1
|
Purinergic signaling in thyroid disease. Purinergic Signal 2023; 19:221-227. [PMID: 35347568 PMCID: PMC9984614 DOI: 10.1007/s11302-022-09858-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.
Collapse
|
2
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
3
|
Baldissarelli J, Santi A, Schmatz R, Abdalla FH, Cardoso AM, Martins CC, Dias GRM, Calgaroto NS, Pelinson LP, Reichert KP, Loro VL, Morsch VMM, Schetinger MRC. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin. Cell Mol Neurobiol 2017; 37:53-63. [PMID: 26879755 PMCID: PMC11482073 DOI: 10.1007/s10571-016-0342-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.
Collapse
Affiliation(s)
- Jucimara Baldissarelli
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Adriana Santi
- Conselho de Ensino e Pesquisa, Curso de Medicina, Universidade Federal de Mato Grosso, Parque Sagrada Família, Rondonópolis, MT, Brazil
| | - Roberta Schmatz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Campus Ibirubá, Ibirubá, RS, Brazil
| | - Fátima Husein Abdalla
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | | | - Caroline Curry Martins
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Glaecir R Mundstock Dias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Cidade Universitária Galeão, Rio de Janeiro, RJ, Brazil
| | - Nicéia Spanholi Calgaroto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Luana Paula Pelinson
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Karine Paula Reichert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Maga-Nteve C, Vasilopoulou CG, Constantinou C, Margarity M, Klapa MI. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC–MS metabolomic data normalization in meta-analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1041-1042:158-166. [DOI: 10.1016/j.jchromb.2016.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023]
|
5
|
Lino CA, da Silva IB, Shibata CER, Monteiro PDS, Barreto-Chaves MLM. Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders. Mol Cell Endocrinol 2015; 416:1-8. [PMID: 26277399 DOI: 10.1016/j.mce.2015.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022]
Abstract
Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ivson Bezerra da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline E R Shibata
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla de S Monteiro
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
6
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
7
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
8
|
Abstract
Thyroid disorders are common in the general population and in hospitalized patients. Thyroid disease may present first with neurological complications or else may occur concurrently in patients suffering other neurological disorders, particularly those with an autoimmune etiology. For this reason neurologists will commonly encounter patients with thyroid disease. This chapter provides an overview of the neurological complications and associations of disorders of the thyroid gland. Particular emphasis is placed on conditions such as thyrotoxic periodic paralysis and myxedema coma in which the underlying thyroid disorder may be occult leading to a first, often emergency, presentation to a neurologist. Information about clinical features, diagnosis, pathogenesis, therapy, and prognosis is provided. Emphasis is placed on those aspects most likely to be relevant to the practicing neurologist and the interested reader is directed to references to good, recent review articles for further information.
Collapse
Affiliation(s)
- Clare A Wood-Allum
- Sheffield Institute for Translational Neuroscience, University of Sheffield and Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield and Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
9
|
New approaches to thyroid hormones and purinergic signaling. J Thyroid Res 2013; 2013:434727. [PMID: 23956925 PMCID: PMC3730180 DOI: 10.1155/2013/434727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
Collapse
|
10
|
Lino CA, Shibata CER, Barreto-Chaves MLM. Maternal hyperthyroidism alters the pattern of expression of cardiac renin-angiotensin system components in rat offspring. J Renin Angiotensin Aldosterone Syst 2012; 15:52-60. [PMID: 23257210 DOI: 10.1177/1470320312470581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Changes in perinatal environment can lead to physiological, morphological, or metabolic alterations in adult life. It is well known that thyroid hormones (TH) are critical for the development, growth, and maturation of organs and systems. In addition, TH interact with the renin-angiotensin system (RAS), and both play a critical role in adult cardiovascular function. The objective of this study was to evaluate the effect of maternal hyperthyroidism on cardiac RAS components in pups during development. MATERIALS AND METHODS From gestational day nine (GD9), pregnant Wistar rats received thyroxine (T4, 12 mg/l in tap water; Hyper group) or vehicle (control group). Dams and pups were killed on GD18 and GD20. RESULTS Serum concentrations of triiodothyronine (T3) and T4 were higher in the Hyper group than in the control group dams. Cardiac hypertrophy was observed in Hyper pups on GD20. Cardiac angiotensin-converting enzyme (ACE) activity was significantly lower in Hyper pups on both GD18 and GD20, but there was no difference in Ang I/Ang II levels. Ang II receptors expression was higher in the Hyper pup heart on GD18. CONCLUSIONS Maternal hyperthyroidism is associated with alterations in fetal development and altered pattern of expression in RAS components, which in addition to cardiac hypertrophy observed on GD20 may represent an important predisposing factor to cardiovascular diseases in adult life.
