1
|
Heydari B, Mashayekhi F, Kashani MHG. Effect of in ovo feeding of folic acid on Disabled-1 and gga-miR-182-5p expression in the cerebral cortex of chick embryo. J Anim Physiol Anim Nutr (Berl) 2024; 108:285-290. [PMID: 37814386 DOI: 10.1111/jpn.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Folate (vitamin B9) has been shown to reduce the prevalence of neural tube defects (NTDs). Many genes comprising Disabled-1 (DAB1) and miRNAs have been shown to play important role in normal brain development. Reelin-signalling has been shown to play key role in regulating of neuronal migration during brain development. The aim of this study was to evaluate the effects of in ovo administration of folic acid (FA) on DAB1 and gga-miR-182-5p expression in the cerebral cortex of chick embryo. A total number of 30 hatching eggs were used in this study. The number of 10 eggs were injected into the yolk sac with FA (150 µg/egg), 10 eggs by normal saline (sham group) on embryonic day 11 and 10 eggs were left without injection as control. Then the cerebral cortices were collected on E19 and the expression of DAB1 and gga-miR-182-5p was studied by Real-Time PCR. The results showed that DAB1 expression in the cerebral cortex of FA-treated, sham and control were 2.51 ± 0.13, 1.01 ± 0.04 and 1.03 ± 0.04 fold changes, respectively, and this amount for gga-miR-182-5p were 0.54 ± 0.03, 1.09 ± 0.07 and 1.00 ± 0.06-fold change respectively. Statistical analysis showed that there is a significant increase in DAB1 and a decrease in gga-miR-182-5p expression in FA injected cerebral cortex as compared either with either SHAM or control (p < 0.0001). But, no significant change in DAB1 and gga-miR-182-5p expression was observed between sham and the control group (p = 0.99 and p = 0.57 respectively). It is concluded that in ovo feeding of FA increases DAB1 and decreases gga-miR-182-5p expression in the developing chick cerebral cortex.
Collapse
Affiliation(s)
- Behnaz Heydari
- Department of Cellular and Molecular Biology, Damghan University, Damghan, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
2
|
Silveira JS, Ramires Júnior OV, Schmitz F, Ferreira FS, Rodrigues FC, Silva RC, Savio LEB, Wyse ATS. Folic acid supplementation during pregnancy alters behavior in male rat offspring: nitrative stress and neuroinflammatory implications. Mol Neurobiol 2022; 59:2150-2170. [PMID: 35044624 DOI: 10.1007/s12035-022-02724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
Pregnancy diet can impact offspring's neurodevelopment, metabolism, redox homeostasis, and inflammatory status. In pregnancy, folate demand is increased due to the requirement for one-carbon transfer reactions. The present study was proposed to investigate the effect of folic acid supplementation throughout pregnancy on a battery of behavior tests (olfactory preference, motor activity, exploratory capacity, habituation, memory, anxiety- and depression-like behavior). Redox homeostasis and neuroinflammatory status in cerebral cortex were also investigated. After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy impaired memory and motricity of the offspring when compared with control (standard diet). It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrite levels increased in cerebral cortex of the offspring, when compared to control group. In contrast, iNOS expression and immunocontent were not altered. Moreover, we identify an increase in TNF-α, IL-1β, IL-6, IL-10, and MCP-1 gene expression in the cerebral cortex. In conclusion, our study showed that the supplemented diet with 4 mg/kg diet of folic acid throughout pregnancy may cause behavioral and biochemical changes in the male offspringGraphical abstract After pregnancy confirmation, the pregnant rats were randomly divided into two groups, according to the diet: group 1, (control) standard diet (2 mg/kg diet of folic acid) and group 2, supplemented diet with 4 mg/kg diet of folic acid. Throughout the gestational period, the pregnant rats received experimental diets. Results show that folic acid supplementation did not impair the mother-pup relationship. We showed that supplemented diet with 4 mg/kg diet of folic acid during pregnancy impairs memory and motricity of the offspring when compared with standard diet. It was also observed an increase in anxiety- and depression-like behavior in this group. Nitrative stress and neuroinflammation parameters were increased in the cerebral cortex of the offspring. ROS, reactive oxygen species.
Collapse
Affiliation(s)
- Josiane Silva Silveira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção E Doenças Metabólicas (Wyse's Lab), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Osmar Vieira Ramires Júnior
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção E Doenças Metabólicas (Wyse's Lab), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção E Doenças Metabólicas (Wyse's Lab), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção E Doenças Metabólicas (Wyse's Lab), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035003, Brazil
| | - Fabiana Cristina Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Robson Coutinho Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Neuroproteção E Doenças Metabólicas (Wyse's Lab), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035003, Brazil.
