1
|
Nagarajan A, Rizwana N, Abraham M, Bhat M, Vetekar A, Thakur G, Chakraborty U, Agarwal V, Nune M. Polycaprolactone/graphene oxide/acellular matrix nanofibrous scaffolds with antioxidant and promyelinating features for the treatment of peripheral demyelinating diseases. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:49. [PMID: 37796399 PMCID: PMC10556163 DOI: 10.1007/s10856-023-06750-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Peripheral demyelinating diseases entail damage to axons and Schwann cells in the peripheral nervous system. Because of poor prognosis and lack of a cure, this group of diseases has a global impact. The primary underlying cause of these diseases involves the inability of Schwann cells to remyelinate the damaged insulating myelin around axons, resulting in neuronal death over time. In the past decade, extensive research has been directed in the direction of Schwann cells focusing on their physiological and neuroprotective effects on the neurons in the peripheral nervous system. One cause of dysregulation in the remyelinating function of Schwann cells has been associated with oxidative stress. Tissue-engineered biodegradable scaffolds that can stimulate remyelination response in Schwann cells have been proposed as a potential treatment strategy for peripheral demyelinating diseases. However, strategies developed to date primarily focussed on either remyelination or oxidative stress in isolation. Here, we have developed a multifunctional nanofibrous scaffold with material and biochemical cues to tackle both remyelination and oxidative stress in one matrix. We developed a nanofibrous scaffold using polycaprolactone (PCL) as a foundation loaded with antioxidant graphene oxide (GO) and coated this bioscaffold with Schwann cell acellular matrix. In vitro studies revealed both antioxidant and remyelination properties of the developed bioscaffold. Based on the results, the developed multifunctional bioscaffold approach can be a promising biomaterial approach for treating demyelinating diseases.
Collapse
Affiliation(s)
- Aishwarya Nagarajan
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Nasera Rizwana
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Michelle Abraham
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mahima Bhat
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aakanksha Vetekar
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Department. of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Goutam Thakur
- Department. of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Uttara Chakraborty
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Chen S, Wu C, Liu A, Wei D, Xiao Y, Guo Z, Chen L, Zhu Y, Sun J, Luo H, Fan H. Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche. Biofabrication 2020; 12:035013. [PMID: 32240990 DOI: 10.1088/1758-5090/ab860d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers which are oriented and have a core-shell structure to spatially encapsulate two types of cells, neurons and Schwann cells. A microfluidic system was designed and assembled, which contained a coaxial triple-channel chip and a stretching loading device. Alginate was used first to assist the fabrication, which was washed away afterwards. The orientation of the biomimetic nerve fibers was optimized by the control of the compositions of methacrylate hyaluronan and fibrin, together with the parameters of microfluidic shearing and external stretching. Also, neurons and Schwann cells, which were respectively located in the core and shell of the fibers, displayed advanced biologic functions, including neurogenesis and myelinating maturation. We demonstrate that the neural performance is relatively good, compared to that resulted from individually encapsulated in single-layer microfibers. The present study brings insights to fabricate biomimetic nerve fibers for their potential in neuroscience research and nerve regeneration. Moreover, the present methodology on the fabrication of oriented fibers with different types of cells separately encapsulated should be applicable to biomimetic constructions of various tissues.
