1
|
Esposito P, Dubé-Zinatelli E, Krnel R, Cappelletti L, Liang J, Ismail N. Sex-dependent effects of antimicrobials and lipopolysaccharide on blood-brain-barrier permeability in pubertal male and female CD1 mice. Horm Behav 2024; 165:105615. [PMID: 39154391 DOI: 10.1016/j.yhbeh.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Exposure to stressors during puberty can disrupt normal development and possibly increase susceptibility to neurodegenerative disorders later in life. However, the mechanisms underlying the relationship between pubertal stress exposure and neurodegeneration remain unclear. As such, the current study was designed to examine the effects of pubertal antimicrobial (AMNS) and lipopolysaccharide (LPS) treatments on intestinal and blood-brain-barrier (BBB) permeability in male and female mice. Moreover, we also examined the sex-specific effects of pubertal AMNS and LPS treatments on gross motor activity, heart rate, and core body temperature. At four weeks of age, male and female CD1 mice were implanted with the G2 HR E-Mitter telemetry system. At five weeks of age, mice received 200 μL of broad-spectrum antimicrobial or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal injection of either saline or LPS at six weeks of age. BBB and intestinal permeability were examined 24 h, 72 h, and one week post-LPS/saline treatment. Telemetric data was collected for 48 h post-LPS/saline treatment. The results showed that pubertal AMNS and LPS treatments increased sickness behaviours and decreased body temperature and heart rate, in a sex-dependent manner. Furthermore, pubertal AMNS and LPS treatments resulted in sex-dependent regional increases in BBB permeability 24 h and 72 h post-LPS/saline treatment, while global increases in BBB permeability were only observed one week post-LPS/saline treatment. These results further our understanding of the combined effects of AMNS and LPS treatments on physiology and on the enduring negative changes observed following pubertal exposure to stressors.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Rebecca Krnel
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
2
|
Dworsky-Fried M, Tchida JA, Krnel R, Ismail N. Enduring sex-dependent implications of pubertal stress on the gut-brain axis and mental health. Front Behav Neurosci 2024; 17:1285475. [PMID: 38274549 PMCID: PMC10808663 DOI: 10.3389/fnbeh.2023.1285475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The gut-brain axis (GBA) is a network responsible for the bidirectional communication between the central nervous system and the gastrointestinal tract. This multifaceted system is comprised of a complex microbiota, which may be altered by both intrinsic and extrinsic factors. During critical periods of development, these intrinsic and extrinsic factors can cause long-lasting sex-dependent changes in the GBA, which can affect brain structure and function. However, there is limited understanding of how the GBA is altered by stress and how it may be linked to the onset of mental illness during puberty. This article reviews current literature on the relationships between the GBA, the effects of stress during puberty, and the implications for mental health.
Collapse
Affiliation(s)
| | - Jessica A. Tchida
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca Krnel
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- LIFE Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 2024; 17:1248727. [PMID: 38260026 PMCID: PMC10800989 DOI: 10.3389/fnins.2023.1248727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The high prevalence of neurodegenerative diseases is an unintended consequence of the high longevity of the population, together with the lack of effective preventive and therapeutic options. There is great pressure on preclinical research, and both old and new models of neurodegenerative diseases are required to increase the pipeline of new drugs for clinical testing. We review here the main models of neurotoxicity-based animal models leading to central neurodegeneration. Our main focus was on studying how changes in neurotransmission and neuroinflammation, mainly in rodent models, contribute to harmful processes linked to neurodegeneration. The majority of the models currently in use mimic Parkinson's disease (PD) and Alzheimer's disease (AD), which are the most common neurodegenerative conditions in older adults. AD is the most common age-related dementia, whereas PD is the most common movement disorder with also cases of dementia. Several natural toxins and xenobiotic agents induce dopaminergic neurodegeneration and can reproduce neuropathological traits of PD. The literature analysis of MPTP, 6-OH-dopamine, and rotenone models suggested the latter as a useful model when specific doses of rotenone were administrated systemically to C57BL/6 mice. Cholinergic neurodegeneration is mainly modelled with the toxin scopolamine, which is a useful rodent model for the screening of protective drugs against cognitive decline and AD. Several agents have been used to model neuroinflammation-based neurodegeneration and dementia in AD, including lipopolysaccharide (LPS), streptozotocin, and monomeric C-reactive protein. The bacterial agent LPS makes a useful rodent model for testing anti-inflammatory therapies to halt the development and severity of AD. However, neurotoxin models might be more useful than genetic models for drug discovery in PD but that is not the case in AD where they cannot beat the new developments in transgenic mouse models. Overall, we should work using all available models, either in vivo, in vitro, or in silico, considering the seriousness of the moment and urgency of developing effective drugs.
Collapse
Affiliation(s)
- Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Esposito P, Rodriguez C, Gandelman M, Liang J, Ismail N. CD46 expression in the central nervous system of male and female pubescent mice. J Neuroimmunol 2023; 385:578234. [PMID: 37944208 DOI: 10.1016/j.jneuroim.2023.578234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.
