1
|
Wunderlich ALM, Martins AB, de Souza CF, Stopa LRS, Monteiro ÉCAM, Aguiar DD, Guergolette RP, Zaia CTBV, Uchôa ET. Neonatal overnutrition, but not neonatal undernutrition, disrupts CCK-induced hypophagia and neuron activation of the nucleus of the solitary tract and paraventricular nucleus of hypothalamus of male Wistar rats. Brain Res Bull 2023; 195:109-119. [PMID: 36813046 DOI: 10.1016/j.brainresbull.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Metabolic programming may be induced by reduction or enhancement of litter size, which lead to neonatal over or undernutrition, respectively. Changes in neonatal nutrition can challenge some regulatory processes in adulthood, such as the hypophagic effect of cholecystokinin (CCK). In order to investigate the effects of nutritional programming on the anorexigenic function of CCK in adulthood, pups were raised in small (SL, 3 pups per dam), normal (NL, 10 pups per dam), or large litters (LL, 16 pups per dam), and on postnatal day 60, male rats were treated with vehicle or CCK (10 µg/Kg) for the evaluation of food intake and c-Fos expression in the area postrema (AP), nucleus of solitary tract (NTS), and paraventricular (PVN), arcuate (ARC), ventromedial (VMH), and dorsomedial (DMH) nuclei of the hypothalamus. Overnourished rats showed increased body weight gain that was inversely correlated with neuronal activation of PaPo, VMH, and DMH neurons, whereas undernourished rats had lower body weight gain, inversely correlated with increased neuronal activation of PaPo only. SL rats showed no anorexigenic response and lower neuron activation in the NTS and PVN induced by CCK. LL exhibited preserved hypophagia and neuron activation in the AP, NTS, and PVN in response to CCK. CCK showed no effect in c-Fos immunoreactivity in the ARC, VMH, and DMH in any litter. These results indicate that anorexigenic actions, associated with neuron activation in the NTS and PVN, induced by CCK were impaired by neonatal overnutrition. However, these responses were not disrupted by neonatal undernutrition. Thus, data suggest that an excess or poor supply of nutrients during lactation display divergent effects on programming CCK satiation signaling in male adult rats.
Collapse
Affiliation(s)
| | - Andressa Busetti Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Camila Franciele de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Larissa Rugila S Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Danielly D Aguiar
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rhauany P Guergolette
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Cássia Thaïs B V Zaia
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Ernane Torres Uchôa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, PR, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods 2023; 12:foods12040743. [PMID: 36832818 PMCID: PMC9955882 DOI: 10.3390/foods12040743] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Dietary fiber has been widely used in designing foods with a high satiating capacity, as the use of satiety-enhancing food is considered to be a promising strategy for combating obesity and the overweight condition. In the present study, partially degraded konjac glucomannan (DKGM) diets with different water-holding capacities, swelling capacities, and viscosities were used to feed rats to investigate the effects of the fiber's physical properties in regulating the appetite response of the animals. The results showed that the mass and water content of the gastrointestinal chyme increased as the diet's physical properties were enhanced by the DKGM, which increased the stomach distention of the rats and promoted satiation. Besides, the hydrated DKGM elevated the chyme's viscosity, and the retention time of the digesta in the small intestine was prolonged significantly, which resulted in an increased concentration of cholecystokinin-8, glucagon-like peptide 1, and peptide tyrosine-tyrosine in the plasma, thus helping to maintain the satiety of rats. Furthermore, the results of the behavioral satiety sequence and meal pattern analysis showed that DKGM in the diets is more likely to reduce the food intake of rats by enhancing satiety rather than satiation, and will finally inhibit excessive weight gain. In conclusion, the physical properties of dietary fiber are highly related to the appetite response, which is a powerful tool in designing food with a high satiating capacity.
