Physiol 2022; 13:847172. [PMID: 35299658 PMCID: PMC8921550 DOI: 10.3389/fphys.2022.847172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Pulmonary hypertension (PH) is one of the most common complications associated with end-stage renal disease (ESRD). Though numerous risk factors have been founded, other risk factors remain unidentified, particularly in patients undergoing maintenance hemodialysis with elder age. Soluble Fas (sFas) and its ligand FasL (sFasL) have been reported in chronic renal disease patients; however, they have not been identified in the PH patients of elder hemodialysis patients. We aimed to determine the roles of sFas/sFasL in onset of PH in elder patients undergoing maintenance hemodialysis with ESRD. Methods Altogether, 163 patients aged 68.00 ± 10.51 years with ESRD who undergoing maintenance hemodialysis in a prospective cohort and were followed-up for a median of 5.5 years. They underwent echocardiography examinations, liver function assessments, residual renal function, and serum ion examinations, before and after dialysis. Furthermore, levels of sFas and sFasL at baseline had also been measured. We compared demographic data, echocardiographic parameters, liver function, ions, and residual renal function as well as serum sFas and sFasL between the PH and non-PH groups. These parameters were correlated with systolic pulmonary artery pressure (sPAP) using Spearman’s correlation. Moreover, univariate and adjusted logistic regression analyses have also been conducted. Results The incidence of PH in the elder dialysis patients was 39.1%. PH populations were demonstrated with significantly higher end-diastolic internal diameters of the left atrium, left ventricle, right ventricle (RV), and pulmonary artery, as well as the left ventricular posterior wall thickness (LVWP; all p < 0.05). A higher baseline serum sFas and sFasL levels have also been identified ( p < 0.001). They also showed lower fractional shortening and left ventricular ejection fraction (LVEF; p < 0.05). Following dialysis, the post-dialysis serum potassium concentration (K+) was significantly higher in the PH group ( p = 0.013). Furthermore, the adjusted regression identified that ratio of sFas/FasL (OR: 1.587, p = 0.004), RV (OR: 1.184, p = 0.014), LVPW (OR: 1.517, p = 0.007), and post-dialysis K+ (OR: 2.717, p = 0.040) was the independent risk factors for PH while LVEF (OR: 0.875, p = 0.040) protects patients from PH. Conclusion The baseline ratio of sFas/sFasL, RV, LVPW, and post-dialysis K+ was independent risk factors for PH onset, while LVEF was a protective factor for PH.
Collapse
Affiliation(s)
- Xiao-Han Ding
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Health Care and Geriatrics, The 940th Hospital of Joint Logistics Support of PLA, Lanzhou, China
| | - Xiaoliang Chai
- Department of Health Care and Geriatrics, The 940th Hospital of Joint Logistics Support of PLA, Lanzhou, China
| | - Jin Zheng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hong Chang
- Department of Ultrasonography, The 940th Hospital of Joint Logistics Support of PLA, Lanzhou, China
| | - Wenxue Zheng
- Department of Cardiology, The 940th Hospital of Joint Logistics Support of PLA, Lanzhou, China
| | - Shi-Zhu Bian
- Institute of Cardiovascular Diseases of Xinqiao Hospital and People's Liberation Army of China, Chongqing, China.,Department of Cardiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Ye
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Zhang R, Li Z, Liu C, Yang Q, Lu D, Ge RL, Ma S, Li Z. Pretreatment with the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu rescues hypoxia-induced potassium channel inhibition in rat pulmonary artery smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114734. [PMID: 34648900 DOI: 10.1016/j.jep.2021.114734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies have shown that the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu (ACRT) dilates pulmonary arteries and thwarts pulmonary artery remodelling. The dilatation effect of ACRT on pulmonary artery vascular rings could be reduced by potassium (K+) channel blockers. However the exact mechanisms of ACRT on ion channels are still unclear. AIM OF THE STUDY This study aimed to