Collapse
Affiliation(s)
- Pasquale Esposito
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cloudia Rodriguez
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michelle Gandelman
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jacky Liang
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Smith KB, Zhong J, Gostlin SK, Liang J, Ismail N. Enduring sex-dependent effects of lipopolysaccharide treatment on the hypothalamic-pituitary-gonadal axis in mice. Gen Comp Endocrinol 2023; 340:114324. [PMID: 37247825 DOI: 10.1016/j.ygcen.2023.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Pubertal stress causes enduring sexual behavior dysfunction in males and females, but the underlying mechanism remains unknown. These changes may arise from pubertal programming of the hypothalamic-pituitary-gonadal axis. Previous findings show that stress exposure downregulates the hypothalamic-pituitary-gonadal axis, particularly through the reduction of the neuropeptide kisspeptin (Kiss1) and its receptor (Kiss1R). Although acute changes in kiss1 and Kiss1r genes have been observed following pubertal immune stress, it is unclear whether immune stress-induced downregulation of kiss1 and kiss1r persists beyond puberty. The current study investigated the enduring sex-specific consequences of lipopolysaccharide on the expression of Kiss1 and Kiss1r in 160 pubertal or adult mice at multiple time points. Six-week and 10-week-old male and female mice were treated with either saline or with lipopolysaccharide. Mice were euthanized either 8 h or 4 weeks following treatment. Although we did not identify any sex differences, our results revealed that lipopolysaccharide treatment decreases hypothalamic Kiss1 and Kiss1r in both pubertal and adult mice within 8 h of treatment. The decreased hypothalamic Kiss1 expression persists 4 weeks later only in mice treated with lipopolysaccharide during puberty. Our findings highlight the age-dependent vulnerability of the hypothalamic-pituitary-gonadal axis to immune stress, providing a better understanding of the mechanisms implicated in allostatic shift during immune stress. Finally, our findings also show the effects of immune stress on various components of the hypothalamic-pituitary-gonadal axis, which could have implications for sexual and fertility-related dysfunctions.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Jasmine Zhong
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Sarah K Gostlin
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Jiao Y, Wai Tong CS, Rainer TH. An appraisal of studies using mouse models to assist the biomarker discovery for sepsis prognosis. Heliyon 2023; 9:e17770. [PMID: 37456011 PMCID: PMC10344760 DOI: 10.1016/j.heliyon.2023.e17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clinicians need reliable outcome predictors to improve the prognosis of septic patients. Mouse models are widely used in sepsis research. We aimed to review how mouse models were used to search for novel prognostic biomarkers of sepsis in order to optimize their use for future biomarker discovery. Methods We searched PubMed from 2012 to July 2022 using "((sepsis) AND (mice)) AND ((prognosis) OR (prognostic biomarker))". Results A total of 412 publications were retrieved. We selected those studies in which mouse sepsis was used to demonstrate prognostic potential of biomarker candidates and/or assist the subsequent evaluation in human sepsis for further appraisal. The most frequent models were lipopolysaccharide (LPS) injection and caecal ligation and puncture (CLP) using young male mice. Discovery technologies applied on mice include setting survival and nonsurvivable groups, detecting changes of biomarker levels and measuring physiological parameters during sepsis. None of the biomarkers achieved sufficient clinical performance for clinical use. Conclusions The number of studies and strategies using mouse models to discover prognostic biomarkers of sepsis are limited. Current mouse models need to be further optimized to better conform to human sepsis. Current biomarker platforms do not achieve predictive performance for clinical use.
Collapse
|
8
|
Decker Ramirez EB, Arnold ME, McConnell KT, Solomon MG, Amico KN, Schank JR. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol Behav 2023; 265:114159. [PMID: 36931488 PMCID: PMC10121933 DOI: 10.1016/j.physbeh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Much recent research has demonstrated a role of inflammatory pathways in depressive-like behavior and excess alcohol consumption. Lipopolysaccharide (LPS) is a cell wall component of gram-negative bacteria that can be used to trigger a strong inflammatory response in rodents in a preclinical research setting to study the mechanisms behind this relationship. In our study, we exposed male and female mice to LPS and assessed depressive-like behavior using the social interaction (SI) test, alcohol consumption in the two-bottle choice procedure, and expression of inflammatory mediators using quantitative PCR. We found that LPS administration decreased SI in female mice but had no significant impact on male mice when assessed 24 h after injection. LPS resulted in increased proinflammatory cytokine expression in both male and female mice; however, some aspects of the cytokine upregulation observed was greater in female mice as compared to males. A separate cohort of male and female mice underwent drinking for 12 days before receiving a saline or LPS injection, which we found to increase alcohol intake in both males and females. We have previously observed a role of the neurokinin-1 receptor (NK1R) in escalated alcohol intake, and in the inflammatory and behavioral response to LPS. The NK1R is the endogenous target of the neuropeptide SP, and this system has wide ranging roles in depression, anxiety, drug/alcohol seeking, pain, and inflammation. Thus, we administered a NK1R antagonist prior to alcohol access. This treatment reduced escalated alcohol consumption in female mice treated with LPS but did not affect drinking in males. Taken together, these results indicate that females are more sensitive to some physiological and behavioral effects of LPS administration, but that LPS escalates alcohol consumption in both sexes. Furthermore, NK1R antagonism can reduce alcohol consumption that is escalated by LPS treatment, in line with our previous findings.
Collapse
Affiliation(s)
- E B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K T McConnell
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - J R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA.
| |
Collapse
|
9
|
Murray E, Butcher J, May Kearns M, Lamba S, Liang J, Stintzi A, Ismail N. Effects of pair-housing pubertal and adult male and female mice on LPS-induced age-dependent immune responses: A potential role for the gut microbiota. Brain Behav Immun 2023; 110:297-309. [PMID: 36914014 DOI: 10.1016/j.bbi.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Puberty is a critical period of development that is marked by the maturation of the stress and immune systems. There are marked age and sex differences in peripheral and central inflammatory responses to an immune challenge between pubertal and adult mice. Given the strong link between the gut microbiome and immune system, it is possible that the age and sex differences in immune responses are mediated by age and sex differences in gut microbial composition. The current study investigated whether cohousing adult and pubertal CD1 mice through three weeks of pair-housing, with the potential for microbiome exchange via coprophagy and other close contact, could mitigate age-dependent immune responses. Cytokine concentrations in the blood and cytokine mRNA expression in the brain were assessed following exposure to the immune challenge lipopolysaccharide (LPS). The results show that all mice displayed increased cytokine concentrations in serum and central cytokine mRNA expression in the hippocampus, hypothalamus and prefrontal cortex (PFC) at eight hours following LPS treatment. Pubertal male and female mice, that were pair-housed with a pubertal counterpart, displayed lower cytokine concentrations in serum and lower cytokine mRNA expression in the brain compared to adult mice that were pair-housed with an adult counterpart. However, when adult and pubertal mice were pair-housed, the age differences in both peripheral cytokine concentrations and central cytokine mRNA expression were mitigated. We also found that pair-housing adult and pubertal mice eliminated the age difference in gut bacterial diversity. These results suggest that microbial composition could be involved in modulating these age-associated immune responses and thus may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Emma Murray
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Madeleine May Kearns
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Canada
| | - Sanjeevani Lamba
- School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Jacky Liang
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Canada; University of Ottawa Brain and Mind Research Institute, Canada.