| |
Collapse
|
3
|
Behere RV, Deshpande G, Bandyopadhyay SK, Yajnik C. Maternal vitamin B 12, folate during pregnancy and neurocognitive outcomes in young adults of the Pune Maternal Nutrition Study (PMNS) prospective birth cohort: study protocol. BMJ Open 2021; 11:e046242. [PMID: 34551940 PMCID: PMC8461273 DOI: 10.1136/bmjopen-2020-046242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that intrauterine and early life exposures significantly influence fetal development and risk for disease in later life. Evidence from prospective birth cohorts suggests a role for maternal B12 and folate in influencing neurocognitive outcomes in the offspring. In the Indian setting, B12 deficiency is common during the pregnancy while rates of folate deficiency are lower. The long-term influences of maternal nutrition during the pregnancy on adult neurocognitive outcomes have not been examined. The Pune Maternal Nutrition Study (PMNS) is a preconceptional birth cohort into its 24th year and is considered a unique resource to study the DOHaD hypothesis. We found an association between maternal B12 status in pregnancy and child's neurocognitive status at 9 years of age. We now plan to assess neurocognitive function and MRI measurements of brain structural-functional connectivity at young adult age to study its association with maternal nutritional exposures during the pregnancy. METHODS AND ANALYSIS As part of ongoing prospective follow-up in young adults of the PMNS at the Diabetes Unit, KEM Hospital Research Center, Pune India, the following measurements will be done: neurocognitive performance (Standardised Tests of Intelligence, Verbal and Visual Memory, Attention and Executive Functions), temperament (Adult Temperament Questionnaire), psychopathology (Brief Symptom Inventory and Clinical Interview on Mini Neuropsychiatric Interview 7.0). Brain MRI for structural T1, resting-state functional connectivity and diffusion tensor imaging will be performed on a subset of the cohort (selected based on exposure to a lower or higher maternal B12 status at 18 weeks of pregnancy). ETHICS AND DISSEMINATION The study is approved by Institutional ethics committee of KEM Hospital Research Center, Pune. The results will be shared at national and international scientific conferences and published in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT03096028.
Collapse
Affiliation(s)
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
| | | | | |
Collapse
|
4
|
Deniz BF, Confortim HD, Miguel PM, Bronauth L, Fernandes IR, Muotri AR, Pereira LO. High gestational folic acid supplementation prevents hypoxia-ischemia-induced caspase-3 augmenting without changing synapsin and H3 methylation levels in the rat hippocampus. Int J Dev Neurosci 2021; 81:510-519. [PMID: 34021639 DOI: 10.1002/jdn.10132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022] Open
Abstract
Perinatal asphyxia is a peripartum event that can cause permanent sequelae to the newborns, affecting the brain development. Recently, it has been demonstrated that epigenetics mechanisms play an important role in this injury and that folic acid (FA) supplementation during pregnancy can affect these epigenetics modifications as well as gene expression. We have identified both positive and negative effects of FA treatment in rats submitted to a model of neonatal hypoxia-ischemia (HI). Considering that FA supplementation is already used in pregnant women and that HI occurs in the peripartum period, this study was designated to evaluate how gestational FA supplementation and neonatal HI affect: apoptosis (caspase-3) and expression of synaptic proteins (synapsin and PSD-95) and the methylation of histone H3 lysine (K) 4 and 27 in the rat hippocampus. Pregnant Wistar rats were divided according to the diets: standard (SD), supplemented with 2 mg/kg of FA or with 20 mg/kg of FA. HI procedure was performed at the 7th PND. Protein expression and H3 methylation were evaluated at the 60th PND in the rats' hippocampus. Neonatal HI increased caspase-3 expression decreased synapsin expression and reduced H3K4me2, -me3 and H3K27me2, -me3 in the ipsilateral hippocampus. FA only prevented the augment in caspase-3 expression. In conclusion, neonatal HI caused lasting effects on caspase-3-mediated cell death (prevented by the FA) and synaptic proteins in the rats' hippocampus. This is the first study to show that histone modifications may contribute to these pathological findings in the hippocampus of HI animals.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Isabela R Fernandes
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Garcez ML, Mina F, Bellettini-Santos T, Ribeiro FM, Ghisi Frassetto AZ, Batista-Silva H, da Luz AP, Schiavo GL, Medeiros EB, Zabot GC, Canever L, Zugno AI, Budni J. Folic Acid Supplementation in the Gestational Phase of Female Rats Improves Age-Related Memory Impairment and Neuroinflammation in Their Adult and Aged Offspring. J Gerontol A Biol Sci Med Sci 2021; 76:991-995. [PMID: 33249457 DOI: 10.1093/gerona/glaa298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/12/2022] Open
Abstract
Folic acid (FA) supplementation is important during pregnancy to avoid malformations in the offspring. However, it is unknown if it can affect the offspring throughout their lives. To evaluate the offspring, female mother rats (dams) were separated into 5 groups: Four groups received the AIN-93 diet, divided into control and FA (5, 10, and 50 mg/kg), and an additional group received a FA-deficient diet, and the diet was performed during pregnancy and lactation. We evaluated the female offspring of these dams (at 2 and 18 months old). The aged offspring fed with FA-deficient diet presented habituation, spatial and aversive memory impairment and the FA maternal supplementation prevented this. The natural aging caused an increase in the TNF-α and IL-1β levels in the hippocampus from 18-month-old offspring. FA maternal supplementation was able to prevent the increase of these cytokines. IL-4 levels decreased in the prefrontal cortex from aged control rats and FA prevented it. FA deficiency decreased the levels of IL-4 in the hippocampus of the young offspring. In addition, natural aging and FA deficiency decreased brain-derived neurotrophic factor levels in the hippocampus and nerve growth factor levels in the prefrontal cortex and FA supplementation prevented it. Thus, the present study shows for the first time the effect of FA maternal supplementation on memory, cytokines, and neurotrophins in the aged offspring.