investigate whether the effect of ACRT on K+ channels inhibits cell proliferation after pulmonary artery smooth muscle cells (PASMCs) are exposed to hypoxia. MATERIALS AND METHODS The whole-cell patch-clamp method was used to clarify the effect of ACRT on the K+ current (IK) of rat PASMCs exposed to hypoxia. The mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The intracellular calcium (Ca2+) concentration ([Ca2+]i) values in rat PASMCs were detected by laser scanning confocal microscopy. The cell cycle and cell proliferation were assessed using flow cytometry analysis and CCK-8 and EdU assays. RESULTS ACRT pretreatment alleviated the inhibition of IK induced by hypoxia in rat PASMCs. Compared with hypoxia, ACRT upregulated voltage-dependent K+ channel (Kv) 1.5 and big-conductance calcium-activated K+ channel (BKCa) mRNA and protein expression and downregulated voltage-dependent Ca2+ channel (Cav) 1.2 mRNA and protein expression. ACRT decreased [Ca2+]i, inhibited the promotion of cyclin D1 and proliferating cell nuclear antigen (PCNA) expression, and prevented the proliferation of rat PASMCs exposed to hypoxia. CONCLUSION In conclusion, the present study demonstrated that ACRT plays a key role in restoring ion channel function and then inhibiting the proliferation of PASMCs under hypoxia, ACRT has preventive and therapeutic potential in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Ruixia Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China; Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China; Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Quanyu Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Shuang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China.
| | - Zhanquan Li
- Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
9
|
Ye W, Tang T, Li Z, Li X, Huang Q. Piperlongumine attenuates vascular remodeling in hypoxic pulmonary hypertension by regulating autophagy. J Cardiol 2022; 79:134-143. [PMID: 34518076 DOI: 10.1016/j.jjcc.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine the therapeutic effect of piperlongumine on hypoxic pulmonary hypertension. METHODS A hypoxic pulmonary hypertension rat model was constructed, primary rat pulmonary artery smooth muscle cells (PASMCs) were isolated, and the proliferation of PASMCs was measured by Cell Counting Kit‑8 assay. The expression of autophagic proteins microtubule-associated protein 1 light chain 3B (LC3B) and P62 were examined by western blot. Autophagic flux in PASMCs was detected by tandem mRFP-GFP-LC3 fluorescence analysis. RESULTS Hypoxia-induced proliferation of PASMCs was significantly inhibited by piperlongumine exposure. Treatment with piperlongumine elevated LC3B II/LC3B I protein ratio and decreased the expression of P62 protein in both PASMCs and rat lung tissues. Tandem mRFP-GFP-LC3 fluorescence analysis showed that piperlongumine increased autophagic flux in PASMCs. Inhibition of autophagy using 3-methyladenine (3-MA) attenuated the inhibitory effect of piperlongumine on proliferation of PASMCs. Chronic hypoxia exposure led to a significant increase in rat right ventricle systolic pressure, right ventricular hypertrophy, wall thickness and area of pulmonary artery, and muscularization of pulmonary arterioles, which was obviously suppressed by administration of piperlongumine. 3-MA attenuated the alleviating effects of piperlongumine on pulmonary vascular remodeling. CONCLUSIONS Piperlongumine attenuates vascular remodeling in hypoxic pulmonary hypertension by regulating autophagy. Piperlongumine treatment may serve as a promising therapy for hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road Xihu District, Hangzhou, Zhejiang 310013, PR China
| | - Tingyu Tang
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road Xihu District, Hangzhou, Zhejiang 310013, PR China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road Xihu District, Hangzhou, Zhejiang 310013, PR China
| | - Xuefang Li
- Department of Cardiovascular Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, PR China
| | - Qingdong Huang
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road Xihu District, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
10
|
