1
|
Goussakov I, Synowiec S, Fabres RB, Almeida GD, Takada SH, Aksenov DP, Drobyshevsky A. Abnormal Local Cortical Functional Connectivity due to Interneuron Dysmaturation after Neonatal Intermittent Hypoxia. J Neurosci 2025; 45:e1449242024. [PMID: 39890465 PMCID: PMC11924883 DOI: 10.1523/jneurosci.1449-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 02/03/2025] Open
Abstract
Prematurely born infants often experience frequent hypoxic episodes due to immaturity of respiratory control resulting in disturbances of cortical development and long-term cognitive and behavioral abnormalities. We hypothesize that neonatal intermittent hypoxia alters maturation of cortical excitatory and inhibitory circuits that can be detected early with functional MRI. C57BL/6 mouse male and female pups were exposed to an intermittent hypoxia (IH) regimen from P3 to P7, corresponding to preterm humans. Adult mice after neonatal IH exhibited motor hyperactivity and impaired motor learning in complex wheel tests. Patch-clamp and evoked field potential recordings revealed increased glutamatergic synaptic transmission. To investigate the role of GABAergic inhibition on glutamatergic transmission during the developmental, we applied a selective GABAA receptor inhibitor picrotoxin. A decreased synaptic inhibitory drive in the motor cortex was evidenced by miniature IPSC frequency on pyramidal cells, multi-unit activity recording in vivo with picrotoxin injection, and decreased interneuron density. There was also an increased tonic depolarizing effect of picrotoxin after IH on Betz cells' membrane potential on patch-clamp and direct current potential in extracellular recordings. The amplitude of low-frequency fluctuation on resting-state fMRI was larger, with a larger increase in regional homogeneity index after picrotoxin injection in the IH group. The increased glutamatergic transmission, decreased numbers, and activity of inhibitory interneurons after neonatal IH may affect the maturation of connectivity in cortical networks, resulting in long-term cognitive and behavioral changes. Functional MRI reveals increased intrinsic connectivity in the sensorimotor cortex, suggesting neuronal dysfunction in cortical maturation after neonatal IH.
Collapse
Affiliation(s)
- Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | | | - Gabriela Dias Almeida
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, Sao Paulo 09606-045, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, São Bernardo do Campo, Sao Paulo 09606-045, Brazil
| | - Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | | |
Collapse
|
2
|
Wei RM, Zhang MY, Fang SK, Liu GX, Hu F, Li XY, Zhang KX, Zhang JY, Liu XC, Zhang YM, Chen GH. Melatonin attenuates intermittent hypoxia-induced cognitive impairment in aged mice: The role of inflammation and synaptic plasticity. Psychoneuroendocrinology 2025; 171:107210. [PMID: 39378690 DOI: 10.1016/j.psyneuen.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Intermittent hypoxia (IH), a major pathophysiologic alteration in obstructive sleep apnea syndrome (OSAS), is an important contributor to cognitive impairment. Increasing research suggests that melatonin has anti-inflammatory properties and improves functions related to synaptic plasticity. However, it is unclear whether melatonin has a protective effect against OSAS-induced cognitive dysfunction in aged individuals and the involved mechanisms are also unclear. Therefore, in the study, the effects of exposure to IH alone and IH in combination with daily melatonin treatment were investigated in C57BL/6 J mice aged 18 months. Assessment of the cognitive ability of mice in a Morris water maze showed that melatonin attenuated IH-induced impairment of learning and memory in aged mice. Enzyme-linked immunosorbent assay, polymerase chain reaction, and western blotting molecular techniques showed that melatonin treatment reduced the levels of the proinflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, decreased the levels of NOD-like receptor thermal protein domain associated protein 3 and nuclear factor kappa-B, lowered the levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and increased the levels of the synaptic proteins, activity-regulated cytoskeleton-associated protein, growth-associated protein-43, postsynaptic density protein 95, and synaptophysin in IH-exposed mice. Moreover, electrophysiological results showed that melatonin ameliorated the decline in long-term potentiation induced by IH. The results suggest that melatonin can ameliorate IH-induced cognitive deficits by inhibiting neuroinflammation and improving synaptic plasticity in aged mice.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Meng-Ying Zhang