Collapse
|
3
|
Early life stress induced by maternal separation during lactation alters the eating behavior and serotonin system in middle-aged rat female offspring. Pharmacol Biochem Behav 2020; 192:172908. [DOI: 10.1016/j.pbb.2020.172908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 01/31/2023]
|
4
|
Tavares GA, do Amaral Almeida LC, de Souza JA, de Souza FL, Feitosa Braz GR, Silva BT, da Silva Santos AM, Lagranha CJ, de Souza SL. Early weaning modulates eating behavior and promotes hypofunction of the serotonergic (5HT) system in juvenile male rats. Int J Dev Neurosci 2020; 80:209-219. [PMID: 32083748 DOI: 10.1002/jdn.10018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022] Open
Abstract
Early life stress (ELS) has been associated with developmental impairments. Early weaning (EW) is a postnatal stress model consisting of interruption of lactation and maternal care. The 5HT-system has been associated with neurobehavioral modulations promoted by ELS. Thus, the present work aims to investigate the effects of early weaning on feeding behavior and serotonergic system of juvenile male rats. For this, rats were submitted to early (PND15) or natural (PND30) weaning and had the body weight, food intake in circadian phases, and food intake in response to fenfluramine assessed. mRNA expression of serotoninergic receptors (5HT1A and 5HT2C) and transporter (SERT) was assessed in the hypothalamus and brainstem, as well as NPY and POMC mRNA expression in hypothalamus. The results show that early weaning promoted changes in the percentage of weight gain during lactation period and increase in body weight at PND40. It was also observed that EW promoted increase and decrease in food intake in light and dark phase, respectively, and leads to a decreased action of fenfluramine on inhibition of food intake. In addition, early weaning promoted increased NPY and SERT mRNA expression in the hypothalamus and 5HT2C in the brainstem. Together, the data indicate that the stress caused by early weaning impairs the eating behavior of juvenile male rats through hypofunction of the 5HT-system.
Collapse
Affiliation(s)
- Gabriel Araújo Tavares
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
| | | | - Julliet Araújo de Souza
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | | | - Glauber Rudá Feitosa Braz
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Bruna Times Silva
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | | | - Cláudia Jacques Lagranha
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil.,Academic Center of Vitória-CAV, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Sandra Lopes de Souza
- Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
de Souza JA, do Amaral Almeida LC, Tavares GA, Falcão LDAL, Beltrão LC, Costa FCO, de Souza FL, da Silva MC, de Souza SL. Dual exposure to stress in different stages of development affects eating behavior of male Wistar rats. Physiol Behav 2020; 214:112769. [DOI: 10.1016/j.physbeh.2019.112769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023]
|
6
|
Zapata RC, Singh A, Pezeshki A, Avirineni BS, Patra S, Chelikani PK. Low-Protein Diets with Fixed Carbohydrate Content Promote Hyperphagia and Sympathetically Mediated Increase in Energy Expenditure. Mol Nutr Food Res 2019; 63:e1900088. [PMID: 31365786 DOI: 10.1002/mnfr.201900088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/17/2019] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary protein restriction elicits hyperphagia and increases energy expenditure; however, less is known of whether these responses are a consequence of increasing carbohydrate content. The effects of protein-diluted diets with fixed carbohydrate content on energy balance, hormones, and key markers of protein sensing and thermogenesis in tissues are determined. METHODS AND RESULTS Obesity-prone rats (n = 13-16 per group) are randomized to diets containing fixed carbohydrate (52% calories) and varying protein concentrations: 15% (control), 10% (mild protein restriction), 5% (moderate protein restriction) or 1% (severe protein restriction) protein calories, or protein-matched to 5% protein, for 21 days. Propranolol and ondansetron are administered to interrogate the roles of sympathetic and serotonergic systems, respectively, in diet-induced changes in energy expenditure. It is found that mild-to-moderate protein restriction promotes transient hyperphagia, whereas severe protein restriction induces hypophagia, with alterations in meal patterns. Protein restriction enhances energy expenditure that is partly attenuated by propranolol, but not ondansetron. Moderate to severe protein restriction decreases gains