1
|
Spoto G, Butera A, Albertini ML, Consoli C, Ceraolo G, Nicotera AG, Rosa GD. The Ambiguous Role of Growth Factors in Autism: What Do We Really Know? Int J Mol Sci 2025; 26:1607. [PMID: 40004071 PMCID: PMC11855502 DOI: 10.3390/ijms26041607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial origins, including the potential involvement of neurotrophins and growth factors. These molecules, which are crucial for neuronal survival, synaptic plasticity, and brain development, have been implicated in ASD pathophysiology. Altered levels of neurotrophins such as NGF, BDNF, NT3, and NT4, as well as growth factors like IGF1, VEGF, and FGF, have been associated with cognitive deficits, sensory processing abnormalities, and behavioral issues in ASD patients. However, the literature presents conflicting results, often due to differences in research methodologies, sample sizes, patient populations, and diagnostic criteria. Despite these inconsistencies, the potential of neurotrophins and growth factors as biomarkers and therapeutic targets for ASD remains promising. Future research with standardized methodologies, larger cohorts, and a clearer understanding of genetic influences is needed to further elucidate their roles in ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.S.); (G.D.R.)
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98122 Messina, Italy;
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Maria Ludovica Albertini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Carla Consoli
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.S.); (G.D.R.)
| |
Collapse
|
2
|
Olivas-Martinez A, Suarez B, Salamanca-Fernandez E, Reina-Perez I, Rodriguez-Carrillo A, Mustieles V, Olea N, Freire C, Fernández MF. Development and validation of brain-derived neurotrophic factor measurement in human urine samples as a non-invasive effect biomarker. Front Mol Neurosci 2023; 15:1075613. [PMID: 36710936 PMCID: PMC9878568 DOI: 10.3389/fnmol.2022.1075613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF), a neurotrophic growth factor mainly expressed in the brain, has been proposed as a potential effect biomarker; that is, as a measurable biomarker whose values could be associated with several diseases, including neurological impairments. The European Human Biomonitoring Initiative (HBM4EU) has also recognized effect biomarkers as a useful tool for establishing link between exposure to environmental pollutants and human health. Despite the well-establish protocol for measuring serum BDNF, there is a need to validate its assessment in urine, a non-invasive sample that can be easily repeated over time. The aim of this study was to develop, standardize and validate a methodology to quantify BDNF protein levels in urine samples before its implementation in biomonitoring studies. Methods Different experimental conditions and non-competitive commercial enzyme-linked immunosorbent assay (ELISA) kits were tested to determine the optimal analytical procedure, trying to minimize the shortcomings of ELISA kits. The fine-tune protocol was validated in a pilot study using both upon awakening (n = 150) and prior to sleeping (n = 106) urine samples from the same Spanish adolescent males in a well-characterized study population (the Spanish INMA-Granada cohort). Results The best results were obtained in 0.6 ml of urine after the acidification and extraction (pre-concentration) of samples. The highest reproducibility was obtained with the ELISA kit from Raybiotech. Urinary BDNF concentrations of adolescent males were within the previously reported range (morning = 0.047-6.801 ng/ml and night = 0.047-7.404 ng/ml). Urinary BDNF levels in the awakening and pre-sleep samples did not follow a normal distribution and were not correlated. Conclusion The developed methodology offers good sensitivity and reproducibility. Having reliable markers in urine may facilitate both diagnosis and monitoring possible diseases (and treatment). Further studies are needed to implement urinary BDNF in biomonitoring studies to further elucidate its usefulness and biological significance for neurological impairments.
Collapse
Affiliation(s)
- Alicia Olivas-Martinez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Beatriz Suarez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Elena Salamanca-Fernandez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Iris Reina-Perez
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Andrea Rodriguez-Carrillo
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - Vicente Mustieles
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Nicolás Olea
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Carmen Freire
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Mariana F. Fernández
- Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain,Instituto de Investigación Biosanitaria de Granada, Granada, Spain,Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain,Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain,*Correspondence: Mariana F. Fernández,
| |
Collapse
|
3
|
Han YMY, Yau SY, Chan MMY, Wong CK, Chan AS. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sci 2022; 12:brainsci12040460. [PMID: 35447993 PMCID: PMC9026457 DOI: 10.3390/brainsci12040460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). The present study examined whether immunological abnormalities are associated with cognitive and behavioral deficits in children with ASD and whether children with ASD show different immunological biomarkers and brain-derived neurotrophic factor BDNF levels than typically developing (TD) children. Sixteen children with TD and 18 children with ASD, aged 6–18 years, voluntarily participated in the study. Participants’ executive functions were measured using neuropsychological tests, and behavioral measures were measured using parent ratings. Immunological measures were assessed by measuring the participants’ blood serum levels of chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Children with ASD showed greater deficits in cognitive functions as well as altered levels of immunological measures when compared to TD children, and their cognitive functions and behavioral deficits were significantly associated with increased CCL5 levels and decreased BDNF levels. These results provide evidence to support the notion that altered immune functions and neurotrophin deficiency are involved in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
- Correspondence: ; Tel.: +852-2766-7578
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
4
|