- Department of Anesthesiology, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Shi-Kun Fang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gao-Xia Liu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Fei Hu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Yan Li
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Kai-Xuan Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Jing-Ya Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Chun Liu
- Department of Neurology, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Yue-Ming Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gui-Hai Chen
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| |
Collapse
|
3
|
Riddle A, Srivastava T, Wang K, Tellez E, O'Neill H, Gong X, O'Niel A, Bell JA, Raber J, Lattal M, Maylie J, Back SA. Mild neonatal hypoxia disrupts adult hippocampal learning and memory and is associated with CK2-mediated dysregulation of synaptic calcium-activated potassium channel KCNN2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602558. [PMID: 39071376 PMCID: PMC11275740 DOI: 10.1101/2024.07.10.602558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Objective Although nearly half of preterm survivors display persistent neurobehavioral dysfunction including memory impairment without overt gray matter injury, the underlying mechanisms of neuronal or glial dysfunction, and their relationship to commonly observed cerebral white matter injury are unclear. We developed a mouse model to test the hypothesis that mild hypoxia during preterm equivalence is sufficient to persistently disrupt hippocampal neuronal maturation related to adult cellular mechanisms of learning and memory. Methods: Neonatal (P2) mice were exposed to mild hypoxia (8%O 2 ) for 30 min and evaluated for acute injury responses or survived until adulthood for assessment of learning and memory and hippocampal neurodevelopment. Results Neonatal mild hypoxia resulted in clinically relevant oxygen desaturation and tachycardia without bradycardia and was not accompanied by cerebral gray or white matter injury. Neonatal hypoxia exposure was sufficient to cause hippocampal learning and memory deficits and abnormal maturation of CA1 neurons that persisted into adulthood. This was accompanied by reduced hippocampal CA3-CA1 synaptic strength and LTP and reduced synaptic activity of calcium-sensitive SK2 channels, key regulators of spike timing dependent neuroplasticity, including LTP. Structural illumination microscopy revealed reduced synaptic density, but intact SK2 localization at the synapse. Persistent loss of SK2 activity was mediated by altered casein kinase 2 (CK2) signaling. Interpretation Clinically relevant mild hypoxic exposure in the neonatal mouse is sufficient to produce morphometric and functional disturbances in hippocampal neuronal maturation independently of white matter injury. Additionally, we describe a novel persistent mechanism of potassium channel dysregulation after neonatal hypoxia. Collectively our findings suggest an unexplored explanation for the broad spectrum of neurobehavioral, cognitive and learning disabilities that paradoxically persist into adulthood without overt gray matter injury after preterm birth.
Collapse
|
4
|
Sanchez-Brualla I, Ghosh A, Gibatova VA, Quinlan S, Witherspoon E, Vicini S, Forcelli PA. Phenobarbital does not worsen outcomes of neonatal hypoxia on hippocampal LTP on rats. Front Neurol 2023; 14:1295934. [PMID: 38073649 PMCID: PMC10703306 DOI: 10.3389/fneur.2023.1295934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 10/28/2024] Open
Abstract
Introduction Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.
