1
|
Alabere HO, Taylor AD, Miller BR, Nohoesu R, Nicoletti R, Mogus J, Meadows EM, Hollander JM. Noncoding RNA as potential therapeutics to rescue mitochondrial dysfunction in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2025; 328:H846-H864. [PMID: 40019197 DOI: 10.1152/ajpheart.00774.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Noncoding RNAs (ncRNAs) are critical regulators of mitochondrial function in cardiovascular diseases. Several studies have explored the manipulation of ncRNAs in mitochondrial dysfunction in different cardiovascular disease contexts, however, there is a dearth of information on the exploration of these noncoding RNAs as actual therapeutics to ameliorate cardiovascular diseases. This systematic review examines the roles of various ncRNAs in modulating mitochondrial dysfunction across major cardiovascular diseases and how they can be targeted to the mitochondria. A comprehensive literature search was conducted using Web of Science and Scopus databases, following the PRISMA guidelines. Original research articles in the English language, focusing on ncRNAs and mitochondrial dysfunction in specific cardiovascular diseases, were eligible for inclusion. A total of 76 studies were included in the systematic review with up to 100 ncRNAs identified as therapeutic biomarkers. The identified ncRNAs participate in regulating mitochondrial processes including oxidative phosphorylation (OXPHOS), fission/fusion dynamics, apoptosis, and calcium handling in cardiovascular diseases. Mitochondrial targeting moieties including mitochondrial targeting cell-penetrating peptides, mitochondrial targeting liposomes, and aptamers can be conjugated to ncRNAs and delivered to the heart via various injection routes including the pericardium or the myocardium. However, significant challenges remain in developing effective delivery methods to modulate these ncRNAs in vivo.
Collapse
Affiliation(s)
- Hafsat O Alabere
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Brianna R Miller
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Remi Nohoesu
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Roxy Nicoletti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Joshua Mogus
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ethan M Meadows
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
2
|
Peng Q, Wang S, Huang S, Deng Y, Li Z, Liu C, Hong Y, Duan R, Xue X, Ge P. FTO/miR-503-5p/USP10 axis regulates neuronal endoplasmic reticulum stress-mediated apoptosis in ischemic stroke. Int Immunopharmacol 2025; 149:114150. [PMID: 39904031 DOI: 10.1016/j.intimp.2025.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
MiR-503-5p is reported to be implicated in ischemic diseases, including those affecting the heart and brain; however, its specific functions and upstream regulatory mechanisms in acute ischemic stroke (AIS) remain a mystery. To address this, we employed the middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models to simulate ischemic/reperfusion conditions in vivo and in vitro. MiR-503-5p was found to exacerbate the brain infarct volume, neuronal damage and neurobehavioral impairment in the MCAO/R mice. In primary neurons, miR-503-5p directly targeted and downregulated ubiquitin-specific protease 10 (USP10), which was reported to be an anti-apoptotic factor. MiR-503-5p significantly elevated the endoplasmic reticulum stress (ERS) biomarkers glucose-regulated protein 78 (GRP78) and the C/EBP homologous protein (CHOP), and exacerbated apoptosis in OGD/R primary neurons, while overexpression of USP10 partially reversed this change. Further investigations indicated that the maturation process of miR-503-5p in neurons was inhibited by demethylase fat mass and obesity-associated protein (FTO) in an m6A-dependent manner. Rescue experiments in vitro and in vivo demonstrated that FTO inhibited ERS-mediated apoptosis by regulating miR-503-5p/USP10 axis. These findings underscore the therapeutic potential of miR-503-5p/USP10 axis and illuminate the neuroprotective effects of FTO on AIS.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China
| | - Shiyao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China
| | - Shi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210006 China
| | - Zhongyuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China
| | - Caidong Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210006 China; Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006 China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China; Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China.
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006 China.
| | - Pengxin Ge
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001 China; Department of Pharmacy, Anhui Provincial Cancer Hospital, Hefei 230031 China.