| |
Collapse
|
10
|
Macht V, Vetreno R, Elchert N, Fisher R, Crews F. Indomethacin restores loss of hippocampal neurogenesis and cholinergic innervation and reduces innate immune expression and reversal learning deficits in adult male and female rats following adolescent ethanol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:470-485. [PMID: 36799290 PMCID: PMC10324169 DOI: 10.1111/acer.15019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Adolescent intermittent ethanol (AIE) exposure causes long-term changes in the brain and behavior of adult male rodents, including persistent induction of innate immune pathways, reductions in hippocampal neurogenic and forebrain cholinergic neuronal markers, and reversal learning deficits. The current study tests the hypothesis that proinflammatory induction mediates AIE-induced (1) loss of adult neurogenesis (i.e., doublecortin (DCX) expressing immature neurons), (2) reductions in forebrain and hippocampal cholinergic markers, and (3) reversal learning deficits. METHODS Male and female rats underwent AIE (5.0 g/kg/day ethanol or water, i.g., 2 day-on/2 day-off from postnatal day (PND) 25-54), followed by a 2-week regimen of the anti-inflammatory compound indomethacin (4.0 g/kg/day, PND 56-69) or vehicle, after which one cohort was euthanized for immunohistochemical markers (PND 70) and the second underwent the Morris water maze to assess reversal learning. RESULTS AIE reduced adult (PND 70) DCX+ immunoreactivity (IR) and increased hippocampal expression of the innate immune signal's high-mobility group box protein 1 (HMGB1 + IR) and cyclooxygenase-2 (COX-2 + IR) in adult male and female rats. AIE also reduced choline acetyltransferase (ChAT+IR) in the basal forebrain and co-labeling of hippocampal vesicular acetylcholine transporter (VAChT+) cholinergic terminals on DCX + IR neurons. Indomethacin treatment after AIE restored molecular endpoints to control levels and rescued AIE-induced reversal learning deficits in the Morris water maze in both sexes. Of note, indomethacin produced several adverse effects selectively in control conditions, highlighting the uniquely beneficial effect of indomethacin in AIE rats. CONCLUSIONS These data suggest that in males and females, (1) AIE persistent neuroimmune induction mediates both the loss of adult hippocampal DCX and loss of basal forebrain cholinergic neurons and their innervation to hippocampal targets, and (2) anti-inflammatory indomethacin treatment following AIE that restores these persistent molecular pathologies also restores spatial reversal learning deficits.
Collapse
Affiliation(s)
- Victoria Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North, Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North, Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalie Elchert
- Bowles Center for Alcohol Studies, School of Medicine, University of North, Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachael Fisher
- Bowles Center for Alcohol Studies, School of Medicine, University of North, Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fulton Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North, Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Sisk-Hackworth L, Kelley ST, Thackray VG. Sex, puberty, and the gut microbiome. Reproduction 2023; 165:R61-R74. [PMID: 36445259 PMCID: PMC9847487 DOI: 10.1530/rep-22-0303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
In brief Sex differences in the gut microbiome may impact multiple aspects of human health and disease. In this study, we review the evidence for microbial sex differences in puberty and adulthood and discuss potential mechanisms driving differentiation of the sex-specific gut microbiome. Abstract In humans, the gut microbiome is strongly implicated in numerous sex-specific physiological processes and diseases. Given this, it is important to understand how sex differentiation of the gut microbiome occurs and how these differences contribute to host health and disease. While it is commonly believed that the gut microbiome stabilizes after 3 years of age, our review of the literature found considerable evidence that the gut microbiome continues to mature during and after puberty in a sex-dependent manner. We also review the intriguing, though sparse, literature on potential mechanisms by which host sex may influence the gut microbiome, and vice versa, via sex steroids, bile acids, and the immune system. We conclude that the evidence for the existence of a sex-specific gut microbiome is strong but that there is a dearth of research on how host-microbe interactions lead to this differentiation. Finally, we discuss the types of future studies needed to understand the processes driving the maturation of sex-specific microbial communities and the interplay between gut microbiota, host sex, and human health.