Collapse
Affiliation(s)
- Irene Sanchez-Brualla
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Viktoriya A. Gibatova
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Sean Quinlan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Eric Witherspoon
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
5
|
Arias-Cavieres A, Garcia AJ. A consequence of immature breathing induces persistent changes in hippocampal synaptic plasticity and behavior: a role of prooxidant state and NMDA receptor imbalance. Front Mol Neurosci 2023; 16:1192833. [PMID: 37456523 PMCID: PMC10338931 DOI: 10.3389/fnmol.2023.1192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023] Open
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the mechanistic basis of nIH-induced changes to neurophysiology remains poorly resolved. We investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a prooxidant state that leads to an imbalance in NMDAr subunit composition favoring GluN2B over GluN2A expression and impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with an antioxidant, manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent long-lasting changes in either synaptic plasticity or behavior. In addition to demonstrating that the prooxidant state has a central role in nIH-mediated neurophysiological and behavioral deficits, our results also indicate that targeting the prooxidant state during a discrete therapeutic window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes that result from unstable breathing during early postnatal life.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Coelho-Santos V, Cruz AJN, Shih AY. Does Perinatal Intermittent Hypoxia Affect Cerebrovascular Network Development? Dev Neurosci 2023; 46:44-54. [PMID: 37231864 DOI: 10.1159/000530957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Perinatal hypoxia is an inadequate delivery of oxygen to the fetus in the period immediately before, during, or after the birth process. The most frequent form of hypoxia occurring in human development is chronic intermittent hypoxia (CIH) due to sleep-disordered breathing (apnea) or bradycardia events. CIH incidence is particularly high with premature infants. During CIH, repetitive cycles of hypoxia and reoxygenation initiate oxidative stress and inflammatory cascades in the brain. A dense microvascular network of arterioles, capillaries, and venules is required to support the constant metabolic demands of the adult brain. The development and refinement of this microvasculature is orchestrated throughout gestation and in the initial weeks after birth, at a critical juncture when CIH can occur. There is little knowledge on how CIH affects the development of the cerebrovasculature. However, since CIH (and its treatments) can cause profound abnormalities in tissue oxygen content and neural activity, there is reason to believe that it can induce lasting abnormalities in vascular structure and function at the microvascular level contributing to neurodevelopmental disorders. This mini-review discusses the hypothesis that CIH induces a positive feedback loop to perpetuate metabolic insufficiency through derailment of normal cerebrovascular development, leading to long-term deficiencies in cerebrovascular function.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Anne-Jolene N Cruz
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Drobyshevsky A, Synowiec S, Goussakov I, Lu J, Gascoigne D, Aksenov DP, Yarnykh V. Temporal trajectories of normal myelination and axonal development assessed by quantitative macromolecular and diffusion MRI: Ultrastructural and immunochemical validation in a rabbit model. Neuroimage 2023; 270:119974. [PMID: 36848973 PMCID: PMC10103444 DOI: 10.1016/j.neuroimage.2023.119974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
INTRODUCTION Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - David Gascoigne
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Daniil P Aksenov
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Arias-Cavieres A, Garcia AJ. A Consequence of Immature Breathing induces Persistent Changes in Hippocampal Synaptic Plasticity and Behavior: A Role of Pro-Oxidant State and NMDA Receptor Imbalance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533692. [PMID: 36993632 PMCID: PMC10055328 DOI: 10.1101/2023.03.21.533692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Underdeveloped breathing results from premature birth and causes intermittent hypoxia during the early neonatal period. Neonatal intermittent hypoxia (nIH) is a condition linked to the increased risk of neurocognitive deficit later in life. However, the underlying mechanistic consequences nIH-induced neurophysiological changes remains poorly resolved. Here, we investigated the impact of nIH on hippocampal synaptic plasticity and NMDA receptor (NMDAr) expression in neonatal mice. Our findings indicate that nIH induces a pro-oxidant state, leading