1
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
2
|
Williams MT, Amos-Kroohs RM, Vorhees CV. Prolonged methamphetamine exposure during a critical period in neonatal Sprague Dawley rats does not exacerbate egocentric and allocentric learning deficits but increases reference memory impairments. Int J Dev Neurosci 2020; 80:163-174. [PMID: 32043612 DOI: 10.1002/jdn.10014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Children exposed to methamphetamine (MA) in utero have cognitive deficits. MA administration in rats for 5-10 days between postnatal days (P)6 and 20 produces cognitive deficits. The purpose of this study was to determine if extending MA administration by 5 days within P6-20 would exacerbate allocentric (Morris water maze) and egocentric (Cincinnati water maze) learning deficits. Sprague Dawley female and male offspring (split-litter design) were administered saline (SAL) or MA (10 mg/kg) four times daily from P6 to 20 to create four groups: (a) SAL from P6 to 20, (b) MA from P6 to 20 (MA6-20), (c) MA from P6 to 15 (MA6-15), or (d) MA from P11 to 20 (MA11-20); the latter groups received saline on days they did not receive MA. Egocentric, allocentric, and conditioned freezing tests began on P60. The MA6-15 and MA6-20 groups showed egocentric deficits, all MA groups had allocentric deficits but no differences in conditioned freezing compared with SAL controls. The MA6-15 and MA6-20 groups had similar deficits in learning and memory that were larger than in the MA11-20 group. Learning in both mazes was sex dependent, but no interactions with MA were found. The data demonstrate that extending the exposure period of MA beyond the sensitive periods (P6-15 and P11-20) did not exacerbate the cognitive deficits.
Collapse
Affiliation(s)
- Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology (MLC 7044), Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Robyn M Amos-Kroohs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology (MLC 7044), Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Neurology (MLC 7044), Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
3
|
Effects of Neonatal Methamphetamine and Stress on Brain Monoamines and Corticosterone in Preweanling Rats. Neurotox Res 2016; 31:269-282. [PMID: 27817108 DOI: 10.1007/s12640-016-9680-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023]
Abstract
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered monoamines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits.
Collapse
|
4
|
Amos-Kroohs RM, Graham DL, Grace CE, Braun AA, Schaefer TL, Skelton MR, Vorhees CV, Williams MT. Developmental stress and lead (Pb): Effects of maternal separation and/or Pb on corticosterone, monoamines, and blood Pb in rats. Neurotoxicology 2016; 54:22-33. [PMID: 26943976 DOI: 10.1016/j.neuro.2016.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 01/13/2023]
Abstract
The level of lead (Pb) exposure in children has decreased dramatically since restrictions on its use were implemented. However, even with restrictions, children are exposed to Pb and still present with cognitive and behavioral deficits. One prominent aspect of the exposome of these children is that many come from low social economic status (SES) conditions, and low SES is associated with stress. In order to compare the combined effects of early stress and Pb, Sprague-Dawley rats were exposed to vehicle or Pb either alone or in combination with maternal separation stress during brain development (i.e., postnatal day (P)4-P11, P19, or P28). Maternally separated/isolated pups had lower body and thymus weights during exposure and had increased levels of blood Pb compared with vehicle controls. Isolation, but not Pb, affected the response to an acute stressor (standing in shallow water) when assessed on P19 and P29, but not earlier on P11. Interactions of Pb and isolation were found on monoamines in the neostriatum, hippocampus, and hypothalamus on turnover but not on levels, and most changes were on dopamine turnover. Isolation had greater short-term effects than Pb. Interactions were dependent on age, sex, and acute stress.
Collapse
Affiliation(s)
- Robyn M Amos-Kroohs
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Dr., Madison, WI 53706, United States.