Bozkurt H, Şimşek Ş, Şahin S. Elevated levels of cortisol, brain-derived neurotropic factor and tissue plasminogen activator in male children with autism spectrum disorder. Autism Res 2021; 14:2078-2084. [PMID: 34291889 DOI: 10.1002/aur.2582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated biological effects of cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) on human metabolism and central nervous system. Our study investigated the serum levels of tPA along with BDNF and cortisol in children with autism spectrum disorder (ASD). Thirty three male children with ASD ranging in age from 2 to 15 years were selected for the study group and 27 age-matched healthy male children were selected for the control group. The ASD severity was determined by the score on the Autism Behavior Checklist (ABC). The mean cortisol levels for the study group and the control group were 79.1 ± 30.2 ng/ml and 60.0 ± 25.1 ng/ml, respectively. The mean BDNF levels for the study group and the control group were 5.9 ± 2.8 ng/ml and 3.7 ± 1.8 ng/ml, respectively. The mean tPA levels for the study group and the control group were 32.9 ± 18.5 ng/ml and 25.5 ± 15.1 ng/ml, respectively. Cortisol, BDNF and tPA levels were significantly higher in the study group compared to the control group (p < 0.001). There was no statistically significant effect in terms of age, ABC total and subscale scores on serum cortisol, BDNF and tPA levels in the study group (p > 0.05). It may be suggested that elevations may indicate a role in the pathogenesis of ASD or it may be the case that ASD may alter the levels or pathways of these metabolic factors. LAY SUMMARY: The underlying mechanism or a specific metabolic target relevant to autism spectrum disorder (ASD) has not yet been identified. Cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) have biological effects on neuroplasticity but little is known about the role of cortisol and tPA-BDNF pathway in ASD. In the present study focused on male children with ASD, we have found higher blood levels of cortisol, BDNF and tPA than their healthy peers. This is the first clinical study to evaluate the serum tPA levels along with BDNF and cortisol in ASD. The results suggest that several neurotrophic and other related markers should be born in mind while examining children with ASD.
Collapse
Affiliation(s)
- Hasan Bozkurt
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Şeref Şimşek
- Department of Child and Adolescent Psychiatry, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Serkan Şahin
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| |
Collapse
|
5
|
Liu SH, Shi XJ, Fan FC, Cheng Y. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: a meta-analysis. Sci Rep 2021; 11:15. [PMID: 33420109 PMCID: PMC7794512 DOI: 10.1038/s41598-020-79080-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that abnormal regulation of neurotrophic factors is involved in the etiology and pathogenesis of Autism Spectrum Disorder (ASD). However, clinical data on neurotrophic factor levels in children with ASD were inconsistent. Therefore, we performed a systematic review of peripheral blood neurotrophic factors levels in children with ASD, and quantitatively summarized the clinical data of peripheral blood neurotrophic factors in ASD children and healthy controls. A systematic search of PubMed and Web of Science identified 31 studies with 2627 ASD children and 4418 healthy controls to be included in the meta-analysis. The results of random effect meta-analysis showed that the peripheral blood levels of brain-derived neurotrophic factor (Hedges’ g = 0.302; 95% CI = 0.014 to 0.591; P = 0.040) , nerve growth factor (Hedges’ g = 0.395; 95% CI = 0.104 to 0.686; P = 0.008) and vascular endothelial growth factor (VEGF) (Hedges’ g = 0.097; 95% CI = 0.018 to 0.175; P = 0.016) in children with ASD were significantly higher than that of healthy controls, whereas blood neurotrophin-3 (Hedges’ g = − 0.795; 95% CI = − 1.723 to 0.134; P = 0.093) and neurotrophin-4 (Hedges’ g = 0.182; 95% CI = − 0.285 to 0.650; P = 0.445) levels did not show significant differences between cases and controls. Taken together, these results clarified circulating neurotrophic factor profile in children with ASD, strengthening clinical evidence of neurotrophic factor aberrations in children with ASD.
Collapse
Affiliation(s)
- Shu-Han Liu
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Xiao-Jie Shi
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Fang-Cheng Fan
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Yong Cheng
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China.
| |
Collapse
|
6
|
Cheng B, Zhu J, Yang T, Guo M, Lai X, Li Q, Chen J, Li T. Vitamin A deficiency increases the risk of gastrointestinal comorbidity and exacerbates core symptoms in children with autism spectrum disorder. Pediatr Res 2021; 89:211-216. [PMID: 32225174 DOI: 10.1038/s41390-020-0865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and many individuals with ASD have gastrointestinal (GI) comorbidities. Vitamin A (VA) is an essential micronutrient that plays an important role in brain development and GI function. METHODS A total of 323 children with ASD and 180 control children were enrolled in this study. Symptoms of ASD were assessed with the Child Autism Rating Scale (CARS), the Social Responsiveness Scale (SRS), and the Autism Behavior Checklist (ABC). Caregivers of the children completed questionnaires about GI symptoms. Serum retinol levels were detected with high-performance liquid chromatography (HPLC). RESULTS Children with ASD and with GI comorbidity and constipation had considerably lower serum VA levels than autistic children without these symptoms. VA level was associated with CARS, SRS, and ABC scores, whereas GI symptoms were associated some SRS and ABC scores. The interaction of VAD and GI symptoms appeared to aggravate some of the core symptoms of children with ASD. CONCLUSIONS VAD exacerbates core symptoms in children with ASD, and ASD children with GI comorbidities also have more serious core symptoms than ASD children without GI comorbidities. VAD comorbid with GI symptoms aggravates autistic children's core symptoms. IMPACT VAD exacerbates core symptoms in children with ASD. ASD children with GI comorbidities have more serious core symptoms than ASD children without GI comorbidities. VAD comorbid with GI symptoms aggravates autistic children's core symptoms. We speculate that VAD might be related to a subtype of ASD that involves GI comorbidities. We believe that our findings will be of fundamental importance to the scientific community.