to an imbalance in NMDAr subunit composition that favors GluN2A over GluN2B expression, and subsequently impairs synaptic plasticity. These consequences persist in adulthood and coincide with deficits in spatial memory. Treatment with the antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), during nIH effectively mitigated both immediate and long-term effects of nIH. However, MnTMPyP treatment post-nIH did not prevent the long-lasting changes in either synaptic plasticity or behavior. Our results underscore the central role of the pro-oxidant state in nIH-mediated neurophysiological and behavioral deficits and importance of stable oxygen homeostasis during early life. These findings suggest that targeting the pro-oxidant state during a discrete window may provide a potential avenue for mitigating long-term neurophysiological and behavioral outcomes when breathing is unstable during early postnatal life. Highlights Untreated immature breathing leads neonatal intermittent hypoxia (nIH).nIH promotes a pro-oxidant state associated with increased HIF1a activity and NOX upregulation.nIH-dependent pro-oxidant state leads to NMDAr remodeling of the GluN2 subunit to impair synaptic plasticity.Impaired synaptic plasticity and NMDAr remodeling caused by nIH persists beyond the critical period of development.A discrete window for antioxidant administration exists to effectively mitigate neurophysiological and behavioral consequences of nIH.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| | - Alfredo J. Garcia
- Institute for Integrative Physiology, The University of Chicago
- Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago
- Department of Medicine, Section of Emergency Medicine, The University of Chicago
| |
Collapse
|
9
|
Spahic H, Parmar P, Miller S, Emerson PC, Lechner C, St. Pierre M, Rastogi N, Nugent M, Duck SA, Kirkwood A, Chavez-Valdez R. Dysregulation of ErbB4 Signaling Pathway in the Dorsal Hippocampus after Neonatal Hypoxia-Ischemia and Late Deficits in PV + Interneurons, Synaptic Plasticity and Working Memory. Int J Mol Sci 2022; 24:ijms24010508. [PMID: 36613949 PMCID: PMC9820818 DOI: 10.3390/ijms24010508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.
Collapse
Affiliation(s)
- Harisa Spahic
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pritika Parmar
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Miller
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul Casey Emerson
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Lechner
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark St. Pierre
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Neetika Rastogi
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Nugent
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alfredo Kirkwood
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
10
|
Leroux S, Rodriguez-Duboc A, Arabo A, Basille-Dugay M, Vaudry D, Burel D. Intermittent hypoxia in a mouse model of apnea of prematurity leads to a retardation of cerebellar development and long-term functional deficits. Cell Biosci 2022; 12:148. [PMID: 36068642 PMCID: PMC9450451 DOI: 10.1186/s13578-022-00869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background Apnea of prematurity (AOP) is caused by respiratory control immaturity and affects nearly 50% of premature newborns. This pathology induces perinatal intermittent hypoxia (IH), which leads to neurodevelopmental disorders. The impact on the brain has been well investigated. However, despite its functional importance and immaturity at birth, the involvement of the cerebellum remains poorly understood. Therefore, this study aims to identify the effects of IH on cerebellar development using a mouse model of AOP consisting of repeated 2-min cycles of hypoxia and reoxygenation over 6 h and for 10 days starting on postnatal day 2 (P2). Results At P12, IH-mice cerebella present higher oxidative stress associated with delayed maturation of the cerebellar cortex and decreased dendritic arborization of Purkinje cells. Moreover, mice present with growth retardation and motor disorders. In response to hypoxia, the developing cerebellum triggers compensatory mechanisms resulting in the unaltered organization of the cortical layers from P21 onwards. Nevertheless, some abnormalities remain in adult Purkinje cells, such as the dendritic densification, the increase in afferent innervation, and axon hypomyelination. Moreover, this compensation seems insufficient to allow locomotor recovery because adult mice still show motor impairment and significant disorders in spatial learning. Conclusions All these findings indicate that the cerebellum is a target of intermittent hypoxia through alterations of developmental mechanisms leading to long-term functional deficits. Thus, the cerebellum could contribute, like others brain structures, to explaining the pathophysiology of AOP. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00869-5.