Prognostic impact of hypochromic erythrocytes in patients with pulmonary arterial hypertension. Respir Res 2021; 22:288. [PMID: 34753505 PMCID: PMC8579551 DOI: 10.1186/s12931-021-01884-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/20/2023] Open
Abstract
Background Iron deficiency affects up to 50% of patients with pulmonary arterial hypertension (PAH) but iron markers such as ferritin and serum iron are confounded by several non-disease related factors like acute inflammation and diet. The aim of this study was to identify a new marker for iron deficiency and clinical outcome in PAH patients. Methods In this single-center, retrospective study we assessed indicators of iron status and clinical parameters specifying the time to clinical worsening (TTCW) and survival in PAH patients at time of initial diagnosis and at 1-year follow-up using univariable and multivariable analysis. Results In total, 150 patients were included with an invasively confirmed PAH and complete data on iron metabolism. The proportion of hypochromic erythrocytes > 2% at initial diagnosis was identified as an independent predictor for a shorter TTCW (p = 0.0001) and worse survival (p = 0.002) at initial diagnosis as well as worse survival (p = 0.016) at 1-year follow-up. Only a subset of these patients (64%) suffered from iron deficiency. Low ferritin or low serum iron neither correlated with TTCW nor survival. Severe hemoglobin deficiency at baseline was significantly associated with a shorter TTCW (p = 0.001). Conclusions The presence of hypochromic erythrocytes > 2% was a strong and independent predictor of mortality and shorter TTCW in this cohort of PAH patients. Thus, it can serve as a valuable indicator of iron homeostasis and prognosis even in patients without iron deficiency or anemia. Further studies are needed to confirm the results and to investigate therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01884-9.
Collapse
|
11
|
Condon DF, Agarwal S, Chakraborty A, Auer N, Vazquez R, Patel H, Zamanian RT, de Jesus Perez VA, Condon DF. "NOVEL MECHANISMS TARGETED BY DRUG TRIALS IN PULMONARY ARTERIAL HYPERTENSION". Chest 2021; 161:1060-1072. [PMID: 34655569 PMCID: PMC9005865 DOI: 10.1016/j.chest.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease associated with abnormally elevated pulmonary pressures and right heart failure resulting in high morbidity and mortality. While PAH prognosis has improved with the introduction of pulmonary vasodilators, disease progression remains a major problem. Given that available therapies are inadequate for preventing small vessel loss and obstruction, there is an active interest in identifying drugs capable of targeting angiogenesis and mechanisms involved in regulation of cell growth and fibrosis. Among the mechanisms linked to PAH pathogenesis, recent preclinical studies have identified promising compounds that are currently being tested in clinical trials. These drugs target seven of the major mechanisms associated with PAH pathogenesis: BMP signaling, tyrosine kinase receptors, estrogen metabolism, extracellular matrix, angiogenesis, epigenetics, and serotonin metabolism. In this review, we will discuss the preclinical studies that led to prioritization of these mechanisms and will discuss recently completed and ongoing phase 2/3 trials using novel interventions such as sotatercept, anastrozole, rodatristat ethyl, tyrosine kinase inhibitors, and endothelial progenitor cells among others. We anticipate that the next generation of compounds will build upon the success of the current standard of care and improve clinical outcomes and quality of life of patients afflicted with PAH.
Collapse
Affiliation(s)
- David F Condon
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Stuti Agarwal
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Ananya Chakraborty
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Natasha Auer
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Rocio Vazquez
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Hiral Patel
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Roham T Zamanian
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary Allergy and Critical Care Medicine, Wall Center for Cardiopulmonary Research, Stanford University, Stanford, CA.