Collapse
Affiliation(s)
- Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Min Guo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Xi Lai
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Qiu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
- National Clinical Research Center for Child Health and Disorder, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China.
- National Clinical Research Center for Child Health and Disorder, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
7
|
Alolaby RR, Jiraanont P, Durbin-Johnson B, Jasoliya M, Tang HT, Hagerman R, Tassone F. Molecular Biomarkers Predictive of Sertraline Treatment Response in Young Children With Autism Spectrum Disorder. Front Genet 2020; 11:308. [PMID: 32346385 PMCID: PMC7174723 DOI: 10.3389/fgene.2020.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Sertraline is one among several selective serotonin reuptake inhibitors (SSRIs) that exhibited improvement of language development in Autism Spectrum Disorder (ASD); however, the molecular mechanism has not been elucidated. A double blind, randomized, 6-month, placebo-controlled, clinical trial of low-dose sertraline in children ages (3-6 years) with ASD was conducted at the UC Davis MIND Institute. It aimed at evaluating the efficacy and benefit with respect to early expressive language development and global clinical improvement. This study aimed to identify molecular biomarkers that might be key players in the serotonin pathway and might be predictive of a clinical response to sertraline. Fifty eight subjects with the diagnosis of ASD were randomized to sertraline or placebo. Eight subjects from the sertraline arm and five from the placebo arm discontinued from the study. Furthermore, four subjects did not have a successful blood draw. Hence, genotypes for 41 subjects (20 on placebo and 21 on sertraline) were determined for several genes involved in the serotonin pathway including the serotonin transporter-linked polymorphic region (5-HTTLPR), the tryptophan hydroxylase 2 (TPH2), and the Brain-Derived Neurotrophic Factor (BDNF). In addition, plasma levels of BDNF, Matrix metallopeptidase 9 (MMP-9) and a selected panel of cytokines were determined at baseline and post-treatment. Intent-to-treat analysis revealed several primary significant correlations between molecular changes and the Mullen Scales of Early Learning (MSEL) and Clinical Global Impression Scale - Improvement (CGI-I) of treatment and control groups but they were not significant after adjustment for multiple testing. Thus, sertraline showed no benefit for treatment of young children with ASD in language development or changes in molecular markers in this study. These results indicate that sertraline may not be beneficial for the treatment of children with ASD; however, further investigation of larger groups as well as longer term follow-up studies are warranted.
Collapse
Affiliation(s)
- Reem Rafik Alolaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Mittal Jasoliya
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Ansel A, Posen Y, Ellis R, Deutsch L, Zisman PD, Gesundheit B. Biomarkers for Autism Spectrum Disorders (ASD): A Meta-analysis. Rambam Maimonides Med J 2019; 10:RMMJ.10375. [PMID: 31675302 PMCID: PMC6824829 DOI: 10.5041/rmmj.10375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To compare the reported accuracy and sensitivity of the various modalities used to diagnose autism spectrum disorders (ASD) in efforts to help focus further biomarker research on the most promising methods for early diagnosis. METHODS The Medline scientific literature database was searched to identify publications assessing potential clinical ASD biomarkers. Reports were categorized by the modality used to assess the putative markers, including protein, genetic, metabolic, or objective imaging methods. The reported sensitivity, specificity, area under the curve, and overall agreement were summarized and analyzed to determine weighted averages for each diagnostic modality. Heterogeneity was measured using the I2 test. RESULTS Of the 71 papers included in this analysis, each belonging to one of five modalities, protein-based followed by metabolite-based markers provided the highest diagnostic accuracy, each with a pooled overall agreement of 83.3% and respective weighted area under the curve (AUC) of 89.5% and 88.3%. Sensitivity provided by protein markers was highest (85.5%), while metabolic (85.9%) and protein markers (84.7%) had the highest specificity. Other modalities showed degrees of sensitivity, specificity, and overall agreements in the range of 73%-80%. CONCLUSIONS Each modality provided for diagnostic accuracy and specificity similar or slightly higher than those reported for the gold-standard Autism Diagnostic Observation Schedule (ADOS) instrument. Further studies are required to identify the most predictive markers within each modality and to evaluate biological pathways or clustering with possible etiological relevance. Analyses will also be necessary to determine the potential of these novel biomarkers in diagnosing pediatric patients, thereby enabling early intervention.