in body weight, lean and fat mass, decreased postprandial glucose and leptin, but increased fibroblast growth factor-21 concentrations. Protein-matching retains lean mass suggesting that intake of dietary protein, but not calories, is important for preserving lean mass. Notably, protein restriction increases the protein and/or transcript abundance of key amino acid sensing molecules in liver and intestine (PERK, eIF2α, ATF2, CHOP, 4EBP1, FGF21), and upregulated thermogenic markers (β2AR, Klotho, HADH, UCP-1) in brown adipose tissue. CONCLUSION Low-protein diets promote hyperphagia and sympathetically mediated increase in energy expenditure, prevent gains in tissue reserves, and concurrently upregulate hepatic and intestinal amino acid sensing intermediaries and thermogenic markers in brown adipose tissue.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Bharath S Avirineni
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Souvik Patra
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
7
|
Offspring from maternal nutrient restriction in mice show variations in adult glucose metabolism similar to human fetal growth restriction. J Dev Orig Health Dis 2018; 10:469-478. [PMID: 30501657 DOI: 10.1017/s2040174418000983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fetal growth restriction (FGR) is a pregnancy condition in which fetal growth is suboptimal for gestation, and this population is at increased risk for type 2 diabetes as adults. In humans, maternal malnutrition and placental insufficiency are the most common causes of FGR, and both result in fetal undernutrition. We hypothesized that maternal nutrient restriction (MNR) in mice will cause FGR and alter glucose metabolism in adult offspring. Pregnant CD-1 mice were subjected to MNR (70% of average ad libitum) or control (ad libitum) from E6.5 to birth. Following birth, mice were fostered by mothers on ad libitum feeds. Weight, blood glucose, glucose tolerance and tissue-specific insulin sensitivity were assessed in male offspring. MNR resulted in reduced fetal sizes but caught up to controls by 3 days postnatal age. As adults, glucose intolerance was detected in 19% of male MNR offspring. At 6 months, liver size was reduced (P = 0.01), but pAkt-to-Akt ratios in response to insulin were increased 2.5-fold relative to controls (P = 0.004). These data suggest that MNR causes FGR and long-term glucose intolerance in a population of male offspring similar to human populations. This mouse model can be used to investigate the impacts of FGR on tissues of importance in glucose metabolism.
Collapse
|
8
|
PINHEIRO IL, SANTANA BJRCDE, GALINDO LCM, MANHÃES DE CASTRO R, SOUSA SLD. Perinatal serotonergic activity: A decisive factor in the control of food intake. REV NUTR 2017. [DOI: 10.1590/1678-98652017000400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The serotoninergic system controls key events related to proper nervous system development. The neurotransmitter serotonin and the serotonin transporter are critical for this control. Availability of these components is minutely regulated during the development period, and the environment may affect their action on the nervous system. Environmental factors such as undernutrition and selective serotonin reuptake inhibitors may increase the availability of serotonin in the synaptic cleft and change its anorectic action. The physiological responses promoted by serotonin on intake control decrease when requested by acute stimuli or stress, demonstrating that animals or individuals develop adaptations in response to the environmental insults they experience during the development period. Diseases, such as anxiety and obesity, appear to be associated with the body’s response to stress or stimulus, and require greater serotonergic system action. These findings demonstrate the importance of the level of serotonin in the perinatal period to the development of molecular and morphological aspects of food intake control, and its decisive role in understanding the possible environmental factors that cause diseases in adulthood.
Collapse
|
9
|
Tan C, Wei H, Zhao X, Xu C, Zhou Y, Peng J. Soluble Fiber with High Water-Binding Capacity, Swelling Capacity, and Fermentability Reduces Food Intake by Promoting Satiety Rather Than Satiation in Rats. Nutrients 2016; 8:nu8100615. [PMID: 27706095 PMCID: PMC5084003 DOI: 10.3390/nu8100615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023] Open
Abstract
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior.
Collapse
Affiliation(s)
- Chengquan Tan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xichen Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|