Collapse
Affiliation(s)
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, California 92182
| | - Varykina G. Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
12
|
Yahfoufi N, Kadamani AK, Aly S, Al Sharani S, Liang J, Butcher J, Stintzi A, Matar C, Ismail N. Pubertal consumption of R. badensis subspecies acadiensis modulates LPS-induced immune responses and gut microbiome dysbiosis in a sex-specific manner. Brain Behav Immun 2023; 107:62-75. [PMID: 36174885 DOI: 10.1016/j.bbi.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/09/2023] Open
Abstract
Puberty is a critical period of development characterized by significant brain remodeling and increased vulnerability to immune challenges. Exposure to an immune challenge such as LPS during puberty can result in inflammation and gut dysbiosis which may lead to altered brain functioning and psychiatric illnesses later in life. However, treatment with probiotics during puberty has been found to mitigate LPS-induced peripheral and central inflammation, prevent LPS-induced changes to the gut microbiota and protect against enduring behavioural disorders in a sex-specific manner. Recent findings from our laboratory revealed that pubertal R. badensis subspecies acadiensis (R. badensis subsp. acadiensis) treatment prevents LPS-induced depression-like behavior and alterations in 5HT1A receptor expression in a sex-specific manner. However, the underlying mechanism remains unclear. Thus, the aim of this study was to gain mechanistic insights and to investigate the ability of R. badensis subsp. acadiensis consumption during puberty to mitigate the effects of LPS treatment on the immune system and the gut microbiome. Our results revealed that pubertal treatment with R. badensis subsp. acadiensis reduced sickness behaviors in females more than males in a time-specific manner. It also mitigated LPS-induced increases in pro-inflammatory cytokines in the blood and in TNFα mRNA expression in the prefrontal cortex and the hippocampus of female mice. There were sex-dependent differences in microbiome composition that persisted after LPS injection or R. badensis subsp. acadiensis consumption. R. badensis subsp. acadiensis had greater impact on the microbiota of male mice but female microbiota's were more responsive to LPS treatment. This suggested that female mice microbiota's may be more prone to modulation by this probiotic. These findings emphasize the sex-specific effects of probiotic use during puberty on the structure of the gut microbiome and the immune system and highlight the critical role of gut colonization with probiotics during adolescence on immunomodulation and prevention of the enduring effects of infections.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Anthony K Kadamani
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Sarah Aly
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Sara Al Sharani
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Esposito P, Gandelman M, Rodriguez C, Liang J, Ismail N. The acute effects of antimicrobials and lipopolysaccharide on the cellular mechanisms associated with neurodegeneration in pubertal male and female CD1 mice. Brain Behav Immun Health 2022; 26:100543. [PMID: 36345322 PMCID: PMC9636049 DOI: 10.1016/j.bbih.2022.100543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to stressors during puberty can cause enduring effects on brain functioning and behaviours related to neurodegeneration. However, the mechanisms underlying these effects remain unclear. The gut microbiome is a complex and dynamic system that could serve as a possible mechanism through which early life stress may increase the predisposition to neurodegeneration. Therefore, the current study was designed to examine the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatments on the cellular mechanisms associated with neurodegenerative disorders in male and female mice. At five weeks of age, male and female CD-1 mice received 200 μL of broad-spectrum antimicrobials or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal (i.p.) injection of either saline or LPS at 6 weeks of age (i.e., pubertal period). Sickness behaviours were recorded and mice were euthanized 8 h post-injection. Following euthanasia, brains and blood samples were collected. The results indicated that puberal antimicrobial and LPS treatment induced sex-dependent changes in biomarkers related to sickness behaviour, peripheral inflammation, intestinal permeability, and neurodegeneration. The findings suggest that pubertal LPS and antimicrobial treatment may increase susceptibility to neurodegenerative diseases later in life, particularly in males.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Cloudia Rodriguez
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
14
|
Esposito P, Ismail N. Linking Puberty and the Gut Microbiome to the Pathogenesis of Neurodegenerative Disorders. Microorganisms 2022; 10:2163. [PMID: 36363755 PMCID: PMC9697368 DOI: 10.3390/microorganisms10112163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
Puberty is a critical period of development marked by the maturation of the central nervous system, immune system, and hypothalamic-pituitary-adrenal axis. Due to the maturation of these fundamental systems, this is a period of development that is particularly sensitive to stressors, increasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis has been implicated in the development of neurodevelopmental and neurodegenerative disorders. The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration, and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understanding how alterations to the gut microbiome, particularly during critical periods of development (i.e., puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic strategies to prevent them.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
16
|
Castillo-Ruiz A, Cisternas CD, Sturgeon H, Forger NG. Birth triggers an inflammatory response in the neonatal periphery and brain. Brain Behav Immun 2022; 104:122-136. [PMID: 35661680 DOI: 10.1016/j.bbi.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022] Open
Abstract
Birth is preceded by inflammation at the fetal/maternal interface. Additionally, the newborn experiences stimuli that under any other circumstance could elicit an immune response. It is unknown, however, whether birth elicits an inflammatory response in the newborn that extends to the brain. Moreover, it is unknown whether birth mode may alter such a response. To study these questions, we first measured corticosterone and pro- and anti-inflammatory cytokines in plasma of mouse offspring at several timepoints spaced closely before and after a vaginal or Cesarean birth. We found highest levels of IL-6 one day before birth and surges in corticosterone and IL-10 just after birth, regardless of birth mode. We next examined the neuroimmune response by measuring cytokine mRNA expression and microglial number and morphology in the paraventricular nucleus of the hypothalamus and hippocampus around the time of birth. We found a marked increase in TNF-α expression in both brain regions a day after birth, and rapid increases in microglial cell number in the first three days postnatal, with subtle differences by birth mode. To test whether the association between birth and cytokine production or expansion of microglia is causal, we manipulated birth timing. Remarkably, advancing birth by a day advanced the increases in all of the markers tested. Thus, birth triggers an immune response in the body and brain of offspring. Our results may provide a mechanism for effects of birth (e.g., acute changes in cell death and neural activation) previously reported in the newborn brain.
Collapse
Affiliation(s)
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Hannah Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
17
|
Pubertal LPS treatment selectively alters PSD-95 expression in male CD-1 mice. Brain Res Bull 2021; 175:186-195. [PMID: 34333052 DOI: 10.1016/j.brainresbull.2021.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Puberty includes a highly stress-sensitive period with significant sex differences in the neurophysiological and behavioural outcomes of a peripheral immune challenge. Sex differences in the pubertal neuroimmune network's responses to systemic LPS may explain some of these enduring sex-specific outcomes of a pubertal immune challenge. However, the functional implications of these sex-specific neuroimmune responses on the local microenvironment are unclear. Western blots were used to examine treatment- and sex-related changes in expression of regulatory proteins in inflammation (NFκB), cell death (AIF), oxidative stress (SOD-1), and synaptic plasticity (PSD-95) following symptomatic recovery (i.e., one week post-treatment) from pubertal immune challenge. Across the four examined brain regions (i.e., hippocampus, PFC, hypothalamus, and cerebellum), only PSD-95 levels were altered one week post-treatment by the pubertal LPS treatment. Unlike their female counterparts, seven-week-old males showed increased PSD-95 expression in the hippocampus (p < .05). AIF, SOD-1, and NFκB levels in both sexes were unaffected by treatment (all p > .05), which suggests appropriate resolution of NFκB-mediated immune responses to pubertal LPS without stimulating AIF-mediated apoptosis and oxidative stress. We also report a significant male-biased sex difference in PSD-95 levels in the PFC and in cerebellar expression of SOD-1 during puberty (all p < .05). These findings highlight the sex-specific vulnerability of the pubertal hippocampus to systemic LPS and suggest that a pubertal immune challenge may expedite neurodevelopment in the hippocampus in a sex-specific manner.