Collapse
Affiliation(s)
| | - Yehudit Posen
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- PSW Ltd, Rehovot, Israel
| | - Ronald Ellis
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- Biotech & Biopharma Consulting, Jerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting Ltd, Modiin, Israel
| | | | - Benjamin Gesundheit
- Cell-El Therapeutics Ltd, Jerusalem, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Geng R, Fang S, Li G. The association between particulate matter 2.5 exposure and children with autism spectrum disorder. Int J Dev Neurosci 2019; 75:59-63. [PMID: 31078619 DOI: 10.1016/j.ijdevneu.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Particulate matter (PM) as an environmental pollutant is suspected to be associated with autism spectrum disorder (ASD). The aim of this study was to assess whether exposures to PM2.5 during the first three years of life in relation to the risk and degree of the severity of ASD. METHODS A total of two hundred and ninety-seven 3-6 years old Chinese children (99 confirmed autism cases and 198 their age-gender matched control subjects) were included. Children's exposures to PM2.5 (particulate matter with aerodynamic diameter <2.5 μm) during the first three years after birth were estimated. Logistic regression analysis was used to examine the PM2.5-ASD association. RESULTS The mean levels of PM2.5 exposures in ASD and typical developmental children during the first three years of life were 89.8[standard deviations (SD): 6.1] μg/m3 and 87.3(6.6) μg/m3, respectively (p = 0.002). A statistically significant positive correlation was found between the serum levels of PM2.5 and the Childhood Autism Rating Scale (CARS) score indicating severity of autism (r = 0.259; p = 0.010). Based on the receiver operating characteristic (ROC) curve, the optimal cutoff value of PM2.5 levels as an indicator for auxiliary diagnosis of ASD was projected to be 89.5ug/m3, which yielded a sensitivity of 65.4% and a specificity of 63.2%, with the area under the curve at 0.61 (95% confidence intervals [CIs], 0.54-0.68; P < 0.001). Multivariate analysis models were used to assess ASD risk according to PM2.5 quartiles (the lowest quartile [Q1] as the reference), with the adjusted odds ratios (ORs) (95% CIs) were recorded. As shown in the Table 2, the 3rd and 4th quartile of PM2.5 were compared against the Q1, and the risks were increased by 103% (OR = 2.03; 95%CI: 1.13-5.54; p = 0.015) and 311% (4.15; 2.04-9.45; p = 0.002), respectively. CONCLUSIONS To conclude, the evidence from this study allowed us to conclude that there was an association between PM2.5 exposure and ASD risk and severity.
Collapse
Affiliation(s)
- Ruihua Geng
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China
| | - Suqin Fang
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China
| | - Guizhi Li
- Department of Pediatrics, People's Hospital of Kenli District, Dongying City, Shandong Province, 257500, China.
| |
Collapse
|
10
|
Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A, Arab AH, Khogeer A, Elhawary EN, Dannoun A, Bogari N. Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. COGENT BIOLOGY 2019; 5:1606555. [DOI: 10.1080/23312025.2019.1606555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca 21955, Saudi Arabia
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mohammed T. Tayeb
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ikhlas A. Sindi
- Department of Biotechnology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nermeen Qutub
- Department of Psychology, Faculty of Education, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mona Rashad
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ahmad Mufti
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Arwa H. Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asim Khogeer
- Department of Plan and Research, General Directorate of Health Affairs, Mecca Region, Ministry of Health, Mecca, Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Biotechnology, Modern Sciences and Arts University, 6th October City, Giza, Egypt
| | - Anas Dannoun
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Neda Bogari
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
11
|
Ning J, Xu L, Shen CQ, Zhang YY, Zhao Q. Increased serum levels of macrophage migration inhibitory factor in autism spectrum disorders. Neurotoxicology 2018; 71:1-5. [PMID: 30503813 DOI: 10.1016/j.neuro.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) has been suggested as a pivotal regulator of innate immunity and inflammatory. The aim of this study was to measure serum circulating levels of MIF in relation to the degree of the severity of autism spectrum disorders (ASD). METHODS One hundred and two Chinese children with ASD and same their age-sex matched typical development children were included. Concentrations of MIF were tested by Quantikine Human MIF Immunoassay. Serum levels of homocysteine (HCY), C-reactive protein (CRP) and serum Interleukin 6 (IL-6) were also tested. The influence of serum levels of MIF on ASD risk and ASD severity were performed by binary logistic regression analysis. RESULTS The serum levels of MIF in the children with ASD (24.7 ± 08.9 ng/ml) were significantly higher than those of control subjects (18.3 ± 5.5 ng/ml) (t = 6.134, P < 0.001). Levels of MIF increased with increasing severity of ASD as defined by the CARS score (P < 0.001). In multivariate model, MIF was associated with an increased risk of ASD (OR 1.11, 95% CI: 1.05-1.17; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict ASD (P < 0.001). At admission, 68 children (66.7%) had a severe autism. In these children, the mean serum level of MIF was higher than in those children with mild to moderate autism (28.1 ± 8.5 ng/ml VS. 17.9 ± 4.7 ng/ml; t = 6.482, P < 0.001). In multivariate model, MIF was still associated with an increased risk of severe ASD (OR: 1.15, 95% CI: 1.04-1.19; P < 0.001). MIF improved the combined model (HCY/CRP/IL-6) to predict severe ASD (P < 0.001). CONCLUSIONS These results identify high serum MIF levels are associated with severity of ASD. Further study is warranted on the precise involvement of MIF in ASD, and the mechanism by which MIF contributes to ASD pathogenesis.