Collapse
Affiliation(s)
- Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Abstract
Administration of chemotherapy during pregnancy may represent a big risk factor for the developing brain, therefore we studied whether the transplacental transport of doxorubicin (DOX) may affect the development of neuroendocrine system. DOX (25 mg/kg; 3 times interaperitoneally/week) was given to pregnant rats during whole gestation period. The disturbances in neuroendocrine functions were investigated at gestation day (GD) 15 and 20 by following the maternal and fetal thyroid hormone levels, fetal nucleotides (ATP, ADP, AMP) levels and adenosine triphosphatase (Na(+), K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) activities in two brain regions, cerebrum and cerebellum. In control group, the levels of maternal and fetal serum thyroxine (T4), triiodothyronine (T3), thyrotropin (TSH), and fetal serum growth hormone (GH) increased from days 15 to 20, whereas in the DOX group, a decrease in maternal and fetal T4, T3 and increase in TSH levels (hypothyroid status) were observed. Also, the levels of fetal GH decreased continuously from GD 15 to 20 with respect to control group. In cerebrum and cerebellum, the levels of fetal nucleotides and the activities of fetal ATPases in control group followed a synchronized course of development. The fetal hypothyroidism due to maternal administration of DOX decreased the levels of nucleotides, ATPases activities, and total adenylate, instead, the adenylate energy charge showed a trend to an increase in both brain regions at all ages tested. These alterations were dose- and age-dependent and this, in turn, may impair the nerve transmission. Finally, DOX may act as neuroendocrine disruptor causing hypothyroidism and fetal brain energetic dysfunction.
Collapse
|
12
|
Ahmed R. Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 2011; 49:1276-84. [DOI: 10.1016/j.fct.2011.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/26/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
13
|
Ahmed OM, Abd El-Tawab SM, Ahmed RG. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions. Int J Dev Neurosci 2010; 28:437-454. [PMID: 20599606 DOI: 10.1016/j.ijdevneu.2010.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/05/2023] Open
Abstract
The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in one group was performed by antithyroid drug, methimazole (MMI) that was added in drinking water at concentration 0.02% and hyperthyroidism in the other group was induced by exogenous thyroxine (T4) (from 50 microg to 200 microg/kg body weight) intragastric administration beside adding 0.002% T4 to the drinking water. The hypothyroid and hyperthyroid states in mothers during pregnancy and lactation periods were confirmed by measuring total thyroxine (TT4) and triiodothyronine (TT3) at gestational day 10 and 10 days post-partum, respectively; the effect was more pronounced at the later period than the first. In offspring of control maternal rats, the free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations were pronouncedly increased as the age progressed from 1 to 3 weeks. In hypothyroid group, a marked decrease in serum FT3, FT4 and GH levels was observed while there was a significant increase in TSH level with age progress as compared with the corresponding control. The reverse pattern to latter state was recorded in hyperthyroid group. The thyroid gland of offspring of hypothyroid group, exhibited some histopathological changes as luminal obliteration of follicles, hyperplasia, fibroblastic proliferation and some degenerative changes throughout the experimental period. The offspring of hyperthyroid rats showed larger and less thyroid follicles with flattened cell lining epithelium, decreased thyroid gland size and some degenerative changes along the experimental period. On the other hand, the biochemical data revealed that in control offspring, the levels of iodothyronine 5'-monodeiodinase (5'-DI), monoamines, gamma-aminobutyric acid (GABA), acetylcholinesterase (AchE), ATPase-enzymes (Na(+),K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) follow a synchronized course of development in all investigated brain regions (cerebrum, cerebellum and medulla oblongata). In addition, the depression in 5'-DI activity, monoamines levels with age progress in all investigated regions, was more pronounced in hypothyroid offspring, while they were increased significantly in hyperthyroid ones in comparison with their respective controls. Conversely, the reverse pattern was recorded in level of the inhibitory transmitter, GABA while there was a disturbance in AchE and ATPases activities in both treated groups along the experimental period in all studied regions. In conclusion, the hypothyroid status during pregnancy and lactation produced inhibitory effects on monoamines, AchE and ATPases and excitatory actions on GABA in different brain regions of the offspring while the hyperthyroid state induced a reverse effect. Thus, the maternal hypothyroidism and hyperthyroidism may cause a number of biochemical disturbances in different brain regions of their offspring and may lead to a pathophysiological state. These alterations were age dependent.