| | - Devon L Graham
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Curtis E Grace
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Amanda A Braun
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Tori L Schaefer
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Matthew R Skelton
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
5
|
Vorhees CV, Makris SL. Assessment of learning, memory, and attention in developmental neurotoxicity regulatory studies: synthesis, commentary, and recommendations. Neurotoxicol Teratol 2015; 52:109-15. [PMID: 26526903 DOI: 10.1016/j.ntt.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022]
Abstract
Cognitive tests of learning and memory (L&M) have been required by U.S. Environmental Protection Agency (EPA) developmental neurotoxicity test (DNT) guidelines for more than two decades. To evaluate the utility of these guidelines, the EPA reviewed 69 pesticide DNT studies. This review found that the DNT provided or could provide the point-of-departure for risk assessment by showing the Lowest Observable Adverse Effect Level (LOAEL) in 28 of these studies in relation to other reported end points. Among the behavioral tests, locomotor activity and auditory/acoustic startle provided the most LOAELs, and tests of cognitive function and the Functional Observational Battery (FOB) the fewest. Two issues arose from the review: (1) what is the relative utility of cognitive tests versus tests of unconditioned behavior, and (2) how might cognitive tests be improved? The EPA sponsored a symposium to address this. Bushnell reviewed studies in which both screening (locomotor activity, FOB, reflex ontogeny, etc.) and complex tests (those requiring training) were used within the same study; he found relatively little evidence that complex tests provided a LOAEL lower than screening tests (with exceptions). Levin reviewed reasons for including cognitive tests in regulatory studies and methods and evidence for the radial arm maze and its place in developmental neurotoxicity assessments. Driscoll and Strupp reviewed the value of serial reaction time operant methods for assessing executive function in developmental neurotoxicity studies. Vorhees and Williams reviewed the value of allocentric (spatial) and egocentric cognitive tests and presented methods for using the Morris water maze for spatial and the Cincinnati water maze for egocentric cognitive assessment. They also reviewed the possible use of water radial mazes. The relatively lower impact of cognitive tests in previous DNT studies in the face of the frequency of human complaints of chemical-induced cognitive dysfunction indicates that animal cognitive tests need improvement. The contributors to this symposium suggest that if the guidelines are updated, they be made more specific by recommending preferred tests and providing greater detail on key characteristics of such tests. Additionally, it is recommended that guidance be developed to address important issues with cognitive tests and to provide the information needed to improve the design, conduct, and interpretation of tests of higher function within a regulatory context. These steps will maximize the value of cognitive tests for use in hazard evaluation and risk assessment.
Collapse
Affiliation(s)
- Charles V Vorhees
- Cincinnati Children's Research Foundation, Division of Neurology, 3333 Burnet Avenue, Cincinnati, OH 45229, United States.
| | - Susan L Makris
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, 1200 Pennsylvania Ave., NW, (8623P), Washington, DC 20460, United States.
| |
Collapse
|
6
|
Zuloaga DG, Jacobskind JS, Jacosbskind JS, Raber J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front Neurosci 2015; 9:178. [PMID: 26074755 PMCID: PMC4444766 DOI: 10.3389/fnins.2015.00178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/03/2015] [Indexed: 01/22/2023] Open
Abstract
Psychostimulants such as methamphetamine (MA) induce significant alterations in the function of the hypothalamic-pituitary-adrenal (HPA) axis. These changes in HPA axis function are associated with altered stress-related behaviors and might contribute to addictive processes such as relapse. In this mini-review we discuss acute and chronic effects of MA (adult and developmental exposure) on the HPA axis, including effects on HPA axis associated genes/proteins, brain regions, and behaviors such as anxiety and depression. A better understanding of the mechanisms through which MA affects the HPA axis may lead to more effective treatment strategies for MA addiction.
Collapse
Affiliation(s)
| | | | | | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Oregon Health and Science University Portland Portland, OR, USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University Portland Portland, OR, USA
| |
Collapse
|
7
|
Sources of variation in the design of preclinical studies assessing the effects of amphetamine-type stimulants in pregnancy and lactation. Behav Brain Res 2015; 279:87-99. [DOI: 10.1016/j.bbr.2014.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 01/28/2023]
|
8
|
Effects of developmental exposure to manganese and/or low iron diet: Changes to metal transporters, sucrose preference, elevated zero-maze, open-field, and locomotion in response to fenfluramine, amphetamine, and MK-801. Toxicol Rep 2015; 2:1046-1056. [PMID: 26295019 PMCID: PMC4538693 DOI: 10.1016/j.toxrep.2015.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Manganese overexposure (MnOE) can be neurotoxic. In humans this can occur through occupational exposure, air or water contamination, well water, soy milk, and some baby formulas. In children MnOE has been associated with cognitive and behavioral deficits. The effects of MnOE may be modified by factors such as iron status. We hypothesized that developmental MnOE would be exacerbated by iron deficiency. A diet with a 90% decrease in iron (FeD) was given to gravid female rats starting on embryonic day 15 and continued through postnatal day (P)28. Mn (100 mg/kg) or vehicle (VEH) was administered by gavage every other day from P4-28. Metal transporters and receptors (divalent metal transporter-1 (DMT1), transferrin (Tf), transferrin receptor (TfR), and zip8 (zrt8)) were quantified in brain at P28. These markers were increased but the changes were specific: MnOE increased TfR and decreased Tf in hippocampus, whereas FeD increased TfR in neostriatum and increased TfR and DMT1 in the hippocampus, and the combination increased TfR in neostriatum (zip8 was unaffected). Identically treated animals were tested behaviorally at P29 or P60. The combination of FeD+MnOE increased head dips in an elevated zero-maze, reversed deficits in sucrose preference induced by MnOE alone, and increased spontaneous locomotion in an open-field. Rats were also evaluated for changes in locomotor activity after challenge with (±)-fenfluramine (FEN, a 5-HT agonist: 5 mg/kg), MK-801 (MK801, an NMDA antagonist: 0.2 mg/kg), or (+)amphetamine (AMPH, a dopamine agonist: 1 mg/kg). Compared with VEH animals, MnOE animals were more hyperactive after fenfluramine, amphetamine, or MK-801, regardless of FeD exposure. The results indicate persistent effects of developmental MnOE on brain and behavior but few interactions with dietary iron deficiency.