Collapse
Affiliation(s)
- Jun Ning
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Li Xu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chang-Qing Shen
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yu-Yan Zhang
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing Zhao
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
12
|
Francis K, Dougali A, Sideri K, Kroupis C, Vasdekis V, Dima K, Douzenis A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr Scand 2018. [PMID: 29532458 DOI: 10.1111/acps.12872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. METHOD BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. RESULTS BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. CONCLUSIONS Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD.
Collapse
Affiliation(s)
- K Francis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece.,Child and Adolescent Psychiatric Unit, Kuwait Centre for Mental Health, Kuwait, Kuwait
| | - A Dougali
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| | - K Sideri
- Allergy Research Center, Attikon General Hospital, University of Athens Medical School, Athens, Greece
| | - C Kroupis
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - V Vasdekis
- Department of Statistics, Athens University of Economic and Business, Athens, Greece
| | - K Dima
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - A Douzenis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| |
Collapse
|
13
|
Armeanu R, Mokkonen M, Crespi B. Meta-Analysis of BDNF Levels in Autism. Cell Mol Neurobiol 2017; 37:949-954. [PMID: 27501933 PMCID: PMC11482231 DOI: 10.1007/s10571-016-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) centrally mediates growth, differentiation and survival of neurons, and the synaptic plasticity that underlies learning and memory. Recent meta-analyses have reported significantly lower peripheral BDNF among individuals with schizophrenia, bipolar disorder, and depression, compared with controls. To evaluate the role of BDNF in autism, and to compare autism to psychotic-affective disorders with regard to BDNF, we conducted a meta-analysis of BDNF levels in autism. Inclusion criteria were met by 15 studies, which included 1242 participants. The meta-analysis estimated a significant summary effect size of 0.33 (95 % CI 0.21-0.45, P < 0.001), suggesting higher BDNF in autism than in controls. The studies showed notable heterogeneity, but no evidence of publication biases. Higher peripheral BDNF in autism is concordant with several neurological and psychological theories on the causes and symptoms of this condition, and it contrasts notably with the lower levels of BDNF found in schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Raluca Armeanu
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Mikael Mokkonen
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Meng WD, Sun SJ, Yang J, Chu RX, Tu W, Liu Q. Elevated Serum Brain-Derived Neurotrophic Factor (BDNF) but not BDNF Gene Val66Met Polymorphism Is Associated with Autism Spectrum Disorders. Mol Neurobiol 2017; 54:1167-1172. [PMID: 26820673 DOI: 10.1007/s12035-016-9721-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
The aim of our study was to illuminate the potential role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder (ASD). We measured the circulating levels of BDNF in serum and BDNF gene (Val66Met) polymorphisms, in which two indicators were then compared between ASD and normal controls. A total of 82 drug-naïve ASD children and 82 age- and gender-matched normal controls were enrolled in the study. Their serum BDNF levels were detected by the ELISA. BDNF Val66Met polymorphism genotyping was conducted as according to the laboratory's standard protocol in laboratory. The ASD severity assessment was mainly determined by the score of the Childhood Autism Rating Scale (CARS). ELISA assay showed that the mean serum BDNF level of children with ASD was significantly (P < 0.0001) higher than that of the control cases (17.75 ± 5.43 vs. 11.49 ± 2.85 ng/ml; t = 9.236). Besides, the serum BDNF levels and CARS scores (P < 0.0001) were positively related. And, the BDNF genotyping results showed that there was no difference between the ASD cases and the control. Among the children with ASD, the mean serum BDNF level of Met/Met group was lower than other groups. According to the ROC curve generated from our clinical data, the optimal cutoff value of serum BDNF levels, an indicator for diagnosis of ASD, was projected to be 12.50 ng/ml. Thus, it yielded a corresponding sensitivity of 81.7 % and the specificity of 66.9 %. Accordingly, area value under the curve was 0.836 (95 % CI, 0.774-0.897); the positive predictive value (PPV) and the negative predictive value (NPV) were 70.1 and 79.1 %, respectively. These results suggested that rather than Val66Met polymorphism, BDNF was more possible to impact the pathogenesis of ASD.
Collapse
Affiliation(s)
- Wei-Dong Meng
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China
| | - Shao-Jun Sun
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China.
| | - Jie Yang
- Department of Pharmacy, Liaocheng Herbalist Hospital, Liaocheng, China
| | - Rui-Xue Chu
- Department of Laboratory Medicine, Liaocheng People's Hospital, No. 67, Dongchang West Road, Liaocheng, 252000, China
| | - Wenjun Tu
- Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, No. 238, Baiti Road, Tianjin, 300192, China
| | - Qiang Liu
- Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, No. 238, Baiti Road, Tianjin, 300192, China.