Collapse
|
18
|
Peng H, Nixon K. Microglia Phenotypes Following the Induction of Alcohol Dependence in Adolescent Rats. Alcohol Clin Exp Res 2021; 45:105-116. [PMID: 33164228 PMCID: PMC8296648 DOI: 10.1111/acer.14504] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Activation of the innate immune system may play a role in the development of alcohol use disorders (AUDs), which often originate with adolescent alcohol abuse. A key player in the innate immune system is microglia, the activation of which occurs along a spectrum from proinflammatory, or M1-like, to anti-inflammatory, or M2-like, phenotypes. METHODS Adolescent, male rats were gavaged with ethanol (EtOH) or isocaloric control diet every 8 hours for 4 days and then sacrificed at 0, 2, 7, and 14 days later. Microglia were isolated from the entorhinal cortex and hippocampus by Percoll gradient centrifugation, labeled with surface antigens for activation, and analyzed by flow cytometry. Polarization states of microglia, defined as CD11b+ CD45low cells, were determined by the expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, and CD86, and M2 surface marker, CD206 (mannose receptor). Cytokine gene expression was measured by reverse transcriptase polymerase chain reaction. RESULTS Isolated cells were a highly enriched population (>95% pure) of microglia/macrophages according to CD11b immunoreactivity. EtOH rats showed the most dramatic increases in microglia activation markers CD11b and CD45, and M1 (MHC-II) and M2 (CD206) markers at T2, when additional M1 markers CD86 and CD32 were also increased. Surprisingly, proinflammatory gene expression of CCL2, IL-1β, IL-6, and TNF-α generally was decreased at all time points in EtOH rats except for IL-6 which was increased at T0 and TNF-α which was not changed at T0 in either region. Simultaneously, BDNF expression was increased at T2 and T7, while IGF1 and TGF-β gene expression was decreased. Arginase was also increased at T0 in hippocampus, but not changed by alcohol otherwise. CONCLUSIONS These data show that microglia phenotype after alcohol dependence is not a simple M1 or M2 classification, though more indicators of an anti-inflammatory phenotype were observed. Determining microglia phenotype is critical for understanding their role in the development of AUDs.
Collapse
Affiliation(s)
- Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences Lexington, KY 40536, USA
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX USA
| |
Collapse
|
19
|
Smith CJ, Bilbo SD. Sickness and the Social Brain: Love in the Time of COVID. Front Psychiatry 2021; 12:633664. [PMID: 33692712 PMCID: PMC7937950 DOI: 10.3389/fpsyt.2021.633664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
As a highly social species, inclusion in social networks and the presence of strong social bonds are critical to our health and well-being. Indeed, impaired social functioning is a component of numerous neuropsychiatric disorders including depression, anxiety, and substance use disorder. During the current COVID-19 pandemic, our social networks are at risk of fracture and many are vulnerable to the negative consequences of social isolation. Importantly, infection itself leads to changes in social behavior as a component of "sickness behavior." Furthermore, as in the case of COVID-19, males and females often differ in their immunological response to infection, and, therefore, in their susceptibility to negative outcomes. In this review, we discuss the many ways in which infection changes social behavior-sometimes to the benefit of the host, and in some instances for the sake of the pathogen-in species ranging from eusocial insects to humans. We also explore the neuroimmune mechanisms by which these changes in social behavior occur. Finally, we touch upon the ways in which the social environment (group living, social isolation, etc.) shapes the immune system and its ability to respond to challenge. Throughout we emphasize how males and females differ in their response to immune activation, both behaviorally and physiologically.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
20
|
Gildawie KR, Orso R, Peterzell S, Thompson V, Brenhouse HC. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. Neurosci Lett 2020; 738:135381. [PMID: 32927000 PMCID: PMC7584734 DOI: 10.1016/j.neulet.2020.135381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Neuroimmune mechanisms play critical roles in brain development and can be impacted by early life adversity. Microglia are the resident immune cells in the brain, with both sex-specific and region-specific developmental profiles. Since early life adversity is associated with several neuropsychiatric disorders with developmental pathogeneses, here we investigated the degree to which maternal separation (MS) impacted microglia over development. Microglia are dynamic cells that alter their morphology in accordance with their functions and in response to stressors. While males and females reportedly display different microglial morphology in several brain regions over development and following immune and psychological challenges, little is known about such differences in the prefrontal cortex (PFC), which regulates several early life adversity-attributable disorders. Additionally, little is known about the potential for early life adversity to prime microglia for later immune challenges. In the current study, male and female rats were exposed to MS followed by lipopolysaccharide administration in juvenility or adolescence. The prelimbic and infralimbic PFC were then separately analyzed for microglial density and morphology. Typically developing males expressed smaller soma and less arborization than females in juvenility, but larger soma than females in adolescence. MS led to fewer microglia in the infralimbic PFC of adolescent males. Both MS and lipopolysaccharide administration affected morphological characteristics in juvenile males and females, with MS exposure leading to a greater increase in soma size following lipopolysaccharide. Interestingly, effects of MS and lipopolysaccharide were not observed in adolescence, while notable sex differences in PFC microglial morphology were apparent. Taken together, these findings provide insight into how PFC microglia may differentially respond to challenges over development in males and females.
