1
|
Güntan İ, Ghestem A, Nazaruk K, Nizińska K, Olszewski M, Nowicka D, Bernard C, Łukasiuk K. Diurnal dynamics of the Zbtb14 protein in the ventral hippocampus are disrupted in epileptic mice. Neuroscience 2025; 569:12-20. [PMID: 39870297 DOI: 10.1016/j.neuroscience.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei. Western blot data indicate that the cytoplasmic and nuclear levels of Zbtb14 protein oscillate, but the phase is shifted. The densities of the Zbtb14-immunopositive cells express diurnal dynamics in the ventral hilus and CA3 but not in the dorsal hilus and CA3, or the somatosensory cortex. In the pilocarpine model of epilepsy, an increase in the level of Zbtb14 protein was found at 11 PM but not at 3 PM compared to controls. Finally, in silico analysis revealed the presence of the ZF5 motif in the promoters of 21 out of 24 genes down-regulated by epileptiform discharges in vitro, many of which are involved in neuronal plasticity. Our data suggest that Zbtb14 may be involved in the diurnal dynamic of seizure regulation or brain response to seizure rhythmicity.
Collapse
Affiliation(s)
- İlke Güntan
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Antoine Ghestem
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Kinga Nazaruk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Karolina Nizińska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Maciej Olszewski
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Dorota Nowicka
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Katarzyna Łukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Lee DS, Kim JE. PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A-PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation. Int J Mol Sci 2020; 21:ijms21062094. [PMID: 32197489 PMCID: PMC7139850 DOI: 10.3390/ijms21062094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Postsynaptic density-95 (PSD95), a major scaffolding protein, is critical in coupling N-methyl-D-aspartate receptor (NMDAR) to cellular signaling networks in the central nervous system. A couple of cysteine residues in the N-terminus of PSD95 are potential sites for disulfide bonding, S-nitrosylation and/or palmitoylation. Protein disulfide isomerase (PDI) reduces disulfide bonds (S-S) to free thiol (-SH) on various proteins. However, the involvement of PDI in disulfide bond formation/S-nitrosylation of PSD95 and its role in epilepsy are still unknown. In the present study, acute seizure activity significantly increased the bindings of PDI to NR2A, but not to PSD95, while it decreased the NR2A–PSD95 binding. In addition, pilocarpine-induced seizures increased the amount of nitrosylated (SNO-) thiols, not total (free and SNO-) thiols, on PSD95. Unlike acute seizure, spontaneous seizing rats showed the increases in PDI–PSD95 binding, total- and SNO-thiol levels on PSD95, and NR2A–PSD95 interaction. PDI siRNA effectively reduced spontaneous seizure activity with decreases in total thiol level on PSD95 and NR2A–PSD95 association. These findings indicate that PDI-mediated reduction of disulfide-bond formations may facilitate the NR2A–PSD95 binding and contribute to spontaneous seizure generation in epileptic animals.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- Correspondence: ; Tel.: +82-33-248-2522; Fax: +82-33-248-2525
| |
Collapse
|
3
|
Li X, Giri V, Cui Y, Yin M, Xian Z, Li J. LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochem Biophys Res Commun 2019; 512:79-86. [DOI: 10.1016/j.bbrc.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022]
|
4
|
Dai H, Wang P, Mao H, Mao X, Tan S, Chen Z. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway. Cell Cycle 2019; 18:226-237. [PMID: 30595095 PMCID: PMC6343729 DOI: 10.1080/15384101.2018.1562286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022] Open
Abstract
