1
|
Li X, Liu T, Liang K, Wang R, Yang J, Chen Y, Wang R, Li M. Elucidation of the antipyretic and anti-inflammatory effect of 8- O-Acetyl Shanzhiside methyl ester based on intestinal flora and metabolomics analysis. Front Pharmacol 2025; 16:1482323. [PMID: 40356990 PMCID: PMC12066650 DOI: 10.3389/fphar.2025.1482323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Phlomoides rotata (Benth. ex Hook.f.) Mathiesen (syn. Lamiophlomis rotata (Benth. ex Hook.f.) Kudô) (P. rotate) is a traditional Tibetan medicine known for its hemostatic, analgesic, and anti-inflammatory effects, as well as its high content of 8-O-Acetyl Shanzhiside methyl ester (8-OaS). Clinical and experimental studies have reported gastrointestinal side effects, such as diarrhea, loose stools, even to black stools, associated with P. rotata. Given the bitter taste characteristic, laxative and antipyretic effects of iridoid glycosides, this study aims to investigate the antipyretic and anti-inflammatory effects of 8-OaS (the primary iridoid glycosides of P. rotate) on yeast-induced pyrexia in rats. Additionally, the role 8-OaS in modulating the intestinal flora composition and metabolome profile is explored. Methods The pyretic rat model was established by injected subcutaneously with 20% dry yeast suspension. Serum, hypothalamic tissues and colon content were collected for the assessment of relevant indicators. The peripheral inflammatory factors and central thermoregulatory mediators were assessed using enzyme-linked immunosorbent assay (ELISA). The expressions of mRNA and protein in hypothalamic tissue were evaluated through polymerase chain reaction (PCR), immunohistochemistry, and western blotting. 16S rDNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the intestinal flora and neurotransmitters in the colonic contents and hypothalamus. Results and discussion Results show that 8-OaS treatment reduced pyrogenic cytokines (such as IL-6, IL-1β), and down-regulated the level of central thermoregulatory mediators (PGE2), via multiply involved in TLR4/NF-κB and HSP70/NF-κB signaling pathways. Crucially, 8-OaS treatment significantly reduced the relative abundance of Alistipes (P < 0.01), Odoribacter (P < 0.05) and Alistipes_finegoldii (P < 0.05) in the intestinal flora. The correlation analysis demonstrated that 8-OaS treatment significantly correlated with the increasing on the abundance of Alistipes and levels of 5-hydroxytryptamine (P < 0.01), and tryptamine (P < 0.01). Our findings indicate that