Collapse
Affiliation(s)
| | - Rodrigo Orso
- Psychology Department, Northeastern University, Boston, MA, USA; Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
21
|
Taki F, Lopez K, Zupan B, Bergin P, Docampo MD, Alves-Bezerra M, Toth JG, Chen Q, Argyropoulos KV, Barboza L, Pickup E, Fancher N, Hiller A, Gross S, Cohen DE, van den Brink MRM, Toth M. Maternal Programming of Social Dominance via Milk Cytokines. iScience 2020; 23:101357. [PMID: 32712464 PMCID: PMC7390789 DOI: 10.1016/j.isci.2020.101357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Regular physical activity improves physical and mental health. Here we found that the effect of physical activity extends to the next generation. Voluntary wheel running of dams, from postpartum day 2 to weaning, increased the social dominance and reproductive success, but not the physical/metabolic health, of their otherwise sedentary offspring. The individual's own physical activity did not improve dominance status. Maternal exercise did not disrupt maternal care or the maternal and offspring microbiota. Rather, the development of dominance behavior in the offspring of running mothers could be explained by the reduction of LIF, CXCL1, and CXCL2 cytokines in breast milk. These data reveal a cytokine-mediated lactocrine pathway that responds to the mother's postpartum physical activity and programs offspring social dominance. As dominance behaviors are highly relevant to the individual's survival and reproduction, lactocrine programming could be an evolutionary mechanism by which a mother promotes the social rank of her offspring.
Collapse
Affiliation(s)
- Faten Taki
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Katherine Lopez
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Bojana Zupan
- Psychological Science Department, Vassar College, Poughkeepsie 124 Raymond Avenue, New York, NY 12604, USA
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Melissa D Docampo
- Departments of Medicine and Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Weill Department of Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY 10021, USA
| | - Judit Gal Toth
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Kimon V Argyropoulos
- Departments of Medicine and Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Luendreo Barboza
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Emily Pickup
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Nicholas Fancher
- Psychological Science Department, Vassar College, Poughkeepsie 124 Raymond Avenue, New York, NY 12604, USA
| | - Abbi Hiller
- Psychological Science Department, Vassar College, Poughkeepsie 124 Raymond Avenue, New York, NY 12604, USA
| | - Steven Gross
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Department of Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY 10021, USA
| | - Marcel R M van den Brink
- Departments of Medicine and Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Csaba G. Reprogramming of the Immune System by Stress and Faulty Hormonal Imprinting. Clin Ther 2020; 42:983-992. [PMID: 32307123 DOI: 10.1016/j.clinthera.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Hormonal imprinting is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. However, in this crucial period when the developmental window for physiological imprinting is open, other molecules, such as synthetic hormones and endocrine disruptors can bind to the receptors, leading to faulty imprinting with life-long consequences, especially to the immune system. This review presents the factors of stress and faulty hormonal imprinting that lead to reprogramming of the immune system. METHODS Relevant publications from Pubmed since 1990 were reviewed and synthesized. FINDINGS The developing immune system is rather sensitive to hormonal effects. Faulty hormonal imprinting is able to reprogram the original developmental program present in a given cell, with lifelong consequences, manifested in alteration of hormone binding by receptors, susceptibility to certain (non-infectious) diseases, and triggering of other diseases. As stress mobilizes the hypothalamic-pituitary-adrenal axis if it occurred during gestation or perinatally, it could lead to faulty hormonal imprinting in the immune system, manifested later as allergic and autoimmune diseases or weakness of normal immune defenses. Hormonal imprinting is an epigenetic process and is carried to the offspring without alteration of DNA base sequences. This means that any form of early-life stress alone or in association with hormonal imprinting could be associated with the developmental origin of health and disease (DOHaD). As puberty is also a period of reprogramming, stress or faulty imprinting can change the original (developmental) program, also with life-long consequences. IMPLICATIONS Considering the continuous differentiation of immune cells (from blast-cells) during the whole life, there is a possibility of late-imprinting or stress-activated reprogramming in the immune system at any periods of life, with later pathogenetic consequences.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell, and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
23
|
Pubertal probiotic blocks LPS-induced anxiety and the associated neurochemical and microbial outcomes, in a sex dependent manner. Psychoneuroendocrinology 2020; 112:104481. [PMID: 31812896 DOI: 10.1016/j.psyneuen.2019.104481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/18/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Puberty is a critical period of neural development, and exposure to stress and inflammation during this period is thought to increase vulnerability to mental illness. The gut microbiome influences brain functioning and behavior and impacts mental health. Yet, the role of the gut microbiome during puberty, a period during which mental health conditions tend to onset, remains largely uninvestigated. We first examined age and sex differences in gut microbial changes among CD-1 mice exposed to an immune challenge (lipopolysaccharide; LPS) at 6 weeks of age (during the pubertal stress-sensitive period) or at 10 weeks of age (in adulthood) (Experiment 1). Compared to their adult counterparts, pubertal males and females showed more significant changes in gut microbial composition following LPS treatment, including the depletion of numerous bacterial genera such as Lactobacillus. Given the beneficial effects of Lactobacillus strains on stress and behaviour, we next investigated whether replenishment of the gut with the probiotic Lactobacillus reuteri (L. reuteri) throughout pubertal development would modulate LPS-induced sickness and enduring effects on memory dysfunction, anxiety-like behaviour and stress reactivity in adulthood (Experiment 2). LPS treatment at 6 weeks of age created enduring changes in anxiety-like behaviors among males only. Similarly, only males showed the protective effects of L. reuteri supplementation during puberty in preventing longstanding LPS-induced changes in anxiety-like behavior and stress-induced brain activation. These findings demonstrate that colonizing the gut with L. reuteri during puberty modulates sickness responses and enduring behavioural and neurochemical outcomes in a sex-specific manner. Therefore, colonizing the gut with beneficial microbes may protect against the development of mental illnesses in adulthood.