| |
Collapse
|
3
|
Duan Q, Dong A, Cheng H, Zhang S, Chen W, Yang W. Inhibition of Taurine-upregulated Gene 1 Upregulates MiR-34a-5p to Protect against Myocardial Ischemia/Reperfusion via Autophagy Regulation. Comb Chem High Throughput Screen 2025; 28:110-121. [PMID: 38299288 DOI: 10.2174/0113862073267559231106074309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Taurine upregulated gene 1 (TUG1) has been identified on long noncoding RNA (lncRNA); however, its function in myocardial cells following ischemia/ reperfusion (I/R) injury has not been explored. This study aimed to investigate the role of LncTUG1 in I/R injury by focusing on its relationship with autophagy induction by regulating miR-34a-5p expression. METHODS We established a myocardial I/R model and H9C2 hypoxia-ischemic and reoxygenation (HI/R) conditions to induce I/R injury. TTC, Western blot, CCK-8 assay, quantitative reverse transcription PCR, flow cytometry, and confocal microscopy were used to assess the size of myocardial infarct, level of some apoptotic-related and autophagy-associated proteins, cell viability, the level of LncRNA TUG1, apoptosis, and autophagy, respectively. RESULTS The results revealed that a TUG1 knockdown protected against I/R-induced myocardial injury by decreasing the impairment in cardiac function. LncRNA TUG1 expression was increased in a myocardial I/R model and HI/R in H9C2 cells. Moreover, inhibition of LncTUG1 enhanced H9C2 cell viability and protected the cells from HI/R-induced apoptosis. Silencing LncRNA TUG1 promoted HI/R-induced autophagy. Furthermore, TUG1 siRNA upregulated the level of miR-34a-5p compared to the HI/R group. The protective effect of LncRNA TUG1 inhibition on H9C2 cells following HI/R was eliminated by blocking autophagy with an miR-34a-5p inhibitor. CONCLUSION These findings indicated that inhibiting TUG1 may reduce the extent of myocardial I/R injury by regulating miR-34a-5p. Taken together, these results suggest that LncRNA TUG1 may represent a novel therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Aiqiang Dong
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haifeng Cheng
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shufen Zhang
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Wei Chen
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Weijun Yang
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
4
|
Lihua C, Hua S, Wenzhan W, Standard J, Denghui L. Expression and clinical significance of lncRNA PART1 in patients with unexplained recurrent pregnancy loss. Gynecol Endocrinol 2024; 40:2375582. [PMID: 39422994 DOI: 10.1080/09513590.2024.2375582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Previous studies have reported the involvement of long noncoding RNAs (lncRNAs) in reproductive diseases via the regulation of target genes. This study aimed to determine whether lnc-prostate androgen-regulated transcript 1 (lnc-PART1)could be used as a biomarker of unexplained recurrent pregnancy loss (URPL) and a possible predictor of poor pregnancy outcomes in women with URPL. MATERIALS AND METHODS Sixty patients with URPL and 15 healthy women were included in this study. PART1 expression was detected in plasma and endometrial tissues using a quantitative reverse transcription polymerase chain reaction. Logistic regression and receiver operating characteristic curve analyses were performed to analyze the association between PART1 expression and pregnancy outcomes in women with URPL. RESULTS The expression of PART1transcript variant 2 was significantly up-regulated in the endometrial specimens from patients with URPL compared to control tissues. High tissue expression levels of PART1transcript variant 2 were associated with poor pregnancy outcomes in women with URPL, indicating that it could serve as a potential risk factor. Additionally, PART1 could serve as a potential risk factor for adverse pregnancy outcomes in patients with URPL (OR = 4.374; 95% CI = 1.052-18.189; p = .042). CONCLUSION lncRNA PART1 transcript variant 2 was highly expressed in patients with URPL. Therefore, it is important to conduct in-depth studies on the relationship between PART1 expression and URPL.
Collapse
Affiliation(s)
- Chen Lihua
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Su Hua
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Wang Wenzhan
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | | | - Liang Denghui
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| |
Collapse
|
5
|
Cheng L, Zhao Y, Ke H. Comprehensive analysis of lncRNA-miRNA-mRNA ceRNA network in ischemic stroke. Heliyon 2024; 10:e29651. [PMID: 38698974 PMCID: PMC11064068 DOI: 10.1016/j.heliyon.2024.e29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Competitive endogenous RNA (ceRNA) networks have uncovered a novel mode of RNA interaction, and are implicated in various biological processes and the pathogenesis of IS. This study aimed to explore the potential mechanisms underlying the ceRNA network in IS. Methods Four public datasets containing lncRNA and mRNA (GSE22255 and GSE16561) and miRNA (GSE55937 and GSE43618) expression profiles from the GEO database were systematically analyzed to explore the role of RNAs in ischemic stroke (IS). Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs) between IS and normal control samples were identified. LncRNA-miRNA and miRNA-mRNA interactions were predicted, and the competing endogenous RNA (ceRNA) regulatory network was constructed using the Cytoscape software. The correlation between the RNAs in the ceRNA network and the clinical features of the samples was evaluated. Finally, principal component analysis was performed on the RNAs that constitute the ceRNA regulatory network, and their differential expression and principal component relationships among different types of samples were observed. Results A total of 224 DEmRNAs, 7 DEmiRNAs, and four DElncRNAs related to IS in four datasets were identified. Then, through target gene prediction, a lncRNA-miRNA-mRNA ceRNA network that contained 3 DElncRNAs, 2 DEmiRNAs, and 24 DEmRNAs was constructed. Correlations of the clinical characteristics showed that PART1 and SERPINH1 were related to clinical diseases, WNK1 was related to lifestyle, and seven RNAs were related to age. PCA results indicate that three principal components of PC1, PC2, and PC3 can clearly distinguish between control and IS samples. Conclusion Overall, we constructed a ceRNA network in IS, which could offer insights into the molecular mechanism and potential prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Emergency, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China
| | - Yun Zhao
- Department of Emergency, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China
| | - Hong Ke
- Department of Neurology, The Fourth People's Hospital of Jinan, Jinan, Shandong, 250031, China
| |
Collapse
|
6
|
Zeng M, Wei X, Zhou J, Luo S. LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p. Korean Circ J 2024; 54:233-252. [PMID: 38654453 PMCID: PMC11109840 DOI: 10.4070/kcj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. METHODS Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. RESULTS PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. CONCLUSION PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.