Collapse
Affiliation(s)
- Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Francielle Mina
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Tatiani Bellettini-Santos
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fernanda Melo Ribeiro
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | | | - Hemily Batista-Silva
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Aline Pereira da Luz
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo Luiz Schiavo
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduarda Behenck Medeiros
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriel Casagrande Zabot
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra Ioppi Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Josiane Budni
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
6
|
Jadhav A, Khaire A, Gundu S, Wadhwani N, Chandhiok N, Gupte S, Joshi S. Placental neurotrophin levels in gestational diabetes mellitus. Int J Dev Neurosci 2021; 81:352-363. [PMID: 33783008 DOI: 10.1002/jdn.10107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Neurotrophins are known to influence the development and maturation of the feto-placental unit and affect fetal growth trajectories. This study reports the levels of nerve growth factor (NGF) and brain-derived growth factor (BDNF) in the placenta of women with gestational diabetes mellitus (GDM). METHODS A total number of 60 women with GDM and 70 women without GDM (non-GDM) were included in the study. Placental NGF and BDNF levels were measured using commercially available ELISA kits. RESULTS Placental NGF levels were lower (p < .05) in women with GDM compared to non-GDM women. Maternal body mass index (BMI), mode of delivery, and the gender of the baby influenced the placental NGF levels. Placental BDNF levels were similar in GDM and non-GDM women. There was an influence of baby gender on the placental BDNF levels while maternal BMI and mode of delivery did not show any effect. In regression models adjusted for maternal age at delivery, gestational age, maternal BMI, mode of delivery, and baby gender, the placental NGF levels in the GDM group were lower (-0.144 pg/ml [95% CI -0.273, 22120.016] p = .028) as compared to the non-GDM group. However, there was no difference in the BDNF levels between the groups. CONCLUSION This study for the first time demonstrates differential effects on neurotrophic factors such as BDNF and NGF in the placenta in pregnancies complicated by GDM. Alterations in the levels of placental neurotrophins in GDM deliveries may affect placental development and fetal brain growth. This has implications for increased risk for neurodevelopmental pathologies in later life.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Shridevi Gundu
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Nisha Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| | - Nomita Chandhiok
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research (ICMR), New Delhi, India
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune, India
| |
Collapse
|
7
|
Behavioral changes and brain epigenetic alterations induced by maternal deficiencies of B vitamins in a mouse model. Psychopharmacology (Berl) 2021; 238:1213-1222. [PMID: 33496816 DOI: 10.1007/s00213-021-05766-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
RATIONALE B vitamins play essential roles in brain development and functionality; however, the effects of their deficiency during early life on mental health are not thoroughly understood. OBJECTIVES The objective of this study is to investigate the effects of a maternal deficiency of vitamin B6, B9 (folate), and B12 on behavioral changes in adult offspring. METHODS Female C57BL/6 J mice were put on a diet lacking vitamin B6, B9, B12, or the above three vitamins from pregnancy to weaning. The growth and developmental characteristics of both the pregnant mothers and offspring were collected. In the adult offspring, the serum levels of neuroactive substances were measured using an enzyme-linked immunosorbent assay. The level of BDNF and dimethylated lysine 9 on histone H3 (H3K9me2) was detected by immunohistochemical staining. In addition, their depressive-like behaviors, anxiety-like behaviors, and sociability were recorded using sucrose preference, a forced swim, social interaction, tail suspension, and open field tests. RESULTS The maternal deficiency of the three B vitamins delayed offspring development. Compared to the controls, all of the groups showed decreased serum levels of 5-HT and neuropeptide Y. In the groups with deficiency of B9 or the three B vitamins, there were significant changes in sociability and social novelty preference. In groups with deficiencies in B9, B12, or all three B vitamins, the expression levels of BDNF and H3K9me2 in the hippocampus were significantly decreased. CONCLUSIONS Maternal deficiencies of the major B vitamins caused changes in social behaviors in adult mice accompanied with epigenetic alterations in the brain and changes in the serum levels of neuroactive substances.
Collapse
|
8
|
The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9-12 Vitamins. Int J Mol Sci 2020; 21:ijms21218008. [PMID: 33126444 PMCID: PMC7662762 DOI: 10.3390/ijms21218008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon’s Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.
Collapse
|
9
|
Pujol N, Mané A, Bergé D, Mezquida G, Amoretti S, Pérez L, González-Pinto A, Barcones F, Cuesta MJ, Sánchez-Tomico G, Vieta E, Castro-Fornieles J, Bernardo M, Parellada M. Influence of BDNF and MTHFR polymorphisms on hippocampal volume in first-episode psychosis. Schizophr Res 2020; 223:345-352. [PMID: 32988741 DOI: 10.1016/j.schres.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/26/2020] [Accepted: 08/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The BDNF and MTHFR genes are independently linked to the pathogenesis of schizophrenia and its neuroimaging correlates. The aim of this study was to explore, for the first time, the individual and interactional effects of the Val66Met and C677T polymorphisms on hippocampal atrophy in first-episode psychosis (FEP). METHOD Multi-site case-control study based on clinical, genetic (rs 6265, rs 1801133) and structural magnetic resonance imaging data from 98 non-affective FEP patients and 117 matched healthy controls (HC). Hippocampal volume was estimated using FreeSurfer software and this volume was compared between diagnostic (FEP vs HC) and genotype (Val66Met, C677T) groups. The BDNF Val66Met x MTHFR C677T effect on hippocampal volume was further evaluated through stratified analyses. RESULTS After applying Bonferroni correction, diagnosis showed a significant effect for adjusted left and right hippocampal volume (FEP < HC). Stratified analyses showed that the interactive effect contributed to adjusted hippocampal size in both the HC (left and right hippocampus) and FEP groups (right hippocampus); among BDNF Met carriers, those with the CT-TT genotype exhibited decreased hippocampal volume compared to individuals with the homozygous normal CC genotype. CONCLUSIONS Our results provide preliminary evidence indicating that the Val66Met x C677T interaction may be a potential genetic risk factor for reduced hippocampal size in both healthy controls and in patients with FEP. Further research in independent samples including different ethnic groups is warranted to confirm this new finding.