| | | |
Collapse
|
12
|
Rosenkranz S, Feldman J, McLaughlin VV, Rischard F, Lange TJ, White RJ, Peacock AJ, Gerhardt F, Ebrahimi R, Brooks G, Satler C, Frantz RP. Selonsertib in adults with pulmonary arterial hypertension (ARROW): a randomised, double-blind, placebo-controlled, phase 2 trial. THE LANCET RESPIRATORY MEDICINE 2021; 10:35-46. [PMID: 34425071 DOI: 10.1016/s2213-2600(21)00032-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Data obtained in human lung tissue and preclinical models suggest that oxidative stress and increased apoptosis signal-regulating kinase 1 (ASK1) activity might have a prominent role in the pathobiology of pulmonary arterial hypertension (PAH). The purpose of this study was to determine the efficacy, safety, and tolerability of the ASK1 inhibitor selonsertib compared with placebo in patients with PAH. METHODS We did a randomised, double-blind, placebo-controlled, phase 2 trial at 46 centres located in Canada, France, Germany, Italy, the Netherlands, Spain, the UK, and the USA. Participants were aged 18-75 years and had an established diagnosis of idiopathic or hereditary PAH, or PAH associated with connective tissue disease, drugs or toxins, human immunodeficiency virus, or repaired congenital heart defects. Patients were stratified by PAH aetiology and background therapy, and randomly assigned (1:1:1:1) using an interactive voice-response or web-response system to placebo or selonsertib 2 mg, 6 mg, or 18 mg administered orally once daily. Both placebo and selonsertib were in tablet form. The primary efficacy endpoint was change in pulmonary vascular resistance, measured by right heart catheterisation, from baseline to week 24 in the full analysis set. Pair-wise comparisons between each of the selonsertib groups and the placebo group were made with a stratified Wilcoxon (van Elteren) rank sum test for participants without major protocol deviations who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT02234141. FINDINGS Between Dec 3, 2014, and Nov 13, 2015, 151 patients were enrolled and randomly assigned. Of 150 participants who received selonsertib or placebo, 134 (89%) completed 24 weeks of the randomly assigned treatment; all were on background PAH therapy (138 [92%] on combination therapy). 90 (60%) patients were in functional class II and 60 (40%) in functional class III. Mean baseline pulmonary vascular resistance was 772 (SD 334) dyn·s/cm5. Change in pulmonary vascular resistance was 6·0 dyn·s/cm5 (SD 28·0; n=31) for placebo, and 35·0 (35·4) dyn·s/cm5 (n=35; p=0·21 vs placebo) for 2 mg selonsertib, -28·0 (30·2) dyn·s/cm5 (n=34; p=0·27 vs placebo) for 6 mg selonsertib, and -21·0 (37·9) dyn·s/cm5 (n=36; p=0·60 vs placebo) for 18 mg selonsertib. The most frequent adverse events were headache (17 [15%]), abnormal dreams (eight [7%]), nausea (seven [6%]), and diarrhoea (seven [6%]) in the selonsertib groups, and headache (six [16%]), nausea (five [14%]), and diarrhoea (two [5%]) in the placebo group. Serious adverse events occurred in 23 (20%) of 113 selonsertib-treated patients and seven (19%) of 37 patients who received placebo. INTERPRETATION Selonsertib once daily for 24 weeks did not lead to a significant reduction in pulmonary vascular resistance or to clinical improvement in patients with PAH, but appeared to be safe and well tolerated. Although these data do not support the clinical use of selonsertib in PAH, further study of the potential of targeting the ASK1-p38 pathway in PAH is warranted. FUNDING Gilead Sciences.
Collapse
Affiliation(s)
- Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University of Cologne, and Cologne Cardiovascular Research Center, University of Cologne, Germany.
