1
|
Xiao Q, Li Y, Cai B, Huang X, Fang L, Liang F, Chen L, Xu K, Zhang W, Wang X, Yin A, Wang X, Cai Z, Zhuang F, Shao Q, Zhou B, Hocher B, He B, Shen L. CCDC80 Protects against Aortic Dissection and Rupture by Maintaining the Contractile Smooth Muscle Cell Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502108. [PMID: 40278823 DOI: 10.1002/advs.202502108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Aortic dissection (AD) is a life-threatening medical emergency characterized by adverse vascular remodeling. Coiled-coil domain-containing protein 80 (CCDC80) plays an essential role in regulating cardiovascular remodeling. This study aims to define the role of CCDC80 in the formation and development of AD. Significant downregulation of CCDC80 in vascular smooth muscle cell (VSMC) in human and mouse AD is identified. Then, CCDC80 knockout mice (CCDC80-/-) and VSMC-specific CCDC80 knockout mice (CCDC80fl/fl SM22α Cre+) treated with angiotensin II (Ang II) or Ang II combined with β-aminopropionitrile monofumarate (BAPN) frequently develop AD with higher frequency and severity, accompanied by severe elastin fragmentation and collagen deposition. Mechanistically, CCDC80 interacts with JAK2, and CCDC80 deficiency promotes VSMC phenotype switching, proliferation, and migration as well as matrix metalloproteinase production by activating the JAK2/STAT3 signaling pathway. Moreover, the JAK2/STAT3 pathway-specific inhibitor ameliorates adverse vascular remodeling and reduces AD formation in CCDC80-knockout mice by mitigating VSMC phenotype switching. In conclusion, CCDC80 deficiency exacerbates the progression of events leading to AD by activating the JAK2/STAT3 pathway involved in regulating the phenotype switching and function of VSMCs. These findings highlight that CCDC80 is a potential key target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Cai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qin Shao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Zhou
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, 69123, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, People's Republic of China, Changsha, 410028, China
- IMD Institut fur Medizinische Diagnostik Berlin-Potsdam GbR, 14473, Berlin, Germany
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Xu F, Luo S, Huang Z, Wang J, Li T, Zhong L, Si X. The Molecular Mechanisms of Bergapten Against Abdominal Aortic Aneurysm: Evidence From Network Pharmacology, Molecular Docking/Dynamics, and Experimental Validation. J Cell Biochem 2025; 126:e70029. [PMID: 40159385 DOI: 10.1002/jcb.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/02/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
This study endeavors to assess the potential protective role of bergapten (BP) in mitigating abdominal aortic aneurysm (AAA) and to decipher the underlying mechanisms and molecular targets. Network pharmacology was utilized to search for potential targets of BP against AAA. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of BP with core targets, and then the therapeutic effect and mechanism of BP on AAA were verified by using an elastase-induced AAA model. Network pharmacology analysis identified five pharmacological targets for BP, including EGFR, SRC, PIK3CA, PIK3CB, and JAK2. Molecular docking and molecular dynamics simulations further prioritized JAK2 as the most promising candidate for the potential treatment of AAA. The results of animal experiments demonstrated that BP significantly reduced the expression of inflammatory cytokines IL-6, TNF-α, and IL-1β in the aortic tissue of AAA mouse model, and inhibited the phosphorylation of JAK2 and STAT3. BP plays an important role in the treatment of AAA, and it may become a promising drug to combat AAA progression. The inhibitory effect of BP on AAA vascular progression and the attenuation of inflammatory cell infiltration may be related to the regulation of JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Fujia Xu
- Guizhou Medical University, Guiyang, China
| | - Sihan Luo
- Guizhou Medical University, Guiyang, China
| | - Zhenhua Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Junfen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lintao Zhong
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xiaoyun Si
- Guizhou Medical University, Guiyang, China
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Zhou S, Ju S, Li X, Ruan C, Dong Z. Revealing the roles of IL-7R in abdominal aortic aneurysm through integrated analysis of single-cell RNA-seq and bulk RNA-seq. Biochem Biophys Res Commun 2024; 741:151042. [PMID: 39586133 DOI: 10.1016/j.bbrc.2024.151042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a common cardiovascular disease in the elderly, but there are still no therapeutic targets for this disease. In this study, we collected and analyzed bulk RNA sequencing (bulk RNA-seq) and single-cell RNA sequencing (scRNA-seq) data of AAA from the Gene Expression Omnibus (GEO) database. The immune infiltration-related genes were identified and categorized into various cell types, revealing potential key genes and pathways. Examination of three bulk RNA-seq datasets revealed a total of 4087 differentially expressed genes. The expression levels of the immune-related genes IL-7R were significantly elevated in AAA tissues across all three datasets. Furthermore, scRNA-Seq analysis revealed increased expression of IL-7R in CD4+ memory cells within AAA tissues. Immunofluorescence staining corroborated these findings, demonstrating increased expression of IL-7R in CD4+ T cells in AAA tissues. In vitro, activation of IL-7R elevated the activation of JAK/STAT pathway and phenotypic switching in SMCs, while inhibition of IL-7R abolished these effects and suppressed the secretion of IFN-γ. In conclusion, the activation of IL-7R in CD4+ T cells is a key contributor to the pathogenesis of AAA, as it can promote secretion of IFN-γ via JAK/STAT pathway and induce phenotypic switching of SMCs.