| |
Collapse
|
15
|
Brain-Derived Neurotrophic Factor Levels in Autism: A Systematic Review and Meta-Analysis. J Autism Dev Disord 2017; 47:1018-1029. [DOI: 10.1007/s10803-016-3024-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wang J, Zou Q, Han R, Li Y, Wang Y. Serum levels of Glial fibrillary acidic protein in Chinese children with autism spectrum disorders. Int J Dev Neurosci 2017; 57:41-45. [PMID: 28088366 DOI: 10.1016/j.ijdevneu.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Glial fibrillary acidic protein (GFAP) has been studied in many neurological diseases. The purpose of this study is to investigate the potential role of GFAP in Chinese children with autism spectrum disorders (ASD) by measuring serum circulating levels of GFAP and comparing them with age and gender-matched typical development children. METHODS A total of one hundred and fifty 2-6 years old Chinese children (75 confirmed autism cases and 75 their age-gender matched typical development children) participated in this study. Serum levels of GFAP were assayed with enzyme-linked immunosorbent assay methods, and severity of ASD was evaluated with the Childhood Autism Rating Scale (CARS) Score. RESULTS The results indicated that the mean serum GFAP level was significantly (P<0.001) higher in autistic children as compared to controls (1.71±0.53ng/ml vs. 0.99±0.25ng/ml). There was a significant positive association between serum GFAP levels and CARS scores (r [Pearson]=0.390, P=0.001). Based on the Receiver operating characteristic (ROC) curve, the optimal cut-off value of serum GFAP levels as an indicator for auxiliary diagnosis of autism was projected to be 1.28ng/ml which yielded a sensitivity of 77.3% and a specificity of 88.4%, the area under the curve was 0.895(95%CI, 0.844-0.947). Further, an increased risk of ASD was associated with GFAP levels >1.28ng/ml (adjusted OR 9.88, 95% CI: 3.32-17.82) in the multivariate logistic analysis model. CONCLUSION The data indicates that serum GFAP levels may be associated with severity of ASD among Chinese children, suggesting the hypothesis that increased serum levels of GFAP could be implicated in the pathophysiology of autism in Chinese children.
Collapse
Affiliation(s)
- Jingwei Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China; Department of Pediatrics, Yantaishan Hospital, Yantai 264001, China
| | - Qiuyan Zou
- Department of Children's Health Prevention, Zhangjiagang Women and Children Health Center, Zhangjiagang 215600, China
| | - Renfeng Han
- Department of Pediatrics, Yantaishan Hospital, Yantai 264001, China
| | - Yupeng Li
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao 276500, China
| | - Yulin Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| |
Collapse
|
17
|
Webb SJ, Garrison MM, Bernier R, McClintic AM, King BH, Mourad PD. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound. Autism Res 2016; 10:472-484. [PMID: 27582229 DOI: 10.1002/aur.1690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/07/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023]
Abstract
Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Jane Webb
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Michelle M Garrison
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington.,Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Raphael Bernier
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Abbi M McClintic
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington
| | - Bryan H King
- Center on Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington
| | - Pierre D Mourad
- Departments of Psychiatry & Behavioral Science, Neurological Surgery, Seattle, Washington.,Division of Engineering and Mathematics, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Peripheral brain-derived neurotrophic factor in autism spectrum disorder: a systematic review and meta-analysis. Sci Rep 2016; 6:31241. [PMID: 27506602 PMCID: PMC4979025 DOI: 10.1038/srep31241] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/15/2016] [Indexed: 01/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neuronal survival and growth and promotes synaptic plasticity. Recently, researchers have begun to explore the relationship between peripheral BDNF levels and autism spectrum disorder (ASD), but the findings are inconsistent. We undertook the first systematic review and meta-analysis of studies examining peripheral BDNF levels in ASD compared with healthy controls. The PubMed, Embase, and Cochrane Library databases were searched for studies published before February 2016. Fourteen studies involving 2,707 participants and 1,131 incident cases were included. The meta-analysis provided evidence of higher peripheral BDNF levels in ASD compared with controls [standardized mean difference (SMD) = 0.63, 95% confidence interval (95% CI) = 0.18–1.08; P = 0.006]. Subgroup analyses revealed higher BDNF levels in ASD compared with controls for both serum [SMD = 0.58, 95% CI = 0.11–1.04; P = 0.02] and plasma [SMD = 1.27, 95% CI = 0.92–1.61; P < 0.001]. Studies of childhood yielded similar cumulative effect size [SMD = 0.78, 95% CI = 0.31–1.26; P = 0.001], while this was not true for the studies of adulthood [SMD = 0.04, 95% CI = −1.72–1.80; P = 0.97]. This meta-analysis suggests that peripheral BDNF levels are a potential biomarker of ASD.