Collapse
Affiliation(s)
- Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610064 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang T, Han Y, Bai Y, Zhu Q, Quan D, Liu X. Poly(ether-carbonate) based hydrogel with tunable mechanical strength and enhanced bioactivity prepared by Michael addition. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Noroozi R, Azari I, Taheri M, Omrani MD, Ghafouri-Fard S. A single nucleotide polymorphism within Ninjurin 2 is associated with risk of multiple sclerosis. Metab Brain Dis 2019; 34:1415-1419. [PMID: 31292852 DOI: 10.1007/s11011-019-00460-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is a devastating inflammatory disease of the central nervous system (CNS) associated with loss of myelin sheaths. The role of Schwan cells in the remyelination of MS lesions has been documented. However, the detailed steps of this process are unknown. Ninjurin 2 (NINJ2) encodes an adhesion protein with high expression in Schwann cells adjoining the distal piece of injured nerve. Based on the role of this protein in neurite outgrowth, it might participate in the process of nerve regeneration after nerve damage. In the present study, we genotyped two NINJ2 single nucleotide polymorphisms (SNPs) namely rs11833579 and rs3809263 in a population of Iranian patients with MS as well as healthy individuals. The frequency of T allele of the rs3809263 was significantly higher in MS patients compared with healthy subjects (OR (95% CI) = 1.33 (1.08-1.63), adjusted P value = 0.01). TT genotype of this SNP was associated with MS risk compared with CC genotype (OR (95% CI) = 2.22 (1.37-3.57), adjusted P value = 0.009). Moreover, the rs3809263 was associated with MS risk in recessive model (OR (95% CI) = 2.09 (1.33-3.31), adjusted P value = 0.003). There were no significant difference in the alleles and genotypes frequencies of rs11833579 between cases and controls. The current research suggests contribution of NINJ2 in the pathogenesis of MS and warrants further studies for elaboration of the underlying mechanism of such contribution.
Collapse
Affiliation(s)
- Rezvan Noroozi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Azari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kalakh S, Mouihate A. Demyelination-Induced Inflammation Attracts Newly Born Neurons to the White Matter. Mol Neurobiol 2016; 54:5905-5918. [PMID: 27660277 DOI: 10.1007/s12035-016-0127-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
There is compelling evidence that microglial activation negatively impacts neurogenesis. However, microglia have also been shown to promote recruitment of newly born neurons to injured areas of the gray matter. In the present study, we explored whether demyelination-triggered inflammation alters the process of neurogenesis in the white matter. A 2-μl solution of 0.04 % ethidium bromide was stereotaxically injected into the corpus callosum of adult male rats. Brain inflammation was dampened by daily injections of progesterone (5 mg/kg, s.c.) for 14 days. Control rats received oil (s.c.). Newly born neurons (DCX and Tbr2), microglia (Iba-1), astrocytes (vimentin or GFAP), oligodendrocyte progenitor cells (OPCs; NG2), and mature oligodendrocytes (CC-1) were monitored in the vicinity of demyelination site using immunofluorescent staining. Western blot was used to explore microglial polarization using M1 (iNOS) and M2 (arginase-1) markers. Focal demyelination elicited strong microglial and astroglial activation and reduced the number of OPCs at the site of demyelination. This inflammatory response was associated with enhanced number of newly born neurons in the white matter and the subventricular zone (SVZ). A proportion of newly born neurons within the white matter showed features of OPCs. Interestingly, blunting brain inflammation led to reduced neurogenesis around the demyelination area and in the SVZ. These data suggest that the white matter inflammation creates a conducive environment for the recruitment of newly born neurons. The fact that a sizable fraction of these newly born neurons adopt OPC features suggests that they could contribute to the remyelination process.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| |
Collapse
|
7
|
Umebayashi D, Coles B, van der Kooy D. Enrichment of Oligodendrocyte Progenitors from Differentiated Neural Precursors by Clonal Sphere Preparations. Stem Cells Dev 2016; 25:712-28. [DOI: 10.1089/scd.2015.0244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daisuke Umebayashi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Brenda Coles
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 2016; 318:178-89. [PMID: 26804242 DOI: 10.1016/j.neuroscience.2016.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is a demyelinating disease with severe neurological symptoms due to blockage of signal conduction in affected axons. Spontaneous remyelination via endogenous progenitors is limited and eventually fails. Recent reports showed that forced expression of some transcription factors within the brain converted somatic cells to neural progenitors and neuroblasts. Here, we report the effect of valproic acid (VPA) along with forced expression of Oct4 transcription factor on lysolecithin (LPC)-induced experimental demyelination. Mice were gavaged with VPA for one week, and then inducible Oct4 expressing lentiviral particles were injected into the lateral ventricle. After one-week induction of Oct4, LPC was injected into the optic chiasm. Functional remyelination was assessed by visual-evoked potential (VEP) recording. Myelination level was studied using FluoroMyelin staining and immunohistofluorescent (IHF) against proteolipid protein (PLP). IHF was also performed to detect Oct4 and SSEA1 as pluripotency markers and Olig2, Sox10, CNPase and PDGFRα as oligodendrocyte lineage markers. One week after injection of Oct4 expressing vector, pluripotency markers SSEA1 and Oct4 were detected in the rims of the 3rd ventricle. LPC injection caused extensive demyelination and significantly delayed the latency of VEP wave. Animals pre-treated with VPA+Oct4 expressing vector, showed faster recovery in the VEP latency and enhanced myelination. Immunostaining against oligodendrocyte lineage markers showed an increased number of Sox10+ and myelinating cells. Moreover, transdifferentiation of some Oct4-transfected cells (GFP+ cells) to Olig2+ and CNPase+ cells was confirmed by immunostaining. One-week administration of VPA followed by one-week forced expression of Oct4 enhanced myelination by converting transduced cells to myelinating oligodendrocytes. This finding seems promising for enhancing myelin repair within the adult brains.