Collapse
Affiliation(s)
- Siyuan Zhou
- Jinshan Hospital, Fudan University, Shanghai, China; Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shuai Ju
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Chengchao Ruan
- Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Zhihui Dong
- Jinshan Hospital, Fudan University, Shanghai, China; Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Chen M, Zou F, Wang P, Hu W, Shen P, Wu X, Xu H, Rui Y, Wang X, Wang Y. Dual-Barb Microneedle with JAK/STAT Inhibitor-Loaded Nanovesicles Encapsulation for Tendinopathy. Adv Healthc Mater 2024; 13:e2401512. [PMID: 39030889 DOI: 10.1002/adhm.202401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fengkai Zou
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Hu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peng Shen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
5
|
Zheng S, Tsao PS, Pan C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat Commun 2024; 15:5652. [PMID: 38969659 PMCID: PMC11226445 DOI: 10.1038/s41467-024-49921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Abdominal aortic aneurysm has a high heritability and often co-occurs with other cardiometabolic disorders, suggesting shared genetic susceptibility. We investigate this commonality leveraging recent GWAS studies of abdominal aortic aneurysm and 32 cardiometabolic traits. We find significant genetic correlations between abdominal aortic aneurysm and 21 of the cardiometabolic traits investigated, including causal relationships with coronary artery disease, hypertension, lipid traits, and blood pressure. For each trait pair, we identify shared causal variants, genes, and pathways, revealing that cholesterol metabolism and inflammation are shared most prominently. Additionally, we show the tissue and cell type specificity in the shared signals, with strong enrichment across traits in the liver, arteries, adipose tissues, macrophages, adipocytes, and fibroblasts. Finally, we leverage drug-gene databases to identify several lipid-lowering drugs and antioxidants with high potential to treat abdominal aortic aneurysm with comorbidities. Our study provides insight into the shared genetic mechanism between abdominal aortic aneurysm and cardiometabolic traits, and identifies potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Shufen Zheng
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
- Stanford Cardiovascular Institute, Stanford University, California, USA.
- VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Cuiping Pan
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou, China.
- Center for Evolutionary Biology, Intelligent Medicine Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ge X, Cai Q, Cai Y, Mou C, Fu J, Lin F. Roles of pyroptosis and immune infiltration in aortic dissection. Front Mol Biosci 2024; 11:1277818. [PMID: 38567101 PMCID: PMC10985243 DOI: 10.3389/fmolb.2024.1277818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Aortic dissection (AD) is often fatal, and its pathogenesis involves immune infiltration and pyroptosis, though the molecular pathways connecting these processes remain unclear. This study aimed to investigate the role of immune infiltration and pyroptosis in AD pathogenesis using bioinformatics analysis. Methods: Two Gene Expression Omnibus datasets and a Gene Cards dataset of pyroptosis-related genes (PRGs) were utilized. Immunological infiltration was assessed using CIBERSORT, and AD diagnostic markers were identified through univariate logistic regression and least absolute shrinkage and selection operator regression. Interaction networks were constructed using STRING, and weighted gene correlation network analysis (WGCNA) was employed to identify important modules and essential genes. Single-sample gene set enrichment analysis determined immune infiltration, and Pearson correlation analysis assessed the association of key genes with infiltrating immune cells. Results: Thirty-one PRGs associated with inflammatory response, vascular epidermal growth factor receptor, and Rap1 signaling pathways were identified. WGCNA revealed seven important genes within a critical module. CIBERSORT detected immune cell infiltration, indicating significant changes in immune cell infiltration and pyroptosis genes in AD and their connections. Discussion: Our findings suggest that key PRGs may serve as indicators for AD or high-risk individuals. Understanding the role of pyroptosis and immune cell infiltration in AD pathogenesis may lead to the development of novel molecular-targeted therapies for AD. Conclusion: This study provides insights into the molecular mechanisms underlying AD pathogenesis, highlighting the importance of immune infiltration and pyroptosis. Identification of diagnostic markers and potential therapeutic targets may improve the management of AD and reduce associated morbidity and mortality.