| | | | - Vallerie V McLaughlin
- Division of Cardiovascular Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | - Tobias J Lange
- Dept of Internal Medicine II, Pulmonology, University Medical Center Regensburg, Germany
| | - R James White
- University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Regional Heart & Lung Centre, Glasgow, UK
| | - Felix Gerhardt
- Department of Cardiology, Heart Center at the University of Cologne, and Cologne Cardiovascular Research Center, University of Cologne, Germany
| | | | | | | | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
13
|
Hansmann G, Christou H, Koestenberger M, Sallmon H. Off-label use of PAH-targeted medications approved for adults and their financial coverage by health insurances are vital for children with pulmonary hypertension. Eur J Clin Invest 2021; 51:e13571. [PMID: 33834481 DOI: 10.1111/eci.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany.,The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), Berlin, Germany
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Martin Koestenberger
- The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), Berlin, Germany.,Division of Pediatric Cardiology, Medical University Graz, Graz, Austria
| | - Hannes Sallmon
- The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), Berlin, Germany.,Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
| |
Collapse
|
14
|
Pyrrolizidine alkaloid-induced transcriptomic changes in rat lungs in a 28-day subacute feeding study. Arch Toxicol 2021; 95:2785-2796. [PMID: 34185104 PMCID: PMC8298252 DOI: 10.1007/s00204-021-03108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.
Collapse
|
15
|
Song J, Hinderhofer K, Kaufmann LT, Benjamin N, Fischer C, Grünig E, Eichstaedt CA. BMPR2 Promoter Variants Effect Gene Expression in Pulmonary Arterial Hypertension Patients. Genes (Basel) 2020; 11:genes11101168. [PMID: 33036198 PMCID: PMC7601247 DOI: 10.3390/genes11101168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/20/2023] Open
Abstract
Pathogenic variants have been identified in 85% of heritable pulmonary arterial hypertension (PAH) patients. These variants were mainly located in the bone morphogenetic protein receptor 2 (BMPR2) gene. However, the penetrance of BMPR2 variants was reduced leading to a disease manifestation in only 30% of carriers. In these PAH patients, further modifiers such as additional pathogenic BMPR2 promoter variants could contribute to disease manifestation. Therefore, the aim of this study was to identify BMPR2 promoter variants in PAH patients and to analyze their transcriptional effect on gene expression and disease manifestation. BMPR2 promoter variants were identified in PAH patients and cloned into plasmids. These were transfected into human pulmonary artery smooth muscle cells to determine their respective transcriptional activity. Nine different BMPR2 promoter variants were identified in seven PAH families and three idiopathic PAH patients. Seven of the variants (c.-575A>T, c.-586dupT, c.-910C>T, c.-930_-928dupGGC, c.-933_-928dupGGCGGC, c.-930_-928delGGC and c.-1141C>T) led to a significantly decreased transcriptional activity. This study identified novel BMPR2 promoter variants which may affect BMPR2 gene expression in PAH patients. They could contribute to disease manifestations at least in some families. Further studies are needed to investigate the frequency of BMPR2 promoter variants and their impact on penetrance and disease manifestation.
Collapse
Affiliation(s)
- Jie Song
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (J.S.); (K.H.); (L.T.K.); (C.F.)
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Centre for Pulmonary Hypertension, Thoraxklinik gGmbH Heidelberg at Heidelberg University Hospital, Röntgenstrasse 1, 69126 Heidelberg, Germany; (N.B.); (E.G.)
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (J.S.); (K.H.); (L.T.K.); (C.F.)
| | - Lilian T. Kaufmann
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (J.S.); (K.H.); (L.T.K.); (C.F.)
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxklinik gGmbH Heidelberg at Heidelberg University Hospital, Röntgenstrasse 1, 69126 Heidelberg, Germany; (N.B.); (E.G.)
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Christine Fischer
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (J.S.); (K.H.); (L.T.K.); (C.F.)
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxklinik gGmbH Heidelberg at Heidelberg University Hospital, Röntgenstrasse 1, 69126 Heidelberg, Germany; (N.B.); (E.G.)
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Christina A. Eichstaedt
- Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; (J.S.); (K.H.); (L.T.K.); (C.F.)
- Centre for Pulmonary Hypertension, Thoraxklinik gGmbH Heidelberg at Heidelberg University Hospital, Röntgenstrasse 1, 69126 Heidelberg, Germany; (N.B.); (E.G.)