Collapse
|
24
|
Halawa AA, Rees KA, McCamy KM, Winzer-Serhan UH. Central and peripheral immune responses to low-dose lipopolysaccharide in a mouse model of the 15q13.3 microdeletion. Cytokine 2019; 126:154879. [PMID: 31629107 DOI: 10.1016/j.cyto.2019.154879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Carriers of the human 15q13.3 microdeletion (MD) present with a variable spectrum of neuropathological phenotypes that range from asymptomatic to severe clinical outcomes, suggesting an interplay of genetic and non-genetic factors. The most common 2 MB 15q13.3 MD encompasses six genes (MTMR10, FAN1, TRPM1, KLF13, OTUD7A, and CHRNA7), which are expressed in neuronal and non-neuronal tissues. The nicotinic acetylcholine receptor (nAChR) α7, encoded by CHRNA7, is a key player in the cholinergic anti-inflammatory pathway, and the transcription factor KLF13 is also involved in immune responses. Using a mouse model with a heterozygous deletion of the orthologous region of the human 15q13.3 (Df[h15q13]/+), the present study examined peripheral and central innate immune responses to an acute intraperitoneal (i.p.) injection of the bacteriomimetic, lipopolysaccharide (LPS) (100 μg/kg) in adult heterozygous (Het) and wildtype (WT) mice. Serum levels of inflammatory markers were measured 2 h post injection using a Multiplex assay. In control saline injected animals, all measured cytokines were at or below detection limits, whereas LPS significantly increased serum levels of interleukin 1beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6 and IL-10, but not interferon-γ. There was no effect of genotype but a sexual dimorphic response for TNF-α, with females exhibiting greater LPS-induced TNF-α serum levels than males. In situ hybridization revealed similar increases in LPS-induced c-fos mRNA expression in the dorsal vagal complex in all groups. The hippocampal expression of the pro-inflammatory cytokines was evaluated by real-time quantitative PCR. LPS-treatment resulted in significantly increased mRNA expression for IL-1β, IL-6, and TNF-α compared to saline controls, with no effect of genotype, but a significant sex-effect was detected for IL-1β. The present study provided no evidence for interactive effects between the heterozygous 15q13.3 MD and a low-dose LPS immune challenge in innate peripheral or central immune responses, although, sex-differential effects in males and females were detected.
Collapse
Affiliation(s)
- Amal A Halawa
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
25
|
Zenz G, Farzi A, Fröhlich EE, Reichmann F, Holzer P. Intranasal Neuropeptide Y Blunts Lipopolysaccharide-Evoked Sickness Behavior but Not the Immune Response in Mice. Neurotherapeutics 2019; 16:1335-1349. [PMID: 31338703 PMCID: PMC6985076 DOI: 10.1007/s13311-019-00758-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropeptide Y (NPY) has been demonstrated to exert stress buffering effects and promote resilience. Non-invasive intranasal (IN) application of NPY to rodents is able to mitigate traumatic stress-induced behavioral changes as well as dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. However, it is unknown whether IN NPY could prevent the behavioral, pro-inflammatory and neurochemical responses to peripheral immune activation by the Toll-like receptor 4 (TLR4) stimulant lipopolysaccharide (LPS). Therefore, we analyzed the effects of IN NPY (100 μg) on the behavioral sickness response (reduced locomotion and exploration) and the underlying molecular mechanisms, 3 h and 21 h after intraperitoneal injections of LPS (0.03 mg/kg) in male C57BL/6N mice. The acute behavioral sickness response was significantly dampened by pretreatment with IN NPY 3 h after LPS injection. This effect was accompanied by diminished weight loss and lowered plasma corticosterone (CORT) levels 21 h after LPS injection. In contrast, acute circulating cytokine levels and hypothalamic cytokine mRNA expression remained unaltered by IN NPY, which indicates that the peripheral and cerebral immune response to LPS was left undisturbed. Our findings are in agreement with the reported activity of NPY to dampen the response of the HPA axis to stress. We propose that IN NPY ablates sickness behavior at a site beyond the peripheral and cerebral cytokine response, an action that is associated with reduced activity of the HPA axis as determined by decreased plasma CORT.These results indicate that IN NPY administration may be relevant to the management of neuropsychiatric disorders arising from immune-induced neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Geraldine Zenz
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, A-8010, Graz, Austria
| |
Collapse
|
26
|
Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav Immun 2019; 81:198-212. [PMID: 31212008 DOI: 10.1016/j.bbi.2019.06.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Puberty/adolescence is a significant period of development and a time with a high emergence of psychiatric disorders. During this period, there is increased neuroplasticity and heightened vulnerability to stress and inflammation. The gut microbiome regulates stress and inflammatory responses and can alter brain chemistry and behaviour. However, the role of the gut microbiota during pubertal development remains largely uninvestigated. The current study examined gut manipulation with probiotics during puberty in CD1 mice on lipopolysaccharide (LPS)-induced immune responses and enduring effects on anxiety- and depression-like behaviours and stress-reactivity in adulthood. Probiotics reduced LPS-induced sickness behaviour at 12 h in females and at 48 h following LPS treatment in males. Probiotics also reduced LPS-induced changes in body weight at 48 h post-treatment in females. Probiotic treatment also prevented LPS-induced increases in pro- and anti-inflammatory peripheral cytokines at 8 h following LPS treatment, reduced central cytokine mRNA expression in the hypothalamus, hippocampus and PFC, and prevented LPS-induced changes to in the gut microbiota. A single exposure to LPS during puberty resulted in enduring depression-like behaviour in female mice, and anxiety-like behaviour in male mice in adulthood. However, pubertal exposure to probiotics prevented enduring LPS-induced depression-like behaviour in females and anxiety-like behaviors in males. Moreover, probiotics altered toll-like receptor-4 activity in the paraventricular nucleus of the hypothalamus (PVN) in males in response to a novel stressor in adulthood. Our results suggest that the gut microbiome plays an important role in pubertal neurodevelopment. These findings indicate that exposure to probiotics during puberty mitigates inflammation and decreases stress-induced vulnerabilities to emotional behaviours later in life, in a sex-specific manner.