Collapse
|
9
|
Abstract
Intrauterine methamphetamine exposure adversely affects the neurofunctional profile of exposed children, leading to a variety of higher order cognitive deficits, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments (Kiblawi et al. in J Dev Behav Pediatr 34:31-37, 2013; Piper et al. in Pharmacol Biochem Behav 98:432-439 2011; Roussotte et al. in Neuroimage 54:3067-3075, 2011; Twomey et al. in Am J Orthopsychiatry 83:64-72, 2013). In animal models of developmental methamphetamine, both neuroanatomical and behavioral outcomes critically depend on the timing of methamphetamine administration. Methamphetamine exposure during the third trimester human equivalent period of brain development results in well-defined and persistent wayfinding and spatial navigation deficits in rodents (Vorhees et al. in Neurotoxicol Teratol 27:117-134, 2005, Vorhees et al. in Int J Dev Neurosci 26:599-610, 2008; Vorhees et al. in Int J Dev Neurosci 27:289-298, 2009; Williams et al. in Psychopharmacology (Berl) 168:329-338, 2003b), whereas drug delivery during the first and second trimester equivalents produces no such effect (Acuff-Smith et al. in Neurotoxicol Teratol 18:199-215, 1996; Schutova et al. in Physiol Res 58:741-750, 2009a; Slamberova et al. in Naunyn Schmiedebergs Arch Pharmacol 380:109-114, 2009, Slamberova et al. in Physiol Res 63:S547-S558, 2014b). In this review, we examine the impact of developmental methamphetamine on emerging neural circuitry, neurotransmission, receptor changes, and behavioral outcomes in animal models. The review is organized by type of effects and timing of drug exposure (prenatal only, pre- and neonatal, and neonatal only). The findings elucidate functional patterns of interconnected brain structures (e.g., frontal cortex and striatum) and neurotransmitters (e.g., dopamine and serotonin) involved in methamphetamine-induced developmental neurotoxicity.
Collapse
|
10
|
McDonnell‐Dowling K, Donlon M, Kelly JP. Methamphetamine exposure during pregnancy at pharmacological doses produces neurodevelopmental and behavioural effects in rat offspring. Int J Dev Neurosci 2014; 35:42-51. [DOI: 10.1016/j.ijdevneu.2014.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kate McDonnell‐Dowling
- Discipline of Pharmacology and TherapeuticsSchool of MedicineNational University of IrelandGalwayIreland
| | - Michelle Donlon
- Discipline of Pharmacology and TherapeuticsSchool of MedicineNational University of IrelandGalwayIreland
| | - John P. Kelly
- Discipline of Pharmacology and TherapeuticsSchool of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
11
|
Vorhees CV, Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Erikson KM, Aschner M, Williams MT. Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicol Rep 2014; 1:1046-1061. [PMID: 25574457 PMCID: PMC4285371 DOI: 10.1016/j.toxrep.2014.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developmental exposure to manganese (Mn) or stress can each be detrimental to brain development. Here, Sprague-Dawley rats were exposed to two housing conditions and Mn from postnatal day (P)4–28. Within each litter two males and two females were assigned to the following groups: 0 (vehicle), 50, or 100 mg/kg Mn by gavage every other day. Half the litters were reared in cages with standard bedding and half with no bedding. One pair/group in each litter had an acute shallow water stressor before tissue collection (i.e., standing in shallow water). Separate litters were assessed at P11, 19, or 29. Mn-treated rats raised in standard cages showed no change in baseline corticosterone but following acute stress increased more than controls on P19; no Mn effects were seen on P11 or P29. Mn increased neostriatal dopamine in females at P19 and norepinephrine at P11 and P29. Mn increased hippocampal dopamine at P11 and P29 and 5-HT at P29 regardless of housing or sex. Mn had no effect on hypothalamic dopamine, but increased norepinephrine in males at P29 and 5-HT in males at all ages irrespective of rearing condition. Barren reared rats showed no or opposite effects of Mn, i.e., barren rearing + Mn attenuated corticosterone increases to acute stress. Barren rearing also altered the Mn-induced changes in dopamine and norepinephrine in the neostriatum, but not in the hippocampus. Barren rearing caused a Mn-associated increase in hypothalamic dopamine at P19 and P29 not seen in standard reared Mn-treated groups. Developmental Mn alters monoamines and corticosterone as a function of age, stress (acute and chronic), and sex.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding authors. Tel.: +513 636 8624 MTW; 513 636 8622 CVV; fax: +513 636 3912
| | - Devon L. Graham
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robyn M. Amos-Kroohs
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda A. Braun
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Curtis E. Grace