Collapse
Affiliation(s)
- Min Zeng
- Medical Care Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China.
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | | | - Siqi Luo
- Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Munguia-Galaviz FJ, Gutierrez-Mercado YK, Miranda-Diaz AG, Portilla de Buen E, Flores-Soto ME, Echavarria R. Cardiac transcriptomic changes induced by early CKD in mice reveal novel pathways involved in the pathogenesis of Cardiorenal syndrome type 4. Heliyon 2024; 10:e27468. [PMID: 38509984 PMCID: PMC10950824 DOI: 10.1016/j.heliyon.2024.e27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Cardiorenal syndrome (CRS) type 4 is prevalent among the chronic kidney disease (CKD) population, with many patients dying from cardiovascular complications. However, limited data regarding cardiac transcriptional changes induced early by CKD is available. Methods We used a murine unilateral ureteral obstruction (UUO) model to evaluate renal damage, cardiac remodeling, and transcriptional regulation at 21 days post-surgery through histological analysis, RT-qPCR, RNA-seq, and bioinformatics. Results UUO leads to significant kidney injury, low uremia, and pathological cardiac remodeling, evidenced by increased collagen deposition and smooth muscle alpha-actin 2 expression. RNA-seq analysis identified 76 differentially expressed genes (DEGs) in UUO hearts. Upregulated DEGs were significantly enriched in cell cycle and cell division pathways, immune responses, cardiac repair, inflammation, proliferation, oxidative stress, and apoptosis. Gene Set Enrichment Analysis further revealed mitochondrial oxidative bioenergetic pathways, autophagy, and peroxisomal pathways are downregulated in UUO hearts. Vimentin was also identified as an UUO-upregulated transcript. Conclusions Our results emphasize the relevance of extensive transcriptional changes, mitochondrial dysfunction, homeostasis deregulation, fatty-acid metabolism alterations, and vimentin upregulation in CRS type 4 development.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, CUSUR, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | | | | | - Eliseo Portilla de Buen
- Division de Investigacion Quirurgica, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Mario Eduardo Flores-Soto
- Division de Neurociencias, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONAHCYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
8
|
Tan T, Tu L, Yu Y, He M, Zhou X, Yang L. Mechanisms by which silencing long-stranded noncoding RNA KCNQ1OT1 alleviates myocardial ischemia/reperfusion injury (MI/RI)-induced cardiac injury via miR-377-3p/HMOX1. BMC Cardiovasc Disord 2024; 24:19. [PMID: 38172743 PMCID: PMC10765944 DOI: 10.1186/s12872-023-03693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.
Collapse
Affiliation(s)
- Tongcai Tan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liang Tu
- Medical Experimental Center, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The 6th People Hospital of Chongqing), Chongqing, 400060, China
| | - Yanmei Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - MinJie He
- Geriatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Xingchao Zhou
- Department of Medical Equipment, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, China
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People's Hospital of Kunming, Kunming, Yunnan, 650506, China.