Collapse
|
27
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
28
|
Tsyglakova M, McDaniel D, Hodes GE. Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 2019; 54:100771. [PMID: 31325456 DOI: 10.1016/j.yfrne.2019.100771] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Stress has an impact on the brain and the body. A growing literature demonstrates that feedback between the peripheral immune system and the brain contributes to individual differences in the behavioral response to stress. Here we examine preclinical literature to demonstrate a holistic vision of risk and resilience to stress. We identify a variety of cellular, cytokine and molecular mechanisms in adult animals that act in concert to produce a stress susceptible individual response. We discuss how cross talk between immune cells in the brain and in the periphery act together to increase permeability across the blood brain barrier or block it, resulting in susceptible or stress resilient phenotype. These preclinical studies have importance for understanding how individual differences in the immune response to stress may be contributing to mood related disorders such as depression, anxiety and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dylan McDaniel
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
29
|
The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Feed contamination is a major cause of diseases outbreak in the poultry industry. There is a direct relationship between feeding, the intestinal microbiota and how the immune system responds to disease infestation. Cereals which form the bulk of poultry feed are mostly contaminated by mycotoxins of Fusarium origin. Adequate knowledge of mycotoxins and their effects on animals is necessary. Deoxynivalenol (DON) is a major contaminant of poultry feed. DON has the ability to bind with a large number of eukaryotic ribosomal subunits because of the presence of an epoxide group and these disrupt the activity of peptidyl transferase and the elongation or shortening of peptide chains. Deoxynivalenol has varying effect ranging from acute, overt diseases with high morbidity and death to chronic disease, decreased resistance to pathogens and reduced animal productivity. Deoxynivalenol also impairs the intestinal morphology, nutrient absorption, barrier function, and the innate immune response in chickens. This review highlights the impacts of deoxynivalenol on the immune system, intestinal microbiota composition and the morphology of chicken.
Collapse
|
30
|
Kolmogorova D, Paré C, Kostuck S, Hudson EC, Lebel N, Houlding E, Gregory JG, Ismail N. Pubertal immune stress transiently alters spatial memory processes in adulthood. Psychoneuroendocrinology 2019; 102:261-272. [PMID: 30594819 DOI: 10.1016/j.psyneuen.2018.12.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Pubertal immune challenge can permanently alter hippocampus-dependent memory processes in a sex-specific manner. Although gonadal hormones can influence various cognitive processes, their role in regulating the cognitive sequelae to pubertal immune challenge has not been thoroughly assessed. We examined whether a pubertal immune challenge could affect hippocampus-dependent memory functions in adulthood and whether these effects are regulated by gonadal steroid hormones. We hypothesized that exposure to an immune challenge during puberty would induce sex-specific deficits in the behavioral and cellular correlates of hippocampus-dependent memory during adulthood. At six weeks of age, during the stress-vulnerable pubertal period, male and female CD-1 mice were injected with either saline or the bacterial endotoxin lipopolysaccharide (LPS). Three weeks later, mice underwent either gonadectomy or sham-surgery. At ten weeks of age (i.e., in adulthood), mice began behavioral testing in an open field, Barnes maze, and Morris water maze. Brain tissue was collected at 17 weeks of age and stained for doublecortin and Ki67 to examine migrating neuronal progenitor cells and cellular proliferation in the neurogenic subgranular zone (SGZ) and the cornus ammonis (CA)1 and CA3 regions of the hippocampus. Pubertal LPS treatment impaired learning during adulthood in both sexes and increased cellular proliferation in the CA1 region in castrated males only. Although adult sex hormones did not reliably modulate these changes, gonadectomy impaired learning during the Morris water maze in both sexes. Learning deficits were more prominent during the Barnes maze, which suggests a stress-dependent expression of LPS-induced cognitive deficits. Neurogenesis in the SGZ and cellular proliferation in the CA3 were not affected by pubertal LPS treatment or gonadectomy. These novel findings emphasize the sensitivity of developing cognitive processes during puberty to immune challenges and suggest a possible mechanism for learning-based difficulties in adulthood.
Collapse
Affiliation(s)
- Daria Kolmogorova
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Catherine Paré
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Kostuck
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Christine Hudson
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Nicholas Lebel
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth Houlding
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - James Gardner Gregory
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
31
|
Sharma R, Kearns MM, Sarr F, Ismail N. The adaptive immune and stress responses of adult female CD1 mice following exposure to a viral mimetic. Immunol Lett 2019; 208:30-38. [PMID: 30880119 DOI: 10.1016/j.imlet.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
Abstract
Exposure to a bacterial endotoxin during puberty induces long-term changes to reproductive and non-reproductive behaviours. While the underlying mechanisms remain unknown, we have recently shown that there are age and sex differences in acute immune and stress responses following immune challenge. Given that it is unclear whether viral infections result in similar age and sex differences, the objective of this study was to examine the acute immune and stress responses following exposure to polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic, in CD1 mice and to investigate the role of gonadal hormones in these responses. CD1 male and female mice underwent sham-surgery or gonadectomy at 5 or 9 weeks of age. Following one week of recovery, at 6 (pubertal group) or 10 (adult group) weeks of age, mice were treated with either saline or poly(I:C). Poly(I:C) treatment induced greater sickness behaviour in males compared to females and increased peripheral corticosterone in adult mice relative to their pubertal counterparts. Changes in body temperature and central c-Fos expression were more prominent in adult females. Gonadectomy worsened poly(I:C)-induced sickness behaviour and altered body temperature in both sexes. The results demonstrate that adult females display the most pronounced acute changes in body temperature, corticosterone release, and c-Fos expression but show the fastest recovery in sickness behavior, indicating that, compared to males, females display an adaptive physiological response following immune stress due to higher circulating estradiol and progesterone.
Collapse
Affiliation(s)
- Rupali Sharma
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | | | - Fatou Sarr
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada.
| |
Collapse
|
32
|
Sharma R, van Mil S, Melanson B, Thomas BJ, Rooke J, Mallet JF, Matar C, Schwarz JM, Ismail N. Programming Effects of Pubertal Lipopolysaccharide Treatment in Male and Female CD-1 Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2131-2140. [DOI: 10.4049/jimmunol.1801351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
|