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-396-1221; Fax: +49-6221-396-1222
| |
Collapse
|
16
|
Wang Y, Yu D, Yu Y, Liu X, Hu L, Gu Y. Association Between Inflammatory Mediators and Pulmonary Blood Flow in a Rabbit Model of Acute Pulmonary Embolism Combined With Shock. Front Physiol 2020; 11:1051. [PMID: 32982787 PMCID: PMC7492663 DOI: 10.3389/fphys.2020.01051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Background The pro-inflammatory cytokines were detected in pulmonary embolism (PE) and non-pulmonary embolism (non-PE) tissues to explore the role of inflammation responses and their relationship with the pulmonary blood flow in a rabbit model of acute pulmonary embolism combined with shock. Methods and Results Nineteen rabbits were randomly divided into sham operation group (S group, n = 8) and massive PE (MPE group, n = 11). The MPE model was established by injecting the autologous blood clots into the main pulmonary artery of rabbit. Pulmonary angiography showed that the pulmonary circulation time was significantly prolonged in the MPE group, and pulmonary blood flow was attenuated at 120 min post PE. Hematoxylin–eosin (HE) staining revealed enhanced inflammatory cell infiltration around the pulmonary vessels in PE and non-PE tissues, and obvious edema on the perivascular region. Meanwhile, the expressions of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg-1) in pulmonary vascular and alveolar tissues were significantly upregulated and the iNOS/Arg-1 ratio was significantly higher in the MPE group than in the S group. Moreover, the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were also significantly increased in PE and non-PE tissues, and interleukin-6 (IL-6) level was significantly increased in non-PE tissues in the MPE group as compared to the S group. Thromboxane A2 (TXA2) and alpha smooth muscle actin (α-SMA) levels were significantly higher in both PE and non-PE tissues in the MPE group than in the S group. Conclusion Activation of inflammation mediators in PE and non-PE tissues might be one of the crucial factors responsible for pulmonary vasculature constriction and pulmonary blood flow attenuation in this MPE model.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Delong Yu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Yu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Liu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqun Hu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Gu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Dringende Notwendigkeit des Off-label-Einsatzes von PAH-Medikamenten und deren Erstattung bei Kindern mit pulmonaler Hypertonie (Lungenhochdruck). Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ZusammenfassungDie pulmonale Hypertonie (PH, Lungenhochdruck), und insbesondere die pulmonalarterielle Hypertonie (PAH), ist eine chronisch-progressive, fatale Erkrankung, für die aktuell – abgesehen von einer bilateralen Lungentransplantation – kein kurativer Therapieansatz besteht. Durch die jüngste Entwicklung und Verfügbarkeit von neuen „zielgerichteten“ PAH-Medikamenten („advanced“ oder „targeted therapies“), die mittlerweile für PAH im Erwachsenenalter zugelassen sind, haben sich allerdings die Lebenserwartung und -qualität von Erwachsenen und Kindern mit PAH erheblich verbessert.Wegen (1) des Mangels an für Kinder zugelassenen PAH-Medikamenten, (2) der gut begründeten Rationale für eine PAH-Pharmakokombinationstherapie im Kindesalter und (3) dem Fehlen schwerwiegender unerwünschter Wirkungen, sollten gerade jungen PH-Patienten die vorhandenen modernen pharmakologischen Therapiemöglichkeiten nicht vorenthalten bleiben. Ein solcher „Off-label“-Einsatz und dessen unbürokratische Erstattung (Finanzierung) durch die Kostenträger sind dringend erforderlich. Die Entscheidung zur spezifischen Therapie der pulmonalen Hypertonie mit Möglichkeit der Kombination von Medikamenten aller Substanzklassen – auch unter Einschluss von „Off-label-Präparaten“ – sollte durch einen Kinderkardiologen erfolgen, der ausreichend Erfahrung mit der Behandlung von Kindern mit pulmonaler Hypertonie – insbesondere mit vasoaktiven Medikamenten – hat, gefolgt von einer engmaschigen ambulanten Anbindung und Nachsorge dieser Patienten. Die mangelnde Zulassung moderner, gegen PAH gerichteter Arzneimittel oder die relativ dünne, evidenzbasierte Datenlage bei Kindern sollte die behandelnden Ärzte nicht davon abhalten, den jungen Patienten diese Therapien anbieten zu können.