| |
Collapse
|
9
|
Wei J, Zhu X, Sun AY, Yan X, Meng X, Ge S. Long non-coding RNA FGD5 antisense RNA 1 targets Baculovirus inhibitor 5 via microRNA-497-5p to alleviate calcific aortic valve disease. Clin Hemorheol Microcirc 2024; 86:285-302. [PMID: 37355887 DOI: 10.3233/ch-221692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is featured by thickening and calcification of the aortic valve. Osteoblast differentiation is a crucial step in valve calcification. Long non-coding RNAs (LncRNAs) participate in the osteogenic differentiation of mesenchymal cells. However, the character of lncRNA FGD5 antisense RNA 1 (FGD5-AS1) in CAVD is uncertain. After collection of human aortic valve tissue samples, detection of FGD5-AS1, microRNA (miR)-497-5p and Baculovirus inhibitor 5 (BIRC5) was conducted. Valve mesenchymal cells were isolated from CAVD patients and induced to differentiate to osteoblasts, and transfected with FGD5-AS1, miR-497-5p and BIRC5 plasmids. Detection of the alkaline phosphatase activity was after osteogenic induction of human aortic valve interstitial cells (hAVICs); Detection of the degree of calcium nodules and osteoblast differentiation markers (RUNX2 and OPN) was conducted. After establishment of a mouse model of CAVD, detection of the thickness of aortic valve leaflets, and the degree of calcification of the valve leaflets, and evaluation of echocardiographic parameters were implemented. Experimental data manifested in CAVD patients, lncRNAFGD5-AS1 and BIRC5 were reduced, but miR-497-5p was elevated; Enhancing lncRNA FGD5-AS1 or repressing miR-497-5p mitigated CAVD by restraining osteogenic differentiation; LncRNA FGD5-AS1 sponged miR-497-5p to target BIRC5; Repressive BIRC5 turned around the therapeutic action of elevated FGD5-AS1 or depressed miR-497-5p on hAVICs; Enhancive FGD5-AS1 in vivo was available to reduce ApoE-/- mouse CAVD induced via high cholesterol diet. All in all, lncRNAFGD5-AS1 targets BIRC5 via miR-497-5p to alleviate CAVD.
Collapse
Affiliation(s)
- Jun Wei
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - XueShuang Zhu
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - AYu Sun
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - XiaoTian Yan
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xing Meng
- Department of Cardiovascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Shenglin Ge
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
11
|
Lu CH, Chen DX, Dong K, Wu YJ, Na N, Wen H, Hu YS, Liang YY, Wu SY, Lin BY, Huang F, Zeng ZY. Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis. Biol Chem 2023; 404:619-631. [PMID: 36780323 DOI: 10.1515/hsz-2022-0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023]
Abstract
MicroRNA (miR)-143-3p is a potential regulatory molecule in myocardial ischemia/reperfusion injury (MI/RI), wherein its expression and pathological effects remains controversial. Thus, a mouse MI/RI and cell hypoxia/reoxygenation (H/R) models were built for clarifying the miR-143-3p's role in MI/RI. Following myocardial ischemia for 30 min, mice underwent reperfusion for 3, 6, 12 and 24 h. It was found miR-143-3p increased in the ischemic heart tissue over time after reperfusion. Cardiomyocytes transfected with miR-143-3p were more susceptible to apoptosis. Mechanistically, miR-143-3p targeted B cell lymphoma 2 (bcl-2). And miR-143-3p inhibition reduced cardiomyocytes apoptosis upon H/R, whereas it was reversed by a specific bcl-2 inhibitor ABT-737. Of note, miR-143-3p inhibition upregulated bcl-2 with better mitochondrial membrane potential (Δψm), reduced cytoplasmic cytochrome c (cyto-c) and caspase proteins, and minimized infarction area in mice upon I/R. Collectively, inhibition of miR-143-3p might alleviate MI/RI via targeting bcl-2 to limit mitochondria-mediated apoptosis. To our knowledge, this study further clarifies the miR-143-3p's pathological role in the early stages of MI/RI, and inhibiting miR-143-3p could be an effective treatment for ischemic myocardial disease.