Collapse
|
11
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
12
|
Yarnykh VL, Korostyshevskaya AM, Savelov AA, Isaeva YO, Gornostaeva AM, Tulupov AA, Sagdeev RZ. Macromolecular proton fraction mapping in magnetic resonance imaging: physicochemical principles and biomedical applications. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Goussakov I, Synowiec S, Aksenov DP, Drobyshevsky A. Occlusion of activity dependent synaptic plasticity by late hypoxic long term potentiation after neonatal intermittent hypoxia. Exp Neurol 2020; 337:113575. [PMID: 33358869 DOI: 10.1016/j.expneurol.2020.113575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
To elucidate the mechanisms of memory impairment after chronic neonatal intermittent hypoxia (IH), we employed a mice model of severe IH administered at postnatal days 3 to 7. Since prior studies in this model did not demonstrate increased cell death, our primary hypothesis was that IH causes a functional disruption of synaptic plasticity in hippocampal neurons. In vivo recordings of Schaffer collateral stimulation-induced synaptic responses during and after IH in the CA1 region of the hippocampus revealed pathological late phase hypoxic long term potentiation (hLTP) (154%) that lasted more than four hours and could be reversed by depotentiation with low frequency stimulation (LFS), or abolished by NMDA and PKA inhibitors (MK-801 and CMIQ). Furthermore, late phase hLTP partially occluded normal physiological LTP (pLTP) four hours after IH. Early and late hLTP phases were induced by neuronal depolarization and Ca2+ influx, determined with manganese enhanced fMRI, and had increased both AMPA and NMDA - mediated currents. This was consistent with mechanisms of pLTP in neonates and also consistent with mechanisms of ischemic LTP described in vitro with OGD in adults. A decrease of pLTP was also recorded on hippocampal slices obtained 2 days after IH. This decrease was ameliorated by MK-801 injections prior to each IH session and restored by LFS depotentiation. Occlusion of pLTP and the observed decreased proportion of NMDA-only silent synapses after neonatal hLTP may explain long term memory, behavioral deficits and abnormal synaptogenesis and pruning following neonatal IH.
Collapse
Affiliation(s)
- Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America.
| |
Collapse
|
14
|
Increased Seizure Susceptibility for Rats Subject to Early Life Hypoxia Might Be Associated with Brain Dysfunction of NRG1-ErbB4 Signaling in Parvalbumin Interneurons. Mol Neurobiol 2020; 57:5276-5285. [PMID: 32870492 DOI: 10.1007/s12035-020-02100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Neuregulin 1 (NRG1)-induced activation of ErbB4 in parvalbumin (PV) inhibitory interneurons is reported to serve as a critical endogenous negative-feedback mechanism to repress brain epileptogenesis. Here, we investigated the seizure susceptibility and the role of NRG1-ErbB4 signaling in PV interneurons in the suppression of epileptic seizures for rats subject to early life hypoxia. Neonatal postnatal day 5 (P5) rats were exposed to intermittent hypoxia (IH) or control (CON) room air for 10 days. In the prefrontal cortex (PFC) of P54 rats, we determined the impact of neonatal IH exposures on the expression of PV, NRG1, ErbB4, and phosphorylated ErbB4 (p-ErbB4) during the seizure induction. Seizure susceptibility tests with the common convulsant agent pentylenetetrazole (PEN) at P54 revealed that rats subject to neonatal hypoxia exposure developed faster and more serious epileptic seizures. Neonatal IH exposures (1) decreased the number of PV cells in the PFC of P54 rats; (2) interrupted the expression of NRG1 gene; and (3) altered the activity of NRG1 on PV interneurons in the PFC after the seizure induction. Intracerebroventricular delivery of exogenous NRG1 before seizure induction by PEN significantly reduced the seizure susceptibility for neonatal IH-exposed rats. The ErbB4 inhibitor AG1478 inhibited the exogenous NRG1's effects on seizure susceptibility. Environmental enrichment (EE) rescued the abovementioned pathophysiological alterations and significantly attenuated the epileptic seizures after the seizure induction for neonatal IH-exposed rats. Our study indicated early life hypoxia exposure might increase the seizure susceptibility for rats and contribute to pathophysiological dysfunction of NRG1-ErbB4 signaling in PV interneurons in the suppression of epileptic seizures. EE might attenuate the increased seizure susceptibility for neonatal IH-exposed rats through rescuing pathophysiological alterations of NRG1-ErbB4 signaling in PV interneurons.