Collapse
Affiliation(s)
- Nuria Pujol
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - Anna Mané
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Daniel Bergé
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Gisela Mezquida
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Lucía Pérez
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana González-Pinto
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Servicio de Psiquiatría, Hospital Santiago, OSI Araba, Vitoria-Gasteiz, Spain
| | - Fe Barcones
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Department of Family Medicine, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Georgina Sánchez-Tomico
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eduard Vieta
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Bipolar Disorder Unit, Institute of Neurosciences, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Josefina Castro-Fornieles
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry and Psychology Department, 2017SGR881, Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
10
|
Raja GL, Lite C, Subhashree KD, Santosh W, Barathi S. Prenatal bisphenol-A exposure altered exploratory and anxiety-like behaviour and induced non-monotonic, sex-specific changes in the cortical expression of CYP19A1, BDNF and intracellular signaling proteins in F1 rats. Food Chem Toxicol 2020; 142:111442. [DOI: 10.1016/j.fct.2020.111442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
|
11
|
Murray LK, Smith MJ, Jadavji NM. Maternal oversupplementation with folic acid and its impact on neurodevelopment of offspring. Nutr Rev 2019; 76:708-721. [PMID: 30010929 DOI: 10.1093/nutrit/nuy025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Folic acid, a B vitamin, is vital for early neurodevelopment and is well known for its protective effect against neural tube defects. Various national health agencies worldwide recommend that women of childbearing age take approximately 0.4 to 1 mg of supplemental folic acid daily to reduce the risk of neural tube defects in offspring. Several countries have tried to promote folic acid intake through mandatory fortification programs to reduce neural tube defects. Supplementation combined with mandatory fortification of foods has led to high levels of folic acid and related metabolites in women of childbearing age. Recent studies have reported that oversupplementation, defined as exceeding either the recommended dietary allowance or the upper limit of the daily reference intake of folic acid, may have negative effects on human health. This review examines whether maternal oversupplementation with folic acid affects the neurodevelopment of offspring. Data from animal studies suggest there are behavioral, morphological, and molecular changes in the brain of offspring. Additional studies are required to determine both the dosage of folic acid and the timing of folic acid intake needed for optimal neurodevelopment in humans.
Collapse
Affiliation(s)
- Lauren K Murray
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Mark J Smith
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | | |
Collapse
|
12
|
McKee SE, Reyes TM. Effect of supplementation with methyl-donor nutrients on neurodevelopment and cognition: considerations for future research. Nutr Rev 2019; 76:497-511. [PMID: 29701796 DOI: 10.1093/nutrit/nuy007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pregnancy represents a critical period in fetal development, such that the prenatal environment can, in part, establish a lifelong trajectory of health or disease for the offspring. Poor nutrition (macro- or micronutrient deficiencies) can adversely affect brain development and significantly increase offspring risk for metabolic and neurological disease development. The concentration of dietary methyl-donor nutrients is known to alter DNA methylation in the brain, and alterations in DNA methylation can have long-lasting effects on gene expression and neuronal function. The decreased availability of methyl-donor nutrients to the developing fetus in models of poor maternal nutrition is one mechanism hypothesized to link maternal malnutrition and disease risk in offspring. Animal studies indicate that supplementation of both maternal and postnatal (early- and later-life) diets with methyl-donor nutrients can attenuate disease risk in offspring; however, clinical research is more equivocal. The objective of this review is to summarize how specific methyl-donor nutrient deficiencies and excesses during pre- and postnatal life alter neurodevelopment and cognition. Emphasis is placed on reviewing the current literature, highlighting challenges within nutrient supplementation research, and considering potential strategies to ensure robust findings in future studies.