Collapse
Affiliation(s)
- S Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Hesaraki
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - M Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - J Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Y Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Park HW, Moon HE, Kim HSR, Paek SL, Kim Y, Chang JW, Yang YS, Kim K, Oh W, Hwang JH, Kim JW, Kim DG, Paek SH. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res 2015; 93:1814-25. [PMID: 26332684 DOI: 10.1002/jnr.23616] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/11/2022]
Abstract
Cell therapy is a potential therapeutic method for cerebral ischemia, which remains a serious problem. In the search for more effective therapeutic methods, many kinds of stem cells from various tissues have been developed and tested as candidate therapeutic agents. Among them, human umbilical cord blood (hUCB)-derived mesenchymal stem cells (MSCs) are widely used for cell therapy because of their genetic flexibility. To confirm that they are effective and understand how they affect ischemic neural cells, hUCB-MSCs were directly administered ipsilaterally into an ischemic zone induced by middle cerebral artery occlusion (MCAO). We found that the neurobehavioral performance of the hUCB-MSC group was significantly improved compared with that of the vehicle-injected control group. The infarct was also remarkably smaller in the hUCB-MSC group. Additionally, hUCB-MSC transplantation resulted in a greater number of newly generated cells and angiogenic and tissue repair factors and a lower number of inflammatory events in the penumbra zone. To determine why these events occurred, hUCB-MSCs were assayed under hypoxic and normoxic conditions in vitro. The results showed that hUCB-MSCs exhibit higher expression levels of thrombospondin1, pantraxin3, and vascular endothelial growth factor under hypoxic conditions than under normoxic conditions. These results were found to be correlated with our in vivo immunofluorescent staining results. On the basis of these findings, we suggest that hUCB-MSCs may have a beneficial effect on cerebral ischemia, especially through angiogenesis, neurogenesis, and anti-inflammatory effects, and thus could be used as a therapeutic agent to treat neurological disorders such as cerebral ischemia.
Collapse
Affiliation(s)
- Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo-Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Soo R Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Leal Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | - Yona Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Yoon Sun Yang
- Biomedical Research Institute, Medipost Co., Ltd., Seoul, Korea
| | - KwanWoo Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, Medipost Co., Ltd., Seoul, Korea
| | - Jae Ha Hwang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
11
|
Cho H, Choi YK, Lee DH, Park HJ, Seo YK, Jung H, Kim SC, Kim SM, Park JK. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord. Biotechnol Appl Biochem 2013; 60:596-602. [DOI: 10.1002/bab.1109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hyunjin Cho
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
| | - Yun-Kyong Choi
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Dong Heon Lee
- Advanced Functional Nanohybrid Material Lab, Department of Chemistry; Dongguk University; Seoul Korea
| | - Hee Jung Park
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Hyun Jung
- Advanced Functional Nanohybrid Material Lab, Department of Chemistry; Dongguk University; Seoul Korea
- Department of Energy and Materials Engineering; Dongguk University; Seoul Korea
| | - Soo-Chan Kim
- Graduate School of Bio & Information Technology; Hankyong National University; Anseong-si Kyonggi-do Korea
| | - Sung-Min Kim
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Jung-Keug Park
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| |
Collapse
|
12
|
Cao L, He C. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci Bull 2013; 29:189-98. [PMID: 23558588 DOI: 10.1007/s12264-013-1324-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system, and microglia and macrophages play important roles in its pathogenesis. The activation of microglia and macrophages accompanies disease development, whereas depletion of these cells significantly decreases disease severity. Microglia and macrophages usually have diverse and plastic phenotypes. Both pro-inflammatory and antiinflammatory microglia and macrophages exist in MS and its animal model, experimental autoimmune encephalomyelitis. The polarization of microglia and macrophages may underlie the differing functional properties that have been reported. in this review, we discuss the responses and polarization of microglia and macrophages in MS, and their effects on its pathogenesis and repair. Harnessing their beneficial effects by modulating their polarization states holds great promise for the treatment of inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| | | |
Collapse
|
13
|
VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease. Gene Ther 2010; 18:394-402. [PMID: 21107440 DOI: 10.1038/gt.2010.152] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.