Collapse
Affiliation(s)
- Xiaogang Ge
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Qiqi Cai
- Department of Emergency Intensive Care Unit, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yangyang Cai
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Caiguo Mou
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Junhui Fu
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Feng Lin
- Vascular and Endovascular Surgery, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Sheng C, Zeng Q, Huang W, Liao M, Yang P. Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes. PLoS One 2024; 19:e0296729. [PMID: 38335213 PMCID: PMC10857568 DOI: 10.1371/journal.pone.0296729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zeng
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wu H, Chen L, Lu K, Liu Y, Lu W, Jiang J, Weng C. HMGB2 Deficiency Mitigates Abdominal Aortic Aneurysm by Suppressing Ang-II-Caused Ferroptosis and Inflammation via NF- κβ Pathway. Mediators Inflamm 2023; 2023:2157355. [PMID: 38148870 PMCID: PMC10751175 DOI: 10.1155/2023/2157355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background Ferroptosis is a new form of cell death, which is closely related to the occurrence of many diseases. Our work focused on the mechanism by which HMGB2 regulate ferroptosis and inflammation in abdominal aortic aneurysm (AAA). Methods Reverse transcription-quantitative polymerase chain reaction and western blot were utilized to assess HMGB2 levels. CCK-8 and flow cytometry assays were utilized to measure cell viability and apoptosis. We detected reactive oxygen species generation, Fe2+ level, and ferroptosis-related protein levels in Ang-II-treated VSMCs, which were typical characteristics of ferroptosis. Finally, the mice model of AAA was established to verify the function of HMGB2 in vivo. Results Increased HMGB2 level was observed in Ang-II-treated VSMCs and Ang-II-induced mice model. HMGB2 depletion accelerated viability and impeded apoptosis in Ang-II-irritatived VSMCs. Moreover, HMGB2 deficiency neutralized the increase of ROS in VSMCs caused by Ang-II. HMGB2 silencing considerably weakened Ang-II-caused VSMC ferroptosis, as revealed by the decrease of Fe2+ level and ACSL4 and COX2 levels and the increase in GPX4 and FTH1 levels. Furthermore, the mitigation effects of shHMGB2 on Ang-II-induced VSMC damage could be counteracted by erastin, a ferroptosis agonist. Mechanically, HMGB2 depletion inactivated the NF-κβ signaling in Ang-II-treated VSMCs. Conclusions Our work demonstrated that inhibition of HMGB2-regulated ferroptosis and inflammation to protect against AAA via NF-κβ signaling, suggesting that HMGB2 may be a potent therapeutic agent for AAA.
Collapse
Affiliation(s)
- Hao Wu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Legao Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Kaiping Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Jinsong Jiang
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Chao Weng
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Monsour M, Croci DM, Grüter BE, Taussky P, Marbacher S, Agazzi S. Cerebral Aneurysm and Interleukin-6: a Key Player in Aneurysm Generation and Rupture or Just One of the Multiple Factors? Transl Stroke Res 2023; 14:631-639. [PMID: 36042111 DOI: 10.1007/s12975-022-01079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Intracranial aneurysm (IA) rupture is a common cause of subarachnoid hemorrhage (SAH) with high mortality and morbidity. Inflammatory interleukins (IL), such as IL-6, play an important role in the occurrence and rupture of IA causing SAH. With this review we aim to elucidate the specific role of IL-6 in aneurysm formation and rupture in preclinical and clinical studies. IL-6 is a novel cytokine in that it has pro-inflammatory and anti-inflammatory signaling pathways. In preclinical and clinical studies of IA formation, elevated and reduced levels of IL-6 are reported. Poor post-rupture prognosis and increased rupture risk, however, are associated with higher levels of IL-6. By better understanding the relationships between IL-6 and IA formation and rupture, IL-6 may serve as a biomarker in high-risk populations. Furthermore, by better understanding the IL-6 signaling mechanisms in IA formation and rupture, IL-6 may optimize surveillance and treatment strategies. This review examines the association between IL-6 and IA, while also suggesting future research directions.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - Davide Marco Croci
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Basil E Grüter
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Serge Marbacher
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Neurosurgery, Kantonsspital Aarau, c/o NeuroResearch Office, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
10
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
11
|
Patel R, Hall S, Lanford H, Ward N, Grespin RT, Figueroa M, Mattia V, Xiong Y, Mukherjee R, Jones J, Ruddy JM. Signaling through the IL-6-STAT3 Pathway Promotes Proteolytically-Active Macrophage Accumulation Necessary for Development of Small AAA. Vasc Endovascular Surg 2023; 57:433-444. [PMID: 36639147 PMCID: PMC10238619 DOI: 10.1177/15385744231152961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Elevated interleukin-6 (IL-6) plasma levels have been associated with abdominal aortic aneurysm (AAA), but whether this cytokine plays a causative role in the degenerative remodeling or represents an effect from the inflammatory cascades initiated by infiltrating leukocytes remained unclear. This project aims to demonstrate that within the aortic wall, signaling from IL-6 through the STAT3 transcription factor is necessary for infiltration of proteolytically-active macrophages and development of small AAA. METHODS Following measurement of baseline infrarenal aortic diameter (AoD, digital microscopy), C57Bl/6 and IL-6 knockout (IL-6KO) mice underwent AAA induction by application of