Collapse
Affiliation(s)
- Sarah E McKee
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa M Reyes
- Department of Psychiatry and Behavioral Neurosciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Arutjunyan AV, Evsyukova II, Polyakova VO. The Role of Melatonin in Morphofunctional Development of the Brain in Early Ontogeny. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Naninck EFG, Stijger PC, Brouwer-Brolsma EM. The Importance of Maternal Folate Status for Brain Development and Function of Offspring. Adv Nutr 2019; 10:502-519. [PMID: 31093652 PMCID: PMC6520042 DOI: 10.1093/advances/nmy120] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Abstract
The importance of an adequate periconceptional maternal folate status to prevent fetal neural tube defects has been well demonstrated and resulted in the recommendation for women to use folic acid supplements during the periconception period. The importance of maternal folate status for offspring neurodevelopment and brain health is less well described. We reviewed the current evidence linking maternal folate status before conception and during pregnancy with neurodevelopment and cognition of the offspring. We discuss both animal and human studies. Preclinical research revealed the importance of maternal folate status for several key processes required for normal neurodevelopment and brain functioning in the offspring, including DNA synthesis, regulation of gene expression, synthesis of phospholipids and neurotransmitters, and maintenance of healthy plasma homocysteine concentrations. Human observational studies are inconclusive; about half have shown a positive association between maternal folate status and cognitive performance of offspring. Whereas some studies suggest a positive association between maternal folate intake and cognition of offspring during childhood, data from interventional studies are too limited to conclude that there is a direct effect. Future preclinical studies are needed to help us characterize the behavioral effects, understand the underlying mechanisms, and to establish an optimal dosage and time window of folate supplementation. Moreover, more conclusive data from well-designed human observational studies and randomized controlled trials are needed to determine whether current recommendations for folic acid supplementation during pregnancy cover the needs for normal cognitive development in the offspring.
Collapse
Affiliation(s)
- Eva F G Naninck
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain plasticity group, University of Amsterdam, Amsterdam, Netherlands
| | - Pascalle C Stijger
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands,Address correspondence to EMB-B (e-mail: )
| |
Collapse
|
15
|
Muñoz-Rodríguez JR, Agarrado A, Martín-Fernández J, Salas E, González-Martín C, Alguacil LF. Cocaine and amphetamine regulated transcript and brain-derived neurotrophic factor in morbid obesity. One-year follow-up after gastric bypass. Surg Obes Relat Dis 2018; 14:1732-1739. [PMID: 30274741 DOI: 10.1016/j.soard.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Andrea Agarrado
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; University Hospital of Jerez, SAS, Jerez de la Frontera, Cádiz, Spain
| | | | - Elisabet Salas
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain
| | - Carmen González-Martín
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; School of Pharmacy, San Pablo CEU University, Boadilla, Madrid, Spain
| | - Luis F Alguacil
- University General Hospital of Ciudad Real, SESCAM, Ciudad Real, Spain; School of Pharmacy, San Pablo CEU University, Boadilla, Madrid, Spain
| |
Collapse
|
16
|
Deniz BF, Confortim HD, Deckmann I, Miguel PM, Bronauth L, de Oliveira BC, Vieira MC, Dos Santos TM, Bertó CG, Hartwig J, Wyse ÂTDS, Pereira LO. Gestational folic acid supplementation does not affects the maternal behavior and the early development of rats submitted to neonatal hypoxia-ischemia but the high supplementation impairs the dam's memory and the Na +, K + - ATPase activity in the pup's hippocampus. Int J Dev Neurosci 2018; 71:181-192. [PMID: 30315904 DOI: 10.1016/j.ijdevneu.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Folic acid (FA) is a B-complex vitamin important to the development of the fetus, being supplemented during pregnancy. Our recent findings showed that gestation supplementation (normal and excess doses) prevented the cognitive deficits and BDNF imbalance in adult rats that were submitted to neonatal hypoxia-ischemia (HI). To better understand this protective effect, the present study aimed to evaluate whether FA supplementation could be related to (1) maternal behavior, memory and Na+, K+ - ATPase activity in the hippocampus of the dams; (2) on somatic growth, early neurobehavioral development and Na+, K+ - ATPase activity in the hippocampus of the offspring; and (3) the effects of this supplementation in pups submitted to neonatal HI. Pregnant Wistar rats were divided into three groups, according to the diet they received during gestation: standard diet (SD), supplemented with 2 mg/kg of FA (FA2 - normal dose) and supplemented with 20 mg/kg of FA (FA20 -excessive dose). At the 7th PND pups were submitted to the Levine-Vannucci model of HI. During weaning the maternal behavior, the somatic growth and the neurobehavior development of pups were assessed. After weaning, the memory of the dams (by the Ox-maze task) and the Na+, K+ - ATPase activity in the hippocampus of both dams and offspring were evaluated. Considering the dams (1), both doses of FA did not alter the maternal behavior or the Na+, K+ - ATPase activity in the hippocampus, but a memory deficit was observed in the high FA-supplemented mothers. Considering the offspring (2), both FA doses did not affect the somatic growth or the neurobehavior development, but the FA20 pups had a decreased Na+, K+ - ATPase activity in the hippocampus. The FA supplementation did not change the parameters evaluated in the HI rats (3) and did not prevent the decreased Na+, K+ - ATPase activity in the hippocampus of the HI pups. These results indicate that normal FA supplementation dose does not influence the maternal behavior and memory and does not impact on the offspring early development in rats. Further studies are needed to confirm the effects of the high FA supplementation dose in the dams' memory and in the Na+, K+ - ATPase activity in the hippocampus of the offspring.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Iohanna Deckmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carolina Gessinger Bertó
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Josiane Hartwig
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ângela Terezinha de Souza Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Canever L, Freire TG, Mastella GA, Damázio L, Gomes S, Fachim I, Michels C, Carvalho G, Godói AK, Peterle BR, Gava FF, Valvassori SS, Budni J, Quevedo J, Zugno AI. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:52-64. [PMID: 29782958 DOI: 10.1016/j.pnpbp.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