Collapse
|
14
|
Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010; 1343:226-35. [PMID: 20470759 DOI: 10.1016/j.brainres.2010.05.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/11/2022]
Abstract
Transplantation of mesenchymal stem cells (MSCs) derived from bone marrow has been shown to improve functional outcome in spinal cord injury (SCI). Systemic delivery of MSCs results in therapeutic benefits in a number of experimental central nervous system disorders. In the present study we intravenously administered rat MSCs derived from bone marrow at various time points after induction of a severe contusive SCI in rat to study their therapeutic effects. MSCs were systemically delivered at varied time points (6h to 28 days after SCI). The spinal cords were examined histologically 6 weeks after SCI. Stereological quantification was performed on the spinal cords to determine donor cell (MSCs transduced with the LacZ gene) density in the lesions. Light microscopic examination revealed that cavitation in the contused spinal cords was less in the MSC-treated rats. A limited number of cells derived from MSCs (LacZ(+)) in the injury site expressed neural or glial markers. Functional outcome measurements using the Basso-Beattie-Bresnehan (BBB) score were performed periodically up to 6 weeks post-SCI. Locomotor recovery improvement was greater in the MSC-treated groups than in sham controls with greatest improvement in the earlier post-contusion infusion times. The availability of autologous MSCs in large number and the potential for systemically delivering cells to target lesion areas without neurosurgical intervention suggests the potential utility of intravenous cell delivery as a prospective therapeutic approach in acute and subacute SCI.
Collapse
|
15
|
Radtke C, Wewetzer K. Translating basic research into clinical practice or what else do we have to learn about olfactory ensheathing cells? Neurosci Lett 2009; 456:133-6. [PMID: 19429148 DOI: 10.1016/j.neulet.2008.07.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/22/2008] [Accepted: 07/07/2008] [Indexed: 11/30/2022]
Abstract
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that have been shown to promote axonal regeneration and remyelination in a variety of different lesion paradigms. It is still a matter of debate in how far OECs differ from Schwann cells regarding their regenerative potential and molecular setup. The fact that OECs have been already used for transplantation in humans may imply that the need of the hour is the fine-tuning of clinical application details rather than to cross the bridge between laboratory animal and man. Considering the therapeutic transplantation of OECs, however, the basic question to date is not 'how' to translate but rather 'what' to translate into clinical practice. The aim of the present article is to provide a summary of the current literature and to define the open issues relevant for translating basic research on OECs into clinical practice.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
16
|
Low HP, Gréco B, Tanahashi Y, Gallant J, Jones SN, Billings-Gagliardi S, Recht LD, Schwartz WJ. Embryonic stem cell rescue of tremor and ataxia in myelin-deficient shiverer mice. J Neurol Sci 2008; 276:133-7. [PMID: 18996543 DOI: 10.1016/j.jns.2008.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 11/27/2022]
Abstract
Transplantation of neural precursor cells has been proposed as a possible approach for replacing missing or damaged central nervous system myelin. Neonatal and adult myelin-deficient shiverer (shi) mice, bearing a mutation of the myelin basic protein (MBP) gene, have been used extensively as hosts for testing cell engraftment, migration, and myelination, but relatively little progress has been made in reversing shi motor deficits. Here we describe a prenatal cell replacement strategy, showing that embryonic stem cells injected into shi blastocyst embryos can generate chimeric mice with strong and widespread immunoreactive MBP expression throughout the brain and a behavioral (motor) phenotype that appears essentially rescued.