peri-adventitial CaCl2 (0.5 M) +/- implantation of an osmotic mini-pump delivering IL-6 (4.36 µg/kg/day over 21 days). At the terminal procedure, AoDs were measured by digital microscopy and aortas harvested for immunoblot (pSTAT3/STAT3), matrix metalloproteinase (MMP) quantification, or flow cytometric analysis of macrophage content. Plasma was collected for cytokine analysis. RESULTS IL-6 infusion significantly increased the plasma IL-6 levels in C57Bl/6 and IL-6KO animals. The C57Bl/6 + CaCl2 group developed AAA (AoD >50% above baseline) but IL-6KO + CaCl2 did not. In the IL-6KO + IL-6+CaCl2 group, AAA developed to match that of C57Bl/6 + CaCl2 mice. STAT3 activity was significantly increased in animals with advanced stages of dilation (>40% from baseline), compared to those with ectasia (≤25%). Although cytokine profiles did not support T-cells or neutrophils as being active contributors in this stage of aortic remodeling, changes in the profile of elaborated MMPs suggested macrophage activity with a trend toward alternatively activated pathways. Flow cytometry confirmed significantly increased macrophage abundance specifically in animals with upregulated STAT3 activity and advanced aortic dilation. CONCLUSION In this murine model of AAA, progressive dilation to development of true AAA was only accomplished when IL-6 signaling upregulated STAT3 activity to effect accumulation of proteolytically-active macrophages. This pathway warrants further investigation to identify potential therapeutic avenues to abrogate growth of small AAA.
Collapse
Affiliation(s)
- Raj Patel
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - SarahRose Hall
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hayes Lanford
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nicholas Ward
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - R. Tyler Grespin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Shao X, Hou X, Zhang X, Zhang R, Zhu R, Qi H, Zheng J, Guo X, Feng R. Integrated single-cell RNA-seq analysis reveals the vital cell types and dynamic development signature of atherosclerosis. Front Physiol 2023; 14:1118239. [PMID: 37089432 PMCID: PMC10117136 DOI: 10.3389/fphys.2023.1118239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: In the development of atherosclerosis, the remodeling of blood vessels is a key process involving plaque formation and rupture. So far, most reports mainly believe that macrophages, smooth muscle cells, and endothelial cells located at the intima and media of artery play the key role in this process. Few studies had focused on whether fibroblasts located at adventitia are involved in regulating disease process.Methods and results: In this study, we conducted in-depth analysis of single-cell RNA-seq data of the total of 18 samples from healthy and atherosclerotic arteries. This study combines several analysis methods including transcription regulator network, cell-cell communication network, pseudotime trajectory, gene set enrichment analysis, and differential expression analysis. We found that SERPINF1 is highly expressed in fibroblasts and is involved in the regulation of various signaling pathways.Conclusion: Our research reveals a potential mechanism of atherosclerosis, SERPINF1 regulates the formation and rupture of plaques through the Jak-STAT signaling pathway, which may provide new insights into the pathological study of disease. Moreover, we suggest that SRGN and IGKC as potential biomarkers for unstable arterial plaques.
Collapse
Affiliation(s)
- Xiuli Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiuyang Hou
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ruijia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rongli Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - He Qi
- Department of Medical Biotechnology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jianling Zheng
- Department of Medical Biotechnology, Liaoning Vocational College of Medicine, Shenyang, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
- *Correspondence: Rui Feng,
| |
Collapse
|
13
|
Fu W, Liu H, Wei P, Xia C, Yu Q, Tian K, Li Y, Liu E, Xu B, Miyata M, Wang R, Zhao S. Genetic deficiency of protein inhibitor of activated STAT3 suppresses experimental abdominal aortic aneurysms. Front Cardiovasc Med 2023; 10:1092555. [PMID: 37008329 PMCID: PMC10050368 DOI: 10.3389/fcvm.2023.1092555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
AimSignal transducer and activator of transcription (STAT) signaling is critical for the pathogenesis of abdominal aortic aneurysms (AAAs). Though protein inhibitor of activated STAT3 (PIAS3) negatively modulates STAT3 activity, but its role in AAA disease remains undefined.MethodAAAs were induced in PIAS3 deficient (PIAS3−/−) and wild type (PIAS3+/+) male mice via transient intra-aortic elastase infusion. AAAs were assessed by in situ measurements of infrarenal aortic external diameters prior to (day 0) and 14 days after elastase infusion. Characteristic aneurysmal pathologies were evaluated by histopathology.ResultsFourteen days following elastase infusion, aneurysmal aortic diameter was reduced by an approximately 50% in PIAS3−/− as compared to PIAS3+/+ mice. On histological analyses, PIAS3−/− mice showed less medial elastin degradation (media score: 2.5) and smooth muscle cell loss (media score: 3.0) than those in PIAS3+/+ mice (media score: 4 for both elastin and SMC destruction). Aortic wall leukocyte accumulation including macrophages, CD4+ T cells, CD8+ T cells and B cells as well as mural neovessel formation were significantly reduced in PIAS3−/− as compared to PIAS3+/+ mice. Additionally, PIAS3 deficiency also downregulated the expression levels of matrix metalloproteinases 2 and 9 by 61% and 70%, respectively, in aneurysmal lesion.ConclusionPIAS3 deficiency ameliorated experimental AAAs in conjunction with reduced medial elastin degradation and smooth muscle cell depletion, mural leukocyte accumulation and angiogenesis.