A deficiency of maternal folic acid (FA) can compromise the function and development of the brain, and may produce a susceptibility to diseases such as schizophrenia (SZ) in the later life of offspring. The aim of this study was to evaluate the effects of both FA deficient and FA supplemented diets during gestation and lactation on behavioural parameters, the markers of oxidative stress and neurotrophic factors in adult offspring which had been subjected to an animal model of SZ. Female mother rats (Dam's) were separated into experimental maternal groups, which began receiving a special diet (food) consisting of the AIN-93 diet, a control diet, or an FA deficient diet during the periods of pregnancy and lactation. Dam's receiving the control diet were further subdivided into four groups: one group received only control diet, while three groups to receive supplementation with FA at different doses (5, 10 and 50 mg/kg). Adult offspring bred from the Dam's were divided into ten groups for induction of the animal model of SZ through the administration of ketamine (Ket) (25 mg/kg). After the last administration of the drug, the animals were subjected to the behavioural tests and were then euthanized. The frontal cortex (FC) and hippocampus (Hip) were then dissected for later biochemical analysis. Our data demonstrates that Ket induced the model of SZ by altering the behavioural parameters (e.g. hyperlocomotion, social impairment, deficits in the sensory-motor profile and memory damage in the adult animals); and also caused changes in the parameters of oxidative stress (lipid hydroperoxide - LPO; 8-isoprostane - 8-ISO; 4-hydroxynonenal - 4-HNE; protein carbonyl content; superoxide dismutase - SOD and catalase - CAT) as well as in the levels of neurotrophic factors (brain-derived neurotrophic factor - BDNF and nerve growth factor - NGF) particularly within the FC of adult offspring. A deficiency in maternal FA, alone or in combination with ket, was able to induce hyperlocomotion and social impairment in the offspring with increased levels of lipid and protein damage (LPO, 8-ISO, 4-HNE, carbonylation of protein) within the FC, increased activity of antioxidant enzymes (SOD and CAT) in both of the brain structures studied, and also reduced the levels of neurotrophins (BDNF and NGF), particularly within the Hip of the adult offspring. Supplementation of FA (5, 10 and 50 mg/kg) to the Dam's was mostly able to prevent the cognitive damage which was induced by Ket in the adult animals. FA (10 and 50 mg/kg) attenuated the action of Ket in the animals in relation to the biochemical parameters, proving the possible neuroprotective effect of FA in the adulthood of offspring that were subjected to the animal model of SZ. Our study indicates that the intake of maternal FA during pregnancy and lactation plays an important role, particularly in the regulation of markers of oxidative stress and neurotrophins.
Collapse
Affiliation(s)
- L Canever
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - T G Freire
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G A Mastella
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - L Damázio
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S Gomes
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - I Fachim
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - C Michels
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G Carvalho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - A K Godói
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - B R Peterle
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - F F Gava
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S S Valvassori
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Budni
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - A I Zugno
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Deniz BF, Confortim HD, Deckmann I, Miguel PM, Bronauth L, de Oliveira BC, Barbosa S, Cechinel LR, Siqueira IR, Pereira LO. Folic acid supplementation during pregnancy prevents cognitive impairments and BDNF imbalance in the hippocampus of the offspring after neonatal hypoxia-ischemia. J Nutr Biochem 2018; 60:35-46. [PMID: 30064014 DOI: 10.1016/j.jnutbio.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022]
Abstract
Folic acid (FA) supplementation (400 μg/day) has been recommended during pregnancy to prevent neural tube defects. However, in some countries, flours are required to be fortified with FA, possibly increasing the levels of this vitamin in pregnant women. Our previous studies have evidenced a dual effect of the FA treatment in a rat model of neonatal hypoxia-ischemia (HI). Aiming to better correlate with humans, this paper evaluated the effects of two different levels of FA supplementation during pregnancy on memory parameters and neuronal survival and plasticity in the hippocampus of rats submitted to the neonatal HI. During pregnancy, female Wistar rats received one of these diets: standard (SD), supplemented with 2 mg/kg of FA or with 20 mg/kg of FA. At the 7th PND, rats suffered the HI procedure. At the 60th PND rats were evaluated in the open field, Morris water maze, novel-object recognition and inhibitory avoidance tasks. Furthermore, neuronal density, synaptophysin densitometry and BDNF concentration were assessed in the hippocampus. Both doses of FA prevented the HI-induced memory impairments. The supplementation reversed the BDNF late increase in the hippocampus of the HI rats, but did not inhibit the neuronal death. In conclusion, FA supplementation during pregnancy prevented memory deficits and BDNF imbalance after neonatal HI. These findings are particularly relevant because neuroprotection was achieved even in the high level of FA supplementation during pregnancy, indicating that this intervention would be considered secure for the offspring development.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Iohanna Deckmann
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Sílvia Barbosa
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 320, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 320, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Netto CA, Sanches EF, Odorcyk F, Duran-Carabali LE, Sizonenko SV. Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int J Dev Neurosci 2018; 70:12-24. [PMID: 29920306 DOI: 10.1016/j.ijdevneu.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal brain Hypoxia-Ischemia (HI) is one of the major causes of infant mortality and lifelong neurological disabilities. The knowledge about the physiopathological mechanisms involved in HI lesion have increased in recent years, however these findings have not been translated into clinical practice. Current therapeutic approaches remain limited; hypothermia, used only in term or near-term infants, is the golden standard. Epidemiological evidence shows a link between adverse prenatal conditions and increased risk for diseases, health problems, and psychological outcomes later in life, what makes pregnancy a relevant period for preventing future brain injury. Here, we review experimental literature regarding preventive interventions used during pregnancy, i.e., previous to the HI injury, encompassing pharmacological, nutritional and/or behavioral strategies. Literature review used PubMed database. A total of forty one studies reported protective properties of maternal treatments preventing perinatal hypoxia-ischemia injury in rodents. Pharmacological agents and dietary supplementation showed mainly anti-excitotoxicity, anti-oxidant or anti-apoptotic properties. Interestingly, maternal preconditioning, physical exercise and environmental enrichment seem to engage the same referred mechanisms in order to protect neonatal brain against injury. This construct must be challenged by further studies to clearly define the main mechanisms responsible for neuroprotection to be explored in experimental context, as well as to test their potential in clinical settings.