Collapse
|
15
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Sypecka J. Oligodendrocyte Response to Pathophysiological Conditions Triggered by Episode of Perinatal Hypoxia-Ischemia: Role of IGF-1 Secretion by Glial Cells. Mol Neurobiol 2020; 57:4250-4268. [PMID: 32691304 PMCID: PMC7467917 DOI: 10.1007/s12035-020-02015-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Differentiation of oligodendrocyte progenitors towards myelinating cells is influenced by a plethora of exogenous instructive signals. Insulin-like growth factor 1 (IGF-1) is one of the major factors regulating cell survival, proliferation, and maturation. Recently, there is an ever growing recognition concerning the role of autocrine/paracrine IGF-1 signaling in brain development and metabolism. Since oligodendrocyte functioning is altered after the neonatal hypoxic-ischemic (HI) insult, a question arises if the injury exerts any influence on the IGF-1 secreted by neural cells and how possibly the change in IGF-1 concentration affects oligodendrocyte growth. To quantify the secretory activity of neonatal glial cells, the step-wise approach by sequentially using the in vivo, ex vivo, and in vitro models of perinatal asphyxia was applied. A comparison of the results of in vivo and ex vivo studies allowed evaluating the role of autocrine/paracrine IGF-1 signaling. Accordingly, astroglia were indicated to be the main local source of IGF-1 in the developing brain, and the factor secretion was shown to be significantly upregulated during the first 24 h after the hypoxic-ischemic insult. And conversely, the IGF-1 amounts released by oligodendrocytes and microglia significantly decreased. A morphometric examination of oligodendrocyte differentiation by means of the Sholl analysis showed that the treatment with low IGF-1 doses markedly improved the branching of oligodendroglial cell processes and, in this way, promoted their differentiation. The changes in the IGF-1 amounts in the nervous tissue after HI might contribute to the resulting white matter disorders, observed in newborn children who experienced perinatal asphyxia. Pharmacological modulation of IGF-1 secretion by neural cells could be reasonable solution in studies aimed at searching for therapies alleviating the consequences of perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Justyna Gargas
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
16
|
Anisimov NV, Pavlova OS, Pirogov YA, Yarnykh VL. Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla. Quant Imaging Med Surg 2020; 10:1441-1449. [PMID: 32676363 DOI: 10.21037/qims-19-1057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fast single-point macromolecular proton fraction (MPF) mapping is a recent magnetic resonance imaging (MRI) method enabling quantitative assessment of myelin content in neural tissues. To date, the reported technical implementations of MPF mapping utilized high-field MRI equipment (1.5 T or higher), while low-field applications might pose challenges due to signal-to-noise ratio (SNR) limitations and short T1 . This study aimed to evaluate the feasibility of MPF mapping of the human brain at 0.5 T. The three-dimensional MPF mapping protocol was implemented according to the single-point synthetic-reference method, which includes three spoiled gradient-echo sequences providing proton density, T1 , and magnetization transfer contrast weightings. Whole-brain MPF maps were obtained from three healthy volunteers with spatial resolution of 1.5×1.5×2 mm3 and the total scan time of 19 minutes. MPF values were measured in a series of white and gray matter structures and compared with literature data for 3 T magnetic field. MPF maps enabled high contrast between white and gray matter with notable insensitivity to paramagnetic effects in iron-rich structures, such as globus pallidus, substantia nigra, and dentate nucleus. MPF values at 0.5 T appeared in close agreement with those at 3 T. This study demonstrates the feasibility of fast MPF mapping with low-field MRI equipment and the independence of brain MPF values of magnetic field. The presented results confirm the utility of MPF as an absolute scale for MRI-based myelin content measurements across a wide range of magnetic field strengths and extend the applicability of fast MPF mapping to inexpensive low-field MRI hardware.
Collapse
Affiliation(s)
- Nikolay V Anisimov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation
| | - Olga S Pavlova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation.,Institute for Physical and Chemical Fundamentals of Artificial Intelligence, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-11, Russian Federation
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.,Research Institute of Biology and Biophysics, Tomsk State University, 634050, Tomsk, Russian Federation
| |
Collapse
|
17
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|