Collapse
Affiliation(s)
- Weilai Fu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Panpan Wei
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Congcong Xia
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Qingqing Yu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Kangli Tian
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Yankui Li
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masaaki Miyata
- School of Health Science, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Correspondence: Rong Wang Sihai Zhao
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi’an, China
- Correspondence: Rong Wang Sihai Zhao
| |
Collapse
|
14
|
Potential of Disease-Modifying Anti-Rheumatic Drugs to Limit Abdominal Aortic Aneurysm Growth. Biomedicines 2022; 10:biomedicines10102409. [PMID: 36289670 PMCID: PMC9598733 DOI: 10.3390/biomedicines10102409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is strongly implicated in the pathogenesis of abdominal aortic aneurysms (AAA). This review examined the potential role of biologic disease-modifying anti-rheumatic drugs (bDMARDs) as repurposed drugs for treating AAA. Published evidence from clinical and preclinical studies was examined. Findings from animal models suggested that a deficiency or inhibition of tumour necrosis factor-α (TNF-α) (standard mean difference (SMD): −8.37, 95% confidence interval (CI): −9.92, −6.82), interleukin (IL)-6 (SMD: −1.44, 95% CI: −2.85, −0.04) and IL-17 (SMD: −3.36, 95% CI: −4.21, −2.50) led to a significantly smaller AAA diameter compared to controls. Human AAA tissue samples had significantly increased TNF-α (SMD: 1.68, 95% CI: 0.87, 2.49), IL-1β (SMD: 1.93, 95% CI: 1.08, 2.79), IL-6 (SMD: 2.56, 95% CI: 1.79, 3.33) and IL-17 (SMD: 6.28, 95% CI: 3.57, 8.99) levels compared to non-AAA controls. In human serum, TNF-α (SMD: 1.11, 95% CI: 0.25, 1.97) and IL-6 (SMD: 1.42, 95% CI: 0.91, 1.92) levels were significantly elevated compared to non-AAA controls. These findings implicate TNF-α, IL-17 and IL-6 in AAA pathogenesis. Randomised controlled trials testing the value of bDMARDs in limiting AAA growth may be warranted.
Collapse
|
15
|
Chen Y, Ouyang T, Fang C, Tang CE, Lei K, Jiang L, Luo F. Identification of biomarkers and analysis of infiltrated immune cells in stable and ruptured abdominal aortic aneurysms. Front Cardiovasc Med 2022; 9:941185. [PMID: 36158807 PMCID: PMC9492965 DOI: 10.3389/fcvm.2022.941185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives The mortality rate of abdominal aortic aneurysm (AAA) is extremely high in the older population. This study aimed to identify potential biomarkers of AAA and aortic rupture and analyze infiltration of immune cells in stable and ruptured AAA samples. Methods Raw data of GSE47472, GSE57691, and GSE98278 were downloaded. After data processing, the co-expression gene networks were constructed. Gene Ontology and pathway enrichment analysis of AAA- and aortic rupture-related gene modules were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used for further enrichment analysis. The CIBERSORT tool was used to analyze the relative abundance of immune cells in samples. Differentially expressed immune-related genes were analyzed between different samples. Predictive models were constructed via extreme gradient boosting, and hub genes were identified according to feature importance. Results Blue and yellow modules were significantly related to AAA, and genes in these modules were associated with the aortic wall and immune response, respectively. In terms of aortic rupture, the most relevant module was significantly enriched in the inflammatory response. The results of GSEA and GSVA suggested that immune cells and the inflammatory response were involved in the development of AAA and aortic rupture. There were significant differences in the infiltration of immune cells and expression levels of immune-related genes among different samples. NFKB1 might be an important transcription factor mediating the inflammatory response of AAA and aortic rupture. After the construction of a predictive model, CD19, SELL, and CCR7 were selected as hub genes for AAA whereas OAS3, IFIT1, and IFI44L were identified as hub genes for aortic rupture. Conclusion Weakening of the aortic wall and the immune response both contributed to the development of AAA, and the inflammatory response was closely associated with aortic rupture. The infiltration of immune cells was significantly different between different samples. NFKB1 might be an important transcription factor in AAA and aortic rupture. CD19, SELL, and CCR7 had potential diagnostic value for AAA. OAS3, IFIT1, and IFI44L might be predictive factors for aortic rupture.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Ouyang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Fang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can-e Tang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Kaibo Lei