Collapse
Affiliation(s)
- C A Netto
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - F Odorcyk
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - L E Duran-Carabali
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112:308-317. [PMID: 28790013 PMCID: PMC5629005 DOI: 10.1016/j.freeradbiomed.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023]
Abstract
Zebrafish (Danio rerio) are a recognized model for studying the pathogenesis of cognitive deficits and the mechanisms underlying behavioral impairments, including the consequences of increased oxidative stress within the brain. The lipophilic antioxidant vitamin E (α-tocopherol; VitE) has an established role in neurological health and cognitive function, but the biological rationale for this action remains unknown. In the present study, we investigated behavioral perturbations due to chronic VitE deficiency in adult zebrafish fed from 45 days to 18-months of age diets that were either VitE-deficient (E-) or VitE-sufficient (E+). We hypothesized that E- zebrafish would display cognitive impairments associated with elevated lipid peroxidation and metabolic disruptions in the brain. Quantified VitE levels at 18-months in E- brains (5.7 ± 0.1 nmol/g tissue) were ~20-times lower than in E+ (122.8 ± 1.1; n = 10/group). Using assays of both associative (avoidance conditioning) and non-associative (habituation) learning, we found E- vs E+ fish were learning impaired. These functional deficits occurred concomitantly with the following observations in adult E- brains: decreased concentrations of and increased peroxidation of polyunsaturated fatty acids (especially docosahexaenoic acid, DHA), altered brain phospholipid and lysophospholipid composition, as well as perturbed energy (glucose/ketone), phosphatidylcholine and choline/methyl-donor metabolism. Collectively, these data suggest that chronic VitE deficiency leads to neurological dysfunction through multiple mechanisms that become dysregulated secondary to VitE deficiency. Apparently, the E- animals alter their metabolism to compensate for the VitE deficiency, but these compensatory mechanisms are insufficient to maintain cognitive function.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Kathy Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
21
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
22
|
Paternal spatial training enhances offspring's cognitive performance and synaptic plasticity in wild-type but not improve memory deficit in Alzheimer's mice. Sci Rep 2017; 7:1521. [PMID: 28484240 PMCID: PMC5431522 DOI: 10.1038/s41598-017-01811-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny’s spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers’ and the offspring’s hippocampus, and as well as in the fathers’ sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring’s cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.
Collapse
|
23
|
Wei S. Potential therapeutic action of natural products from traditional Chinese medicine on Alzheimer's disease animal models targeting neurotrophic factors. Fundam Clin Pharmacol 2016; 30:490-501. [PMID: 27414248 DOI: 10.1111/fcp.12222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells leads to memory loss and cognitive decline. To reduce the death rate and improve the biological activity of neurocytes, neurotrophic factors (NTFs) exhibit therapeutic effect on AD. However, therapeutic application of exogenous NTFs in treatment of AD is largely limited due to short half-life, poor stability, etc. Various extracts of traditional Chinese medicine (TCM) have been shown to exhibit therapeutic effects on AD, and some of these effects are associated with regulation on the expression of nerve growth factor, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) and their associated receptors. This article reviews the progress on promotion of Panax ginseng, Rehmannia glutinosa Libosch., Epimedium, Polygala tenuifolia Willd, and seven other TCMs on secretion of NTFs during AD, with a view to preparation development and clinical application of these TCMs on AD.
Collapse
Affiliation(s)
- Shuyong Wei
- Southwest University Rongchang Campus, No. 160 Xueyuan Road, Rongchang, Chongqing, 402460, China
| |
Collapse
|
24
|
Shojaei Saadi HA, Gagné D, Fournier É, Baldoceda Baldeon LM, Sirard MA, Robert C. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics 2016; 8:1039-60. [PMID: 27419740 DOI: 10.2217/epi-2016-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM There is a growing concern about the potential adverse effects of high dose folic acid (FA) supplementation before and during pregnancy. FA metabolism generates S-adenosyl methionine (SAM) which is an important cofactor of epigenetic programming. We sought to assess the impact of a large dose of SAM on early embryo development. MATERIALS & METHODS In vitro cultured bovine embryos were treated with SAM from the eight-cell stage to the blastocyst stage. In addition to the phenotype, the genome-wide epigenetic and transcription profiles were analyzed. RESULTS Treatment significantly improved embryo hatching and caused a shift in sex ratio in favor of males. SAM caused genome-wide hypermethylation mainly in exonic regions and in CpG islands. Although differentially expressed genes were associated with response to nutrients and developmental processes, no correspondence was found with the differentially methylated regions, suggesting that cellular responses to SAM treatment during early embryo development may not require DNA methylation-driven changes. CONCLUSION Since bovine embryos were not indifferent to SAM, effects of large-dose FA supplements on early embryonic development in humans cannot be ruled out.