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tori L. Schaefer
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew R. Skelton
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, NC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael T. Williams
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding authors. Tel.: +513 636 8624 MTW; 513 636 8622 CVV; fax: +513 636 3912
| |
Collapse
|
12
|
Distinct periods of developmental sensitivity to the effects of 3,4-(±)-methylenedioxymethamphetamine (MDMA) on behaviour and monoamines in rats. Int J Neuropsychopharmacol 2012; 15:811-24. [PMID: 21733225 PMCID: PMC4599583 DOI: 10.1017/s1461145711000952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Previous findings showed allocentric and egocentric learning deficits in rats after MDMA treatment from postnatal days (PD) 11-20 but not after treatment from PD 1-10. Shorter treatment periods (PD 1-5, 6-10, 11-15, or 16-20) resulted in allocentric learning deficits averaged across intervals but not for any interval individually and no egocentric learning deficits individually or collectively. Whether this difference was attributable to treatment length or age at the start of treatment was unclear. In the present experiment rat litters were treated on PD 1-10, 6-15, or 11-20 with 0, 10, or 15 mg/kg MDMA q.i.d. at 2-h intervals. Two male/female pairs/litter received each treatment. One pair/litter received acoustic startle with prepulse inhibition, straight channel swimming, Cincinnati water maze (CWM), and conditioned fear in a latent inhibition paradigm. The other pair/litter received locomotor activity, straight channel swimming, Morris water maze (MWM), and locomotor activity retest with MK-801 challenge. MDMA impaired CWM learning following PD 6-15 or 11-20 exposure. In MWM acquisition, all MDMA-treated groups showed impairment. During reversal and shift, the PD 6-15 and PD 11-20 MDMA-treated groups were significantly impaired. Reductions in locomotor activity were most evident after PD 6-15 treatment while increases in acoustic startle were most evident after PD 1-10 treatment. After MK-801 challenge, MDMA-treated offspring showed less locomotion compared to controls. Region-specific changes in brain monoamines were also observed but were not significantly correlated with behavioural changes. The results show that PD 11-20 exposure to MDMA caused the largest long-term cognitive deficits followed by PD 6-15 exposure with PD 1-10 exposure least affected. Other effects, such as those upon MK-801-stimulated locomotion showed greatest effects after PD 1-10 MDMA exposure. Hence, each effect has a different window of developmental susceptibility.
Collapse
|
13
|
Schaefer TL, Grace CE, Skelton MR, Graham DL, Gudelsky GA, Vorhees CV, Williams MT. Neonatal citalopram treatment inhibits the 5-HT depleting effects of MDMA exposure in rats. ACS Chem Neurosci 2012; 3:12-21. [PMID: 22582138 DOI: 10.1021/cn2000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neonatal exposure to 3,4-methylenedioxymethamphetamine (MDMA) produces long-term learning and memory deficits and increased anxiety-like behavior. The mechanism underlying these behavioral changes is unknown but we hypothesized that it involves perturbations to the serotonergic system as this is the principle mode of action of MDMA in the adult brain. During development 5-HT is a neurotrophic factor involved in neurogenesis, synaptogenesis, migration, and target region specification. We have previously showed that MDMA exposure (4×10 mg/kg/day) from P11-20 (analogous to human third trimester exposure) induces ~50% decreases in hippocampal 5-HT throughout treatment. To determine whether MDMA-induced 5-HT changes are determinative, we tested if these changes could be prevented by treatment with a selective serotonin reuptake inhibitor (citalopram: CIT). In a series of experiments we evaluated the effects of different doses and dose regimens of CIT on MDMA-induced 5-HT depletions in three brain regions (hippocampus, entorhinal cortex, and neostriatum) at three time-points (P12, P16, P21) during the treatment interval (P11-20) known to induce behavioral alterations when animals are tested as adults. We found that 5 mg/kg CIT administered twice daily significantly attenuated MDMA-induced 5-HT depletions in all three regions at all three ages but that the protection was not complete at all ages. Striatal dopamine was unaffected. We also found increases in hippocampal NGF and plasma corticosterone following MDMA treatment on P16 and P21, respectively. No changes in BDNF were observed. CIT treatment may be a useful means of interfering with MDMA-induced 5-HT reductions and thus permit tests of the hypothesis that the drug's cognitive and/or anxiety effects are mediated through early disruptions to 5-HT dependent developmental processes.