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Longtan Jiang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Longtan Jiang,
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Fanyan Luo,
| |
Collapse
|
16
|
Edaravone Attenuated Angiotensin II-Induced Atherosclerosis and Abdominal Aortic Aneurysms in Apolipoprotein E-Deficient Mice. Biomolecules 2022; 12:biom12081117. [PMID: 36009011 PMCID: PMC9405883 DOI: 10.3390/biom12081117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The aim of the study was to define whether edaravone, a free-radical scavenger, influenced angiotensin II (AngII)-induced atherosclerosis and abdominal aortic aneurysms (AAAs) formation. Methods: Male apolipoprotein E-deficient mice (8–12 weeks old) were fed with a normal diet for 5 weeks. Either edaravone (10 mg/kg/day) or vehicle was injected intraperitoneally for 5 weeks. After 1 week of injections, mice were infused subcutaneously with either AngII (1000 ng/kg/min, n = 16–17 per group) or saline (n = 5 per group) by osmotic minipumps for 4 weeks. Results: AngII increased systolic blood pressure equivalently in mice administered with either edaravone or saline. Edaravone had no effect on plasma total cholesterol concentrations and body weights. AngII infusion significantly increased ex vivo maximal diameters of abdominal aortas and en face atherosclerosis but was significantly attenuated by edaravone administration. Edaravone also reduced the incidence of AngII-induced AAAs. In addition, edaravone diminished AngII-induced aortic MMP-2 activation. Quantitative RT-PCR revealed that edaravone ameliorated mRNA abundance of aortic MCP-1 and IL-1β. Immunostaining demonstrated that edaravone attenuated oxidative stress and macrophage accumulation in the aorta. Furthermore, edaravone administration suppressed thioglycolate-induced mice peritoneal macrophages (MPMs) accumulation and mRNA abundance of MCP-1 in MPMs in male apolipoprotein E-deficient mice. In vitro, edaravone reduced LPS-induced mRNA abundance of MCP-1 in MPMs. Conclusions: Edaravone attenuated AngII-induced AAAs and atherosclerosis in male apolipoprotein E-deficient mice via anti-oxidative action and anti-inflammatory effect.
Collapse
|
17
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Wu Y, Jiang D, Zhang H, Yin F, Guo P, Zhang X, Bian C, Chen C, Li S, Yin Y, Böckler D, Zhang J, Han Y. N1-Methyladenosine (m1A) Regulation Associated With the Pathogenesis of Abdominal Aortic Aneurysm Through YTHDF3 Modulating Macrophage Polarization. Front Cardiovasc Med 2022; 9:883155. [PMID: 35620523 PMCID: PMC9127271 DOI: 10.3389/fcvm.2022.883155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aimed to identify key AAA-related m1A RNA methylation regulators and their association with immune infiltration in AAA. Furthermore, we aimed to explore the mechanism that m1A regulators modulate the functions of certain immune cells as well as the downstream target genes, participating in the progression of AAA. Methods Based on the gene expression profiles of the GSE47472 and GSE98278 datasets, differential expression analysis focusing on m1A regulators was performed on the combined dataset to identify differentially expressed m1A regulatory genes (DEMRGs). Additionally, CIBERSORT tool was utilized in the analysis of the immune infiltration landscape and its correlation with DEMRGs. Moreover, we validated the expression levels of DEMRGs in human AAA tissues by real-time quantitative PCR (RT-qPCR). Immunofluorescence (IF) staining was also applied in the validation of cellular localization of YTHDF3 in AAA tissues. Furthermore, we established LPS/IFN-γ induced M1 macrophages and ythdf3 knockdown macrophages in vitro, to explore the relationship between YTHDF3 and macrophage polarization. At last, RNA immunoprecipitation-sequencing (RIP-Seq) combined with PPI network analysis was used to predict the target genes of YTHDF3 in AAA progression. Results Eight DEMRGs were identified in our study, including YTHDC1, YTHDF1-3, RRP8, TRMT61A as up-regulated genes and FTO, ALKBH1 as down-regulated genes. The immune infiltration analysis showed these DEMRGs were positively correlated with activated mast cells, plasma cells and M1 macrophages in AAA. RT-qPCR analysis also verified the up-regulated expression levels of YTHDC1, YTHDF1, and YTHDF3 in human AAA tissues. Besides, IF staining result in AAA adventitia indicated the localization of YTHDF3 in macrophages. Moreover, our in-vitro experiments found that the knockdown of ythdf3 in M0 macrophages inhibits macrophage M1 polarization but promotes macrophage M2 polarization. Eventually, 30 key AAA-related target genes of YTHDF3 were predicted, including CD44, mTOR, ITGB1, STAT3, etc. Conclusion Our study reveals that m1A regulation is significantly associated with the pathogenesis of human AAA. The m1A “reader,” YTHDF3, may participate in the modulating of macrophage polarization that promotes aortic inflammation, and influence AAA progression by regulating the expression of its target genes.