Dynorphins act as endogenous anticonvulsants via activation of kappa opioid receptor (KOR). However, the mechanism underlying the anticonvulsant role remains elusive. This study aims to investigate whether the potential protection of KOR activation by dynorphin against epilepsy was associated with the regulation of PI3K/Akt/Nrf2/HO-1 pathway. Here, a pilocarpine-induced rat model of epilepsy and Mg2+-free-induced epileptiform hippocampal neurons were established. Decreased prodynorphin (PDYN) expression, suppressed PI3K/Akt pathway, and activated Nrf2/HO-1 pathway were observed in rat epileptiform hippocampal tissues and in vitro neurons. Furthermore, dynorphin activation of KOR alleviated in vitro seizure-like neuron injury via activation of PI3K/Akt/Nrf2/HO-1 pathway. Further in vivo investigation revealed that PDYN overexpression by intra-hippocampus injection of PDYN-overexpressing lentiviruses decreased hippocampal neuronal apoptosis and serum levels of inflammatory cytokines and malondialdehyde (MDA) content, and increased serum superoxide dismutase (SOD) level, in pilocarpine-induced epileptic rats. The protection of PDYN in vivo was associated with the activation of PI3K/Akt/Nrf2/HO-1 pathway. In conclusion, dynorphin activation of KOR protects against epilepsy and seizure-induced brain injury, which is associated with activation of the PI3K/Akt/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hongmei Dai
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peipei Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huafang Mao
- Department of Child Hygiene, Maternal and Child Health Hospital of Longhua District of Shenzhen City, ShenZhen, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Shan Tan
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Geng JF, Liu X, Zhao HB, Fan WF, Geng JJ, Liu XZ. LncRNA UCA1 inhibits epilepsy and seizure-induced brain injury by regulating miR-495/Nrf2-ARE signal pathway. Int J Biochem Cell Biol 2018; 99:133-139. [DOI: 10.1016/j.biocel.2018.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
|
6
|
Ku T, Chen M, Li B, Yun Y, Li G, Sang N. Synergistic effects of particulate matter (PM 2.5) and sulfur dioxide (SO 2) on neurodegeneration via the microRNA-mediated regulation of tau phosphorylation. Toxicol Res (Camb) 2017; 6:7-16. [PMID: 30090473 PMCID: PMC6060696 DOI: 10.1039/c6tx00314a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Because air pollution is a complex mixture of pollutants consisting of both particulate and gaseous components, understanding the health risks from these pollutants requires an evaluation of their combined effects rather than predictions based on the toxicities of single chemicals alone. Particulate matter (PM2.5) and sulfur dioxide (SO2) commonly co-exist in the atmospheric environment, and epidemiological studies have linked air pollution to the development of neurodegenerative disorders, in addition to increased morbidity from cardiopulmonary diseases. However, few studies have examined the potential effects from combinations of these pollutants on neurodegeneration, especially at NOEC doses. In the present study, we first found that PM2.5 and SO2 co-exposure leads to neurodegeneration at low doses, including neuronal apoptosis, the reduction of synaptic structural protein postsynaptic density (PSD-95) and synaptic functional protein N-methyl-d-aspartate (NMDA) receptor subunits (NR2B), and the elevation of tau phosphorylation in vitro and in vivo, which did not induce clear effects when the compounds were tested separately. Furthermore, we clarified that the microRNA (miRNA) miR-337-5p, which is homologous to a human miRNA that targets tau, was involved in the combined effect and contributed to synergistic neurodegeneration. This work implies the potential risk of neuronal dysfunction from the co-existence of PM2.5 and SO2 in coal-burning areas and provides new insights into the molecular markers for the relevant diseases.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| | - Minjun Chen
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| | - Ben Li
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| | - Yang Yun
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| | - Guangke Li
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| | - Nan Sang
- College of Environment and Resource , Research Center of Environment and Health , Shanxi University , Taiyuan , Shanxi , 030006 PR China . ; ; Tel: +86-351-7011932
| |
Collapse
|
7
|
Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res 2011; 1417:87-102. [PMID: 21907327 DOI: 10.1016/j.brainres.2011.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 01/28/2023]
|
8
|
Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011; 8:52. [PMID: 21595886 PMCID: PMC3114764 DOI: 10.1186/1742-2094-8-52] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/19/2011] [Indexed: 02/04/2023] Open
Abstract
Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS) may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, New York, USA
| | | | | | | | | | | | | |
Collapse
|