Collapse
|
19
|
Bahi A. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats. Behav Brain Res 2016; 311:298-308. [PMID: 27211062 DOI: 10.1016/j.bbr.2016.05.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are highly disabling psychiatric disorders. Despite a strong genetic etiology, there are no efficient therapeutic interventions that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of microRNA (miR) machinery may contribute to the underlying molecular mechanisms involved in ASD. Here, we report a stress model demonstrating that neonatal isolation-induced long-lasting hippocampal elevation of miR124a was associated with reduced expression of its target BDNF mRNA. In addition, we investigated the impact of lentiviral-mediated overexpression of miR124a into the dentate gyrus (DG) on social interaction, repetitive- and anxiety-like behaviors in the neonatal isolation (Iso) model of autism. Rats isolated from the dams on PND 1 to PND 11 were assessed for their social interaction, marble burying test (MBT) and repetitive self-grooming behaviors as adults following miR124a overexpression. Also, anxiety-like behavior and locomotion were evaluated in the elevated plus maze (EPM) and open-field (OF) tests. Results show that, consistent with previously published reports, Iso rats displayed decreased social interaction contacts but increased repetitive- and anxiety-like behaviors. Interestingly, across both autism- and anxiety-like behavioral assays, miR124a overexpression in the DG significantly exacerbated repetitive behaviors, social impairments and anxiety with no effect on locomotor activity. Our novel findings attribute neonatal isolation-inducible cognitive impairments to induction of miR124a and consequently suppressed BDNF mRNA, opening venues for intercepting these miR124a-mediated damages. They also highlight the importance of studying microRNAs in the context of ASD and identify miR124a as a novel potential therapeutic target for improving mood disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
20
|
Abstract
The aim of this study was to evaluate the plasma levels of lipoxin A4 (LXA4), a mediator involved in the resolution of inflammation in Chinese children with autism spectrum disorders (ASD). From January 2013 to June 2014, a total of 150 children (75 confirmed ASD cases and 75 their age-matched and sex-matched control cases) participated in this study after consent was obtained from their parents. Clinical information was collected. Plasma levels of LXA4 were measured at baseline. The severity of ASD was assessed at admission using the Childhood Autism Rating Scale total score. The results indicated that the mean plasma levels of LXA4 were significantly lower in autistic children compared with the normal children (P<0.0001). There was a significant negative relationship between circulating LXA4 levels and severity of autism evaluated by Childhood Autism Rating Scale scores (P=0.006) after adjustment for the possible covariates. On the basis of the receiver operating characteristic curve, the optimal cutoff value of plasma LXA4 levels as an indicator for an auxiliary diagnosis of ASD was projected to be 81.5 pg/ml, which yielded a sensitivity of 90.7% and a specificity of 76.0%, with the area under the curve at 0.911 (95% confidence interval, 0.867-0.955). These results suggested that autistic children had lower plasma LXA4 levels, suggesting an increased susceptibility to recurring inflammation in these samples.
Collapse
|
21
|
Abruzzo PM, Ghezzo A, Bolotta A, Ferreri C, Minguzzi R, Vignini A, Visconti P, Marini M. Perspective Biological Markers for Autism Spectrum Disorders: Advantages of the Use of Receiver Operating Characteristic Curves in Evaluating Marker Sensitivity and Specificity. DISEASE MARKERS 2015; 2015:329607. [PMID: 26648598 PMCID: PMC4655021 DOI: 10.1155/2015/329607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are a heterogeneous group of neurodevelopmental disorders. Recognized causes of ASD include genetic factors, metabolic diseases, toxic and environmental factors, and a combination of these. Available tests fail to recognize genetic abnormalities in about 70% of ASD children, where diagnosis is solely based on behavioral signs and symptoms, which are difficult to evaluate in very young children. Although it is advisable that specific psychotherapeutic and pedagogic interventions are initiated as early as possible, early diagnosis is hampered by the lack of nongenetic specific biological markers. In the past ten years, the scientific literature has reported dozens of neurophysiological and biochemical alterations in ASD children; however no real biomarker has emerged. Such literature is here reviewed in the light of Receiver Operating Characteristic (ROC) analysis, a very valuable statistical tool, which evaluates the sensitivity and the specificity of biomarkers to be used in diagnostic decision making. We also apply ROC analysis to some of our previously published data and discuss the increased diagnostic value of combining more variables in one ROC curve analysis. We also discuss the use of biomarkers as a tool for advancing our understanding of nonsyndromic ASD.
Collapse
Affiliation(s)
- Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | | | | | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60128 Ancona, Italy
| | - Paola Visconti
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
- Don Carlo Gnocchi Foundation ONLUS, IRCCS “S. Maria Nascente”, Via Alfonso Capecelatro 66, 20148 Milan, Italy
| |
Collapse
|
22
|
Increased serum levels of brain-derived neurotrophic factor in autism spectrum disorder. Neuroreport 2015; 26:638-41. [DOI: 10.1097/wnr.0000000000000404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Bryn V, Halvorsen B, Ueland T, Isaksen J, Kolkova K, Ravn K, Skjeldal OH. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol 2015; 19:411-4. [PMID: 25847750 DOI: 10.1016/j.ejpn.2015.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurotrophic factors are essential regulators of neuronal maturation including synaptic synthesis. Among those, Brain derived neurotrophic factor (BDNF) has been in particular focus in the understanding of autism spectrum disorders (ASD). PURPOSE The aim of our study was to investigate whether BNDF could be used as diagnostic/biological marker for ASD. For this purpose we examined the plasma levels of BDNF and the precursors pro- BDNF in patients with ASD and compared it with non-autistic controls; determined whether there was a correlation between the BDNF and proBDNF levels and clinical severity. We also investigated the coding region of BDNF identify for well-variations which could be associated to ASD. METHODS The 65 ASD patients (51 boys) were enrolled from a recent completed epidemiological survey covering two counties (Oppland and Hedmark) in Norway. The mean age of the total number of children who participated in this study was 11,7 years. 30 non-autistic children were included as controls, 14 boys and 16 girls. The mean age was 11.3 years. Exclusion criteria for control group were individuals suffering from either neurological, endocrine, or immune insuffiency. RESULTS AND CONCLUSIONS Patients with ASD were characterized by moderately but significantly elevated plasma levels of BDNF compared to matched controls. No differences were observed in the proBDNF level between patients and controls. Within the ASD group, children with intellectual disability demonstrated increased BDNF, but not proBDNF levels, while the presence of ADHD had no impact on circulating proBDNF or BDNF. No further associations between plasma proBDNF or BDNF and other clinical demographics were observed.