Collapse
Affiliation(s)
- Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ce Bian
- Department of Cardiovascular Surgery, The General Hospital of the PLA Rocket Force, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Shuixin Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuhan Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Jian Zhang
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- Yanshuo Han ; orcid.org/0000-0002-4897-2998
| |
Collapse
|
19
|
Vieira M, Régnier P, Maciejewski-Duval A, Le Joncour A, Darasse-Jèze G, Rosenzwajg M, Klatzmann D, Cacoub P, Saadoun D. Interferon signature in giant cell arteritis aortitis. J Autoimmun 2022; 127:102796. [PMID: 35123212 DOI: 10.1016/j.jaut.2022.102796] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Molecular mechanisms underlying large-vessel involvement in giant cell arteritis (LV-GCA) are largely unknown. Herein, we explore the critical involvement of pro-inflammatory signaling pathways in both aorta and T cells from patients with LV-GCA. METHODS We analyzed transcriptome and interferon gene signature in inflamed aortas from LV-GCA patients and compared them to non-inflammatory control aorta. Differential transcriptomic analyses of circulating CD4+ and CD8+ T cells were also performed between patients with active GCA (not under any immunosuppressants or corticosteroid doses higher than 10 mg/day by the time of blood collection) and healthy donors. Interferon-alpha serum levels were measured using ultra-sensitive technique (HD-X Simoa Planar Technology) in GCA patients according to disease activity status. RESULTS Transcriptomic analyses revealed 1042, 1479 and 2075 significantly dysregulated genes for aortas, CD4+ and CD8+ cells from LV-GCA patients, respectively, as compared to controls. A great enrichment for pathways linked to interferons (type I, II and III), JAK/STAT signaling, cytokines and chemokines was seen across aortas and circulating T cells. A type I interferon signature was identified as significantly upregulated in the aorta of patients with LV-GCA, notably regarding EPSTI1 and IFI44L genes. STAT3 was significantly upregulated in both aorta and T cells and appeared as central in related gene networks from LV-GCA patients. Interferon-alpha serum levels were higher in patients with active GCA when compared to those in remission (0.024 vs. 0.011 pg/mL; p = 0.028). CONCLUSION LV-GCA presents a clear type I interferon signature in aortas, which paves the way for tailored therapeutical targeting.
Collapse
Affiliation(s)
- Matheus Vieira
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Paul Régnier
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Anna Maciejewski-Duval
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Alexandre Le Joncour
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Guillaume Darasse-Jèze
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Michelle Rosenzwajg
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - David Klatzmann
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Patrice Cacoub
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - David Saadoun
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France, Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France.
| |
Collapse
|
20
|
Ashvetiya T, Fan SX, Chen YJ, Williams CH, O’Connell JR, Perry JA, Hong CC. Identification of novel genetic susceptibility loci for thoracic and abdominal aortic aneurysms via genome-wide association study using the UK Biobank Cohort. PLoS One 2021; 16:e0247287. [PMID: 34469433 PMCID: PMC8409653 DOI: 10.1371/journal.pone.0247287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are known to have a strong genetic component. METHODS AND RESULTS In a genome-wide association study (GWAS) using the UK Biobank, we analyzed the genomes of 1,363 individuals with AAA compared to 27,260 age, ancestry, and sex-matched controls (1:20 case:control study design). A similar analysis was repeated for 435 individuals with TAA compared to 8,700 controls. Polymorphism with minor allele frequency (MAF) >0.5% were evaluated. We identified novel loci near LINC01021, ATOH8 and JAK2 genes that achieved genome-wide significance for AAA (p-value <5x10-8), in addition to three known loci. For TAA, three novel loci in CTNNA3, FRMD6 and MBP achieved genome-wide significance. There was no overlap in the genes associated with AAAs and TAAs. Additionally, we identified a linkage group of high-frequency variants (MAFs ~10%) encompassing FBN1, the causal gene for Marfan syndrome, which was associated with TAA. In FinnGen PheWeb, this FBN1 haplotype was associated with aortic dissection. Finally, we found that baseline bradycardia was associated with TAA, but not AAA. CONCLUSIONS Our GWAS found that AAA and TAA were associated with distinct sets of genes, suggesting distinct underlying genetic architecture. We also found association between baseline bradycardia and TAA. These findings, including JAK2 association, offer plausible mechanistic and therapeutic insights. We also found a common FBN1 linkage group that is associated with TAA and aortic dissection in patients who do not have Marfan syndrome. These FBN1 variants suggest shared pathophysiology between Marfan disease and sporadic TAA.