Collapse
|
18
|
Chelladurai P, Boucherat O, Stenmark K, Kracht M, Seeger W, Bauer UM, Bonnet S, Pullamsetti SS. Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy. Br J Pharmacol 2020; 178:54-71. [PMID: 31749139 DOI: 10.1111/bph.14932] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the ε-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Prakash Chelladurai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Member of CPI, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Zhang Y, Wu M, Cao Y, Guo F, Li Y. Linking lncRNAs to regulation, pathogenesis, and diagnosis of pulmonary hypertension. Crit Rev Clin Lab Sci 2019:1-15. [PMID: 31738606 DOI: 10.1080/10408363.2019.1688760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension (PH) is a syndrome characterized by a persistent increase in pulmonary vascular resistance. Due to the lack of specificity in clinical manifestations, patients are usually diagnosed at the late stage of PH, which is hard to treat and often causes right heart failure and death. Furthermore, the regulation and pathogenesis of PH remain obscure. Recently, long noncoding RNAs (lncRNAs), a type of transcript longer than 200 nt that lacks protein-coding ability, have been found to substantially influence the incidence and progression of various diseases through regulating gene expression at the chromatin, transcriptional, post-transcriptional, translational, and even post-translational levels. The crucial roles of lncRNAs in PH have started to draw widespread attention. This review summarizes the regulatory, pathogenic, and diagnostic roles of lncRNAs in PH, in the hope to facilitate the search for early diagnostic markers of and effective therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Mianmian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Fang Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| |
Collapse
|
20
|
Berghausen EM, Feik L, Zierden M, Vantler M, Rosenkranz S. Key inflammatory pathways underlying vascular remodeling in pulmonary hypertension. Herz 2019; 44:130-137. [PMID: 30847510 DOI: 10.1007/s00059-019-4795-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Independent of the underlying cause, pulmonary hypertension (PH) remains a devastating condition that is characterized by limited survival. Cumulating evidence indicates that in addition to a dysbalance of mediators regulating vascular tone and growth factors promoting vascular remodeling, failure to resolve inflammation and altered immune processes play a pivotal role in the development and progression of PH. Here, we highlight the role of key inflammatory pathways in the pathobiology of vascular remodeling and PH, and discuss potential therapeutic interventions that may halt disease progression or even reverse pulmonary vascular remodeling. Perivascular inflammation is present in all forms of PH, and inflammatory pathways involve numerous mediators and cell types including macrophages, neutrophils, T cells, dendritic cells, and mast cells. Dysfunctional bone morphogenic protein receptor 2 (BMPR2) signaling and dysregulated immunity enable the accumulation of macrophages and other inflammatory cells in obliterative vascular lesions. Regulatory T cells (Tregs) were shown to be of particular relevance in the control of inflammatory responses. Key cytokines/chemokines include interleukin-6, functioning via classic or trans-signaling, macrophage migratory inhibitory factor (MIF), but also other mediators such as neutrophil-derived myeloperoxidase. The expanding knowledge on this topic has resulted in multiple opportunities for sophisticated therapeutic interventions.
Collapse
Affiliation(s)
- E M Berghausen
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - L Feik
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Cologne, Germany
| | - M Zierden
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - M Vantler
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany
| | - S Rosenkranz
- Klinik III für Innere Medizin, Herzzentrum, Universität zu Köln, Kerpener Str. 62, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Universität zu Köln, Cologne, Germany. .,Cologne Cardiovascular Research Center (CCRC), Universität zu Köln, Cologne, Germany.
| |
Collapse
|