Collapse
Affiliation(s)
- Hoi Pang Low
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 2008; 213:176-90. [DOI: 10.1016/j.expneurol.2008.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 02/03/2023]
|
18
|
Omori Y, Honmou O, Harada K, Suzuki J, Houkin K, Kocsis JD. Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res 2008; 1236:30-8. [PMID: 18722359 DOI: 10.1016/j.brainres.2008.07.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 11/30/2022]
Abstract
The systemic injection of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has therapeutic benefits after cerebral artery occlusion in rats, and may have multiple therapeutic effects at various sites and times within the lesion as the cells respond to a particular pathological microenvironment. However, the comparative therapeutic benefits of multiple injections of hMSCs at different time points after cerebral artery occlusion in rats remain unclear. In this study, we induced middle cerebral artery occlusion (MCAO) in rats using intra-luminal vascular occlusion, and infused hMSCs intravenously at a single 6 h time point (low and high cell doses) and various multiple time points after MCAO. From MRI analyses lesion volume was reduced in all hMSC cell injection groups as compared to serum alone injections. However, the greatest therapeutic benefit was achieved following a single high cell dose injection at 6 h post-MCAO, rather than multiple lower cell infusions over multiple time points. Three-dimensional analysis of capillary vessels in the lesion indicated that the capillary volume was equally increased in all of the cell-injected groups. Thus, differences in functional outcome in the hMSC transplantation subgroups are not likely the result of differences in angiogenesis, but rather from differences in neuroprotective effects.
Collapse
Affiliation(s)
- Yoshinori Omori
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The development of successful myelin repair strategies depends on the detailed knowledge of the cellular and molecular processes underlying demyelination and remyelination in the central nervous system of animal models and in patients with multiple sclerosis (MS). Based on the complexity of the demyelination and remyelination processes, it should be expected that effective therapeutic approaches will require a combination of strategies for immunomodulation, neuroprotection, and myelin replacement. This brief review highlights recent cellular and molecular findings and indicates that future therapeutic strategies to enhance remyelination may also require combinatorial treatment to accomplish. RECENT FINDINGS The relapsing-remitting course of some forms of multiple sclerosis has typically fueled hope for effective repair of multiple sclerosis lesions, if demyelinating activity could be attenuated. Recent findings support the potential of endogenous neural stem cells and progenitor cells to generate remyelinating oligodendrocytes. Importantly, interactions with viable axons and supportive astrocytic responses are required for endogenous immature cells to fulfill their potential remyelinating capacity. SUMMARY The research described here will help in identifying the major obstacles to effective remyelination and potential therapeutic targets to guide development of comprehensive approaches for testing in animal models and eventual treatment of patients with multiple sclerosis.
Collapse
|
20
|
Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008; 28:329-40. [PMID: 17637706 PMCID: PMC2605394 DOI: 10.1038/sj.jcbfm.9600527] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transplantation of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has been reported to ameliorate functional deficits after cerebral artery occlusion in rats. Although several hypotheses to account for these therapeutic effects have been suggested, current thinking is that both neuroprotection and angiogenesis are primarily responsible. In this study, we compared the effects of hMSCs and angiopoietin-1 gene-modified hMSCs (Ang-hMSCs) intravenously infused into rats 6 h after permanent middle cerebral artery occlusion. Magnetic resonance imaging and histologic analyses revealed that rats receiving hMSCs or Ang-hMSCs exhibited comparable reduction in gross lesion volume as compared with the control group. Although both cell types indeed improved angiogenesis near the border of the ischemic lesions, neovascularization and regional cerebral blood flow were greater in some border areas in Ang-hMSC group. Both hMSC- and Ang-hMSC-treated rats showed greater improved functional recovery in the treadmill stress test than did control rats, but the Ang-hMSC group was greater. These results indicate the intravenous administration of genetically modified hMSCs to express angiopoietin has a similar effect on reducing lesion volume as hMSCs, but the Ang-hMSC group showed enhanced regions of increased angiogenesis at the lesion border, and modest additional improvement in functional outcome.
Collapse
Affiliation(s)
- Toshiyuki Onda
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|