Collapse
Affiliation(s)
- Tamara Ashvetiya
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sherry X. Fan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yi-Ju Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles H. Williams
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffery R. O’Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles C. Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
22
|
Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med 2021; 25:7280-7293. [PMID: 34189838 PMCID: PMC8335673 DOI: 10.1111/jcmm.16757] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokine C‐C motif ligand 7 (CCL7), a member of CC chemokine subfamily, plays pivotal roles in numerous inflammatory diseases. Hyper‐activation of inflammation is an important characteristic of abdominal aortic aneurysm (AAA). Therefore, in the present study, we aimed to determine the effect of CCL7 on AAA formation. CCL7 abundance in aortic tissue and macrophage infiltration were both increased in angiotensin II (Ang II)‐induced AAA mice. Ex vivo, CCL7 promoted macrophage polarization towards M1 phenotype. This effect was reversed by the blockage of CCR1, a receptor of CCL7. CCL7 up‐regulated JAK2/STAT1 protein level in macrophage, and CCL7‐induced M1 activation was suppressed by JAK2/STAT1 pathway inhibition. To verify the effect of CCL7 on AAA in vivo, either CCL7‐neutralizing antibody (CCL7‐nAb) or vehicles were intraperitoneally injected 24 hours prior to Ang II infusion and subsequently every three days for 4 weeks. CCL7‐nAb administration significantly attenuated Ang II‐induced luminal and external dilation as well as pathological remodelling. Immunostaining showed that CCL7‐nAb administration significantly decreased aneurysmal macrophage infiltration. In conclusion, CCL7 contributed to Ang II‐induced AAA by promoting M1 phenotype of macrophage through CCR1/JAK2/STAT1 signalling pathway.
Collapse
Affiliation(s)
- Cuiping Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Feiming Ye
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ning Zhang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yuxue Huang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yun Pan
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Xiaojie Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
23
|
O'Brien BJ, Singer HA, Adam AP, Ginnan RG. CaMKIIδ is upregulated by pro-inflammatory cytokine IL-6 in a JAK/STAT3-dependent manner to promote angiogenesis. FASEB J 2021; 35:e21437. [PMID: 33749880 DOI: 10.1096/fj.202002755r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous serine threonine kinase with established roles in physiological and pathophysiological vascular remodeling. Based on our previous study demonstrating that CaMKIIδ promotes thrombin-induced endothelial permeability and recent reports that CaMKII may contribute to inflammatory remodeling in the heart, we investigated CaMKIIδ-dependent regulation of endothelial function downstream of an interleukin-6 (IL-6)/JAK/STAT3 signaling axis. Upon treatment with IL-6 and its soluble receptor (sIL-6r), CaMKIIδ expression is significantly induced in HUVEC. Using pharmacological inhibitors of JAK and siRNA targeting STAT3, we demonstrated that activation of STAT3 is sufficient to induce CaMKIIδ expression. Under these conditions, rather than promoting IL-6-induced permeability, we found that CaMKIIδ promotes endothelial cell migration as measured by live cell imaging of scratch wound closure and single-cell motility analysis. In a similar manner, endothelial cell proliferation was attenuated upon knockdown of CaMKIIδ as determined by growth curves, cell cycle analysis, and capacitance of cell-covered electrodes as measured by ECIS. Using inducible endothelial-specific STAT3 knockout mice, we demonstrate that STAT3 signaling promotes developmental angiogenesis in the neonatal mouse retina assessed at postnatal day 6. CaMKIIδ expression in retinal endothelium was attenuated in these animals as measured by qPCR. STAT3's effects on angiogenesis were phenocopied by the endothelial-specific knockout of CaMKIIδ, with significantly reduced vascular outgrowth and number of junctions in the developing P6 retina. For the first time, we demonstrate that transcriptional regulation of CaMKIIδ by STAT3 promotes endothelial motility, proliferation, and in vivo angiogenesis.
Collapse
Affiliation(s)
- Brendan J O'Brien
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|