Collapse
Affiliation(s)
- Habib A Shojaei Saadi
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Dominic Gagné
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Éric Fournier
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Luis Manuel Baldoceda Baldeon
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Claude Robert
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des sciences animales, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
25
|
Fan C, Fu H, Dong H, Lu Y, Lu Y, Qi K. Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: associated with DNA methylation of brain-derived neurotrophic factor transcripts. Nutr Res 2016; 36:1013-1021. [PMID: 27632922 DOI: 10.1016/j.nutres.2016.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 01/06/2023]
Abstract
In this study, we hypothesized that n-3 polyunsaturated fatty acid (PUFA) deficiency during pregnancy and lactation will make a lasting impact on brain neurogenesis and apoptosis of the adult offspring and that these harmful effects cannot be reversed by n-3 PUFA supplementation after weaning. Moreover, the underlying mechanisms may be attributable to the epigenetic changes of brain-derived neurotrophic factor (BDNF). C57BL/6J female mice were fed with n-3 PUFA-deficient diet (n-3 def) or n-3 PUFA-adequate diet (n-3 adq) throughout pregnancy and lactation. At postnatal 21 days, equal numbers of male pups from both groups were fed the opposite diet, and the remaining male pups were fed with the same diets as their mothers until 3 months of age. Feeding the n-3 adq diet to pups from the maternal n-3 def group significantly increased the n-3 PUFA concentration but did not change expressions of calretinin, Bcl2, and Bax in the hippocampus. Feeding the n-3 def diet to pups from the maternal n-3 adq group significantly reduced the n-3 PUFA concentration but did not reduce expressions of calretinin and Bcl2. Similarly, BDNF levels, especially mRNA expressions of BDNF transcripts IV and IX, were also reduced by maternal n-3 def and not reversed by n-3 PUFA supplementation after weaning. The decrease in BDNF expression by maternal n-3 def diet was associated with greater DNA methylation at special CpG sites. These results suggested that the maternal n-3 PUFA deficiency during pregnancy and lactation imprints long-term changes of brain development in adult offspring.
Collapse
Affiliation(s)
- Chaonan Fan
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huicong Fu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hua Dong
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Lu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanfei Lu
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kemin Qi
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Du X, Hill R. 7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 2015; 89:51-62. [DOI: 10.1016/j.neuint.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/25/2023]
|
28
|
Ortega-Martínez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci 2015; 8:46. [PMID: 26379491 PMCID: PMC4549561 DOI: 10.3389/fnmol.2015.00046] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis is the process by which new neurons are generated in the brains of adults. Since its discovery 50 years ago, adult neurogenesis has been widely studied in the mammalian brain and has provided a new perspective on the pathophysiology of many psychiatric and neurodegenerative disorders, some of which affect memory. In this regard, adult hippocampal neurogenesis (AHN), which occurs in the subgranular zone (SGZ) of the dentate gyrus (DG), has been suggested to play a role in the formation and consolidation of new memories. This process involves many transcription factors, of which cyclic AMP (cAMP)-responsive element-binding protein (CREB) is a well-documented one. In the developing brain, CREB regulates crucial cell stages (e.g., proliferation, differentiation, and survival), and in the adult brain, it participates in neuronal plasticity, learning, and memory. In addition, new evidence supports the hypothesis that CREB may also participate in learning and memory through its involvement in AHN. This review examines the CREB family of transcription factors, including the different members and known signaling pathways. It highlights the role of CREB as a modulator of AHN, which could underlie its function in memory consolidation mechanisms.
Collapse
Affiliation(s)
- Sylvia Ortega-Martínez
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| |
Collapse
|
29
|
Agilli M, Aydin FN, Kurt YG, Cayci T. Evaluation of serum brain-derived neurotrophic factor levels in type 2 diabetes mellitus patients with and without depressive symptoms. Acta Biochim Biophys Sin (Shanghai) 2015; 47:313. [PMID: 25736402 DOI: 10.1093/abbs/gmv008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mehmet Agilli
- Department of Biochemistry, Agri Military Hospital, Agri 04010, Turkey
| | - Fevzi Nuri Aydin
- Department of Biochemistry, Sirnak Military Hospital, Sirnak 73100, Turkey
| | - Yasemin Gulcan Kurt
- Department of Medical Biochemistry, Gulhane Military Medical Academy, Ankara 06018, Turkey
| | - Tuncer Cayci
- Department of Medical Biochemistry, Gulhane Military Medical Academy, Ankara 06018, Turkey
| |
Collapse
|
30
|
Dhobale M. Neurotrophins: Role in adverse pregnancy outcome. Int J Dev Neurosci 2014; 37:8-14. [DOI: 10.1016/j.ijdevneu.2014.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 01/13/2023] Open
|