Collapse
Affiliation(s)
- O M Ahmed
- Zoology Department, Division of Physiology, Faculty of Science, Beni Suef University, Beni Suef, Egypt.
| | | | | |
Collapse
|
14
|
Koromilas C, Liapi C, Schulpis KH, Kalafatakis K, Zarros A, Tsakiris S. Structural and functional alterations in the hippocampus due to hypothyroidism. Metab Brain Dis 2010; 25:339-54. [PMID: 20886273 DOI: 10.1007/s11011-010-9208-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/02/2010] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) exert a broad spectrum of effects on the central nervous system (CNS). Hypothyroidism, especially during CNS development, can lead to structural and functional changes (mostly resulting in mental retardation). The hippocampus is considered as one of the most important CNS structures, while the investigation and understanding of its direct and indirect interactions with the THs could provide crucial information on the neurobiological basis of the (frequently-faced in clinical practice) hypothyroidism-induced mental retardation and neurobehavioral dysfunction. THs-deficiency during the fetal and/or the neonatal period produces deleterious effects for neural growth and development (such as reduced synaptic connectivity, delayed myelination, disturbed neuronal migration, deranged axonal projections, decreased synaptogenesis and alterations in neurotransmitters' levels). On the other hand, the adult-onset thyroid dysfunction is usually associated with neurological and behavioural abnormalities. In both cases, genomic and proteomic changes seem to occur. The aim of this review is to provide an up-to-date synopsis of the available knowledge regarding the aforementioned alterations that take place in the hippocampus due to fetal-, neonatal- or adult-onset hypothyroidism.
Collapse
Affiliation(s)
- Christos Koromilas
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
15
|
El‐bakry A, El‐Gareib A, Ahmed R. Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int J Dev Neurosci 2010; 28:371-89. [DOI: 10.1016/j.ijdevneu.2010.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.M. El‐bakry
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | - A.W. El‐Gareib
- Zoology Department, Faculty of ScienceCairo UniversityEgypt
| | - R.G. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
16
|
Effect of thyroid hormone T3 on myosin-Va expression in the central nervous system. Brain Res 2009; 1275:1-9. [PMID: 19379719 DOI: 10.1016/j.brainres.2009.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) are essential for brain development, where they regulate gliogenesis, myelination, cell proliferation and protein synthesis. Hypothyroidism severely affects neuronal growth and establishment of synaptic connections. Triiodothyronine (T3), the biologically active form of TH, has a central function in these activities. So, Myosin-Va (Myo-Va), a molecular motor protein involved in vesicle and RNA transport, is a good candidate as a target for T3 regulation. Here, we analyzed Myo-Va expression in euthyroid and hypothyroid adult rat brains and synaptosomes. We observed a reduction of Myo-Va expression in cultured neural cells from newborn hypothyroid rat brain, while immunocytochemical experiments showed a punctate distribution of this protein in the cytoplasm of cells. Particularly, Myo-Va co-localized with microtubules in neurites, especially in their varicosities. Myo-Va immunostaining was stronger in astrocytes and neurons of controls when compared with hypothyroid brains. In addition, supplementation of astrocyte cultures with T3 led to increased expression of Myo-Va in cells from both euthyroid and hypothyroid animals, suggesting that T3 modulates Myo-Va expression in neural cells both in vivo and in vitro. We have further analyzed Myo-Va expression in U373 cells, a human glioblastoma line, and found the same punctate cytoplasmic protein localization. As in normal neural cells, this expression was also increased by T3, suggesting that the modulatory mechanism exerted by T3 over Myo-Va remains active on astrocyte tumor cells. These data, coupled with the observation that Myo-Va is severely affected in hypothyroidism, support the hypothesis that T3 activity regulates neural motor protein expression, taking Myo-Va as a model. As a consequence, reduced T3 activity could supposedly affect axonal transport and synaptic function, and could therefore explain disturbances seen in the hypothyroid brain.
Collapse
|
17
|
Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG. Thyroid hormones states and brain development interactions. Int J Dev Neurosci 2008; 26:147-209. [PMID: 18031969 DOI: 10.1016/j.ijdevneu.2007.09.011] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 12/20/2022] Open
Abstract
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
Collapse
Affiliation(s)
- Osama M Ahmed
- Zoology Department, Faculty of Science, Beni Suef University, Egypt.
| | | | | | | | | |
Collapse
|
18
|
Mohamed A, Faddah LM. Therapeutic Effects of Sildenafil Citrate (Viagra) And/or Vitamin E on Some Brain Disorders of Alloxan Induced Diabetes Mellitus Rats. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.932.941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
20
|
Braganhol E, Bruno AN, Bavaresco L, Barreto-Chaves MLM, Sarkis JJF, Battastini AMO. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain. Neurochem Res 2006; 31:449-54. [PMID: 16758352 DOI: 10.1007/s11064-006-9041-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2005] [Indexed: 11/24/2022]
Abstract
Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.
Collapse
Affiliation(s)
- Elizandra Braganhol
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|