Collapse
Affiliation(s)
- V Bryn
- Children's department, Innlandet Hospital Trust, 2809 Lillehammer, Norway.
| | - B Halvorsen
- Institute for Clinical Medicine, K.G.Jebsen Inflammation Research Center, Oslo University Hospital, Oslo Norway
| | - T Ueland
- Institute for Clinical Medicine, K.G.Jebsen Inflammation Research Center, Oslo University Hospital, Oslo Norway
| | - J Isaksen
- Department of Habilitation, Innlandet Hospital Trust, Lillehammer, Norway
| | - K Kolkova
- Kennedy Center, Copenhagen University Hospital, Rigshospital, Denmark
| | - K Ravn
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - O H Skjeldal
- Gillberg Neuropsychiatry Centre, Sahgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
24
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
25
|
High plasma neopterin levels in Chinese children with autism spectrum disorders. Int J Dev Neurosci 2015; 41:92-7. [PMID: 25660944 DOI: 10.1016/j.ijdevneu.2015.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neopterin, a pteridine mainly synthesized by activated macrophages, is a marker of inflammation, immune system activation and an active participant in Autism spectrum disorders (ASD). The aim of this study was to assess the clinical significance of plasma neopterin levels in ASD. METHODS Eighty patients diagnosed with ASD and 80 sex and age matched typically developing children were assessed for plasma levels of neopterin at admission. Plasma neopterin levels were measured using a human ELISA kit and severity of ASD were evaluated with the Childhood Autism Rating Scale (CARS) score. RESULTS We found that the mean plasma neopterin level was significantly (P<0.0001) higher in children with ASD as compared to controls. Plasma neopterin increased with increasing severity of ASD as defined by the CARS score. Based on the ROC curve, the optimal cutoff value of plasma neopterin level as an indicator for auxiliary diagnosis of ASD was projected to be 8.5nmol/L, which yielded a sensitivity of 84.2% and a specificity of 80.1%, with the area under the curve at 0.876 (95% CI, 0.825-0.928). Elevated neopterin (≥8.5nmol/L) was an independent diagnosis indicator of ASD with an adjusted OR of 12.11 (95% CI: 5.48-28.11; P<0.0001). CONCLUSIONS These results indicated that autistic children had higher plasma levels of neopterin, and elevated plasma neopterin levels may be associated with severity of ASD among Chinese children.
Collapse
|
26
|
Hwang SR, Kim CY, Shin KM, Jo JH, Kim HA, Heo Y. Altered expression levels of neurodevelopmental proteins in fetal brains of BTBR T+tf/J mice with autism-like behavioral characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:516-523. [PMID: 25849768 DOI: 10.1080/15287394.2015.1010466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Autism is a brain developmental disorder with characteristics of social interaction defects, language and communication dysfunction, and repetitive behavior. Occurrence of autism is continuously increasing, but the cause of autism is not clearly defined. Genetic linkage or environmental factors were proposed as sources for pathogenesis of autism. BTBR T+tf/J (BTBR) mice were reported as an appropriate animal model for autism investigation because of their similarities in behavioral abnormalities with human autistic subjects. The aim of this study was to evaluate expression levels of proteins involved with brain development at fetal stage of BTBR mice. FVB/NJ mice were used as a control strain because of their social behaviors. Level of fetal brain immunoglobulin (Ig) G deposit was also evaluated. Fetal brains were obtained at d 18 of gestational period. Thirty-one and 27 fetuses were obtained from 3 pregnant BTBR and FVB dams, respectively. The level of glial fibrillary acidic protein expression was significantly lower in fetal brains of BTBR than FVB/NJ mice. Expression of brain-derived neurotrophic factor and myelin basic protein was significantly more upregulated in BTBR than in FVB/NJ mice. No significant difference was obtained for nerve growth factor between the two strains. Levels of IgG isotypes deposited in fetal brain of BTBR mice were significantly higher than in FVB mice except for IgG1. Overall, these results suggest that prenatal alterations in expression of various fetal brain proteins may be implicated in aberrant behavioral characteristics of BTBR mice.
Collapse
Affiliation(s)
- So-Ryeon Hwang
- a Department of Occupational Health , College of Medical and Public Health Sciences, Catholic University of Daegu , Gyeongsan-si , Republic of Korea
| | | | | | | | | | | |
Collapse
|
27
|
Zhang Q, Gao S, Zhao H. Thioredoxin: A novel, independent diagnosis marker in children with autism. Int J Dev Neurosci 2014; 40:92-6. [DOI: 10.1016/j.ijdevneu.2014.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Qing‐biao Zhang
- Department of Pediatric Internal MedicineLinyi People's HospitalLinyiShandong ProvincePR China
| | - Si‐ju Gao
- Department of Pediatric Internal MedicineLinyi People's HospitalLinyiShandong ProvincePR China
| | - Hong‐xiang Zhao
- Department of Pediatric Internal MedicineLinyi People's HospitalLinyiShandong ProvincePR China
| |
Collapse
|