Collapse
Affiliation(s)
- Chuang-Hong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - De-Xin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Kun Dong
- Department of Organ Transplantation, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yun-Jiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Na Na
- Department of Chemistry, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yao-Shi Hu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yuan-Ying Liang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Si-Yi Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Bei-You Lin
- Department of Cardiology, Zhuhai City People's Hospital, No.79 Kangning Road, Zhuhai 519050, Guangdong, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, No.6 Shuangyong Road, Nanning 530021, Guangxi, China
| |
Collapse
|
12
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
13
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
14
|
Geng T, Xu Z, Xing J, Yuan Y, Liu J. Knockdown of lncRNA SNHG16 attenuates myocardial ischemia‑reoxygenation injury via targeting miR‑183/FOXO1 axis. Exp Ther Med 2023; 25:106. [PMID: 36778043 PMCID: PMC9909512 DOI: 10.3892/etm.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Accumulating evidence shows that long non-coding RNAs (lncRNAs) are widely involved in cellular processes of myocardial ischemia/reperfusion (I/R). The present study investigated the functions of lncRNA SNHG16 in myocardial I/R and the mechanism mediated by SNHG16. The myocardial I/R rat and cell model and hypoxia/reoxygenation injury (H/R) models of H9C2 cardiomyocytes were established to detect the expression of SNHG16. Cell Counting Kit-8, flow cytometric and western blot assays were conducted to detect cell viability, apoptosis and protein expression. Myocardial cell apoptosis was assessed by TUNEL staining. Dual-luciferase gene reporter was applied to determine the interaction between the molecules. The expressions of SNHG16 were upregulated in myocardial I/R injury models. Inhibition of SNHG16 relieved myocardial I/R injury in vivo and in vitro silencing of SNHG16 alleviated H/R induced cardiomyocyte apoptosis. To explore the regulatory mechanism, it was discovered that SNHG16 directly interacted with miR-183, while forkhead box O1 (FoxO1) was a target of microRNA (miR)-183. Findings from rescue assays revealed that miR-183 inhibitor and upregulation of FOXO1 can rescue the effect of sh-SNHG16 on H/R-induced cardiomyocyte apoptosis. The results indicated that the lncRNA SNHG16/miR-183/FOXO1 axis exacerbated myocardial cell apoptosis in myocardial I/R injury, suggesting SNHG16 as a potential therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Tao Geng
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China,Correspondence to: Dr Tao Geng, Department of Cardiovascular Medicine, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, Hebei 061000, P.R. China
| | - Zesheng Xu
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jingxian Xing
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yonggang Yuan
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Juan Liu
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
15
|
Ghafouri-Fard S, Harsij A, Hussen BM, Abdullah SR, Baniahmad A, Taheri M, Sharifi G. A review on the role of long non-coding RNA prostate androgen-regulated transcript 1 (PART1) in the etiology of different disorders. Front Cell Dev Biol 2023; 11:1124615. [PMID: 36875771 PMCID: PMC9974648 DOI: 10.3389/fcell.2023.1124615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
LncRNA prostate androgen-regulated transcript 1 (PART1) is an important lncRNA in the carcinogenesis whose role has been firstly unraveled in prostate cancer. Expression of this lncRNA is activated by androgen in prostate cancer cells. In addition, this lncRNA has a role in the pathogenesis intervertebral disc degeneration, myocardial ischemia-reperfusion injury, osteoarthritis, osteoporosis and Parkinson's disease. Diagnostic role of PART1 has been assessed in some types of cancers. Moreover, dysregulation of PART1 expression is regarded as a prognostic factor in a variety of cancers. The current review provides a concise but comprehensive summary of the role of PART1 in different cancers and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
MicroRNA-503 Exacerbates Myocardial Ischemia/Reperfusion Injury via Inhibiting PI3K/Akt- and STAT3-Dependent Prosurvival Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3449739. [PMID: 35620576 PMCID: PMC9130001 DOI: 10.1155/2022/3449739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022]
Abstract
Acute myocardial infarction is a leading cause of death worldwide, while restoration of blood flow to previously ischemic myocardium may lead to ischemia/reperfusion (I/R) injury. Accumulated evidence shows that microRNAs play important roles in cardiovascular diseases. However, the potential role of microRNA-503 (miR-503) in myocardial I/R injury is little known. Thus, this study is aimed at determining whether and how miR-503 affects myocardial I/R injury in vivo and in vitro. A mouse model of myocardial I/R injury and H9c2 cell model of hypoxia/reoxygenation (H/R) injury were established. The postischemic cardiac miR-503 was downregulated in vivo and in vitro. Mechanistically, PI3K p85 and Bcl-2 are miR-503 targets. The post-ischemic cardiac PI3K p85 protein level was decreased in vivo. Agomir-503 treatment exacerbated H/R-induced injuries manifested as decreased cell viability, increased lactate dehydrogenase activity, and cell apoptosis. Agomir-503 treatment reduced cell viability under normoxia as well and reduced both PI3K p85 and Bcl-2 protein levels under either normoxia or H/R condition. It reduced phosphorylation of Stat3 (p-Stat3-Y705) and Akt (T450) in cells subjected to H/R. In contrast, Antagomir-503 treatment attenuated H/R injury and increased p-Stat3 (Y705) under normoxia and increased p-Akt (T450) under either normoxia or H/R condition. It is concluded that miR-503 exacerbated I/R injury via inactivation of PI3K/Akt and STAT3 pathways and may become a therapeutic target in preventing myocardial I/R injury.
Collapse
|