Collapse
Affiliation(s)
- Tori L. Schaefer
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Curtis E. Grace
- United States Environmental Protection Agency, Durham, North Carolina 27713, United
States
| | - Matthew R. Skelton
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Devon L. Graham
- Vanderbilt University College of Medicine, Nashville, Tennessee 32732, United
States
| | - Gary A. Gudelsky
- James L. Winkle
College of Pharmacy, University of Cincinnati, Ohio 45267-0004, United States
| | - Charles V. Vorhees
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Michael T. Williams
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| |
Collapse
|
14
|
Siegel JA, Park BS, Raber J. Long-term effects of neonatal methamphetamine exposure on cognitive function in adolescent mice. Behav Brain Res 2011; 219:159-64. [PMID: 21238498 PMCID: PMC3062671 DOI: 10.1016/j.bbr.2011.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 11/21/2022]
Abstract
Exposure to methamphetamine during brain development impairs cognition in children and adult rodents. In mice, these impairments are greater in females than males. Adult female, but not male, mice show impairments in novel location recognition following methamphetamine exposure during brain development. In contrast to adulthood, little is known about the potential effects of methamphetamine exposure on cognition in adolescent mice. As adolescence is an important time of development and is relatively understudied, the aim of the current study was to examine potential long-term effects of neonatal methamphetamine exposure on behavior and cognition during adolescence. Male and female mice were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal days 11 to 20, the period of rodent hippocampal development. Behavioral and cognitive function was assessed during adolescence beginning on postnatal day 30. During the injection period, methamphetamine-exposed mice gained less weight on average compared to saline-exposed mice. In both male and female mice, methamphetamine exposure significantly impaired novel object recognition and there was a trend toward impaired novel location recognition. Anxiety-like behavior, sensorimotor gating, and contextual and cued fear conditioning were not affected by methamphetamine exposure. Thus, neonatal methamphetamine exposure affects cognition in adolescence and unlike in adulthood equally affects male and female mice.
Collapse
Affiliation(s)
- Jessica A. Siegel
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Byung S. Park
- Department of Public Health & Preventative Medicine, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Division of Neuroscience ONPRC, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
15
|
Graham DL, Grace CE, Braun AA, Schaefer TL, Skelton MR, Tang PH, Vorhees CV, Williams MT. Effects of developmental stress and lead (Pb) on corticosterone after chronic and acute stress, brain monoamines, and blood Pb levels in rats. Int J Dev Neurosci 2011; 29:45-55. [PMID: 20920575 PMCID: PMC3005021 DOI: 10.1016/j.ijdevneu.2010.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/10/2010] [Accepted: 09/24/2010] [Indexed: 12/28/2022] Open
Abstract
Despite restrictions, exposure to lead (Pb) continues. Moreover, exposure varies and is often higher in lower socioeconomic status (SES) families and remains a significant risk to cognitive development. Stress is another risk factor. Lower SES may be a proxy for stress in humans. When stress and Pb co-occur, risk may be increased. A few previous experiments have combined Pb with intermittent or acute stress but not with chronic stress. To determine if chronic developmental stress affects outcome in combination with Pb, we tested such effects on growth, organ weight, brain monoamines, and response to an acute stressor. Sprague Dawley rats were gavaged with Pb acetate (1 or 10 mg/kg) or vehicle every other day from postnatal day (P)4-29 and reared in standard or barren cages. Subsets were analyzed at different ages (P11, 19, 29). Chronic stress did not alter blood Pb levels but altered HPA axis response during early development whereas Pb did not. Pb treatment and rearing each altered organ-to-body weight ratios, most notably of thymus weights. Both Pb and rearing resulted in age- and region-dependent changes in serotonin and norepinephrine levels and in dopamine and serotonin turnover. The model introduced here may be useful for investigating the interaction of Pb and chronic developmental stress.
Collapse
Affiliation(s)
- Devon L. Graham
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Curtis E. Grace
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Amanda A. Braun
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Tori L. Schaefer
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Matthew R. Skelton
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Peter H. Tang
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Charles V. Vorhees
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| | - Michael T. Williams
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45229
| |
Collapse
|