1
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Zhang J, Zhao J, Chen Y, Shi H, Huang X, Wang Y, Wang Y, Wei Y, Xue W, Han J. Effect of mGluR7 on proliferation of human embryonic neural stem cells. Medicine (Baltimore) 2019; 98:e14683. [PMID: 30817600 PMCID: PMC6831331 DOI: 10.1097/md.0000000000014683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study is to investigate the effect of metabotropic glutamate receptor 7 (mGluR7) on the proliferation of human embryonic neural stem cells (NSCs) and its molecular mechanism.Human embryonic NSCs were isolated. The pCMV2-GV146-GFP-mGluR7 plasmid was transfected to over-express mGluR7 while mGluR7 siRNA was transfected to knockdown mGluR7. MTT assay was used to analyze cell proliferation. Flow cytometry was used to detect cell cycle and apoptosis. Protein and mRNA levels were analyzed by Western blot and RT-qPCR, respectively.The viability of human NSCs and the diameter of neurospheres after 24 hours, 48 hours, and 72 hours of transfection significantly increased by mGluR7 overexpression whereas significantly decreased by mGluR7 knockdown. Ki-67 expression was up-regulated by mGluR7 overexpression whereas down-regulated by mGluR7 siRNA, indicating a promotive effect of mGluR7 on NSC proliferation. After mGluR7 overexpression, G1/G0 phase cell ratio dropped significantly compared with control group, while the S phase cell ratio increased. mGluR7 silencing arrested human NSCs at G1/G0 phase. After 48 hours of transfection, there was a decrease of apoptosis by mGluR7 overexpression, while mGluR7 silencing induced apoptosis of human NSCs. Additionally, overexpression of mGluR7 up-regulated the expression of p-serine/threonine kinase (AKT), cyclin D1, and cyclin-dependent kinase 2 (CDK2). The mGluR7 knockdown had opposite effects. Similarly, mGluR7 down-regulated the expression of Caspase-3/9, while the mGluR7 knockdown promoted this.mGluR7 can promote the proliferation of human embryonic cortical NSCs in vitro. This effect may be mediated by promoting cell cycle progression, inhibiting cell apoptosis, activating the AKT signaling pathway, and inhibiting the Caspase-3/9 signaling pathway.
Collapse
|
3
|
Dalley CB, Wroblewska B, Wolfe BB, Wroblewski JT. The Role of Metabotropic Glutamate Receptor 1 Dependent Signaling in Glioma Viability. J Pharmacol Exp Ther 2018; 367:59-70. [PMID: 30054311 DOI: 10.1124/jpet.118.250159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Glioma refers to malignant central nervous system tumors that have histologic characteristics in common with glial cells. The most prevalent type, glioblastoma multiforme, is associated with a poor prognosis and few treatment options. On the basis of reports of aberrant expression of mGluR1 mRNA in glioma, evidence that melanoma growth is directly influenced by glutamate metabotropic receptor 1 (mGluR1), and characterization of β-arrestin-dependent prosurvival signaling by this receptor, this study investigated the hypothesis that glioma cell lines aberrantly express mGluR1 and depend on mGluR1-mediated signaling to maintain viability and proliferation. Three glioma cell lines (Hs683, A172, and U87) were tested to confirm mGluR1 mRNA expression and the dependence of glioma cell viability on glutamate. Pharmacologic and genetic evidence is presented that suggests mGluR1 signaling specifically supports glioma proliferation and viability. For example, selective noncompetitive antagonists of mGluR1, CPCCOEt and JNJ16259685, decreased the viability of these cells in a dose-dependent manner, and glutamate metabotropic receptor 1 gene silencing significantly reduced glioma cell proliferation. Also, results of an anchorage-independent growth assay suggested that noncompetitive antagonism of mGluR1 may decrease the tumorigenic potential of Hs683 glioma cells. Finally, data are provided that support the hypothesis that a β-arrestin-dependent signaling cascade may be involved in glutamate-stimulated viability in glioma cells and that ligand bias may exist at mGluR1 expressed in these cells. Taken together, the results strongly suggest that mGluR1 may act as a proto-oncogene in glioma and be a viable drug target in glioma treatment.
Collapse
Affiliation(s)
- Carrie Bowman Dalley
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barbara Wroblewska
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Barry B Wolfe
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| | - Jarda T Wroblewski
- The Wroblewski Laboratory, Department of Pharmacology and Physiology (C.B.D., B.W., B.B.W., J.T.W.) and School of Nursing and Health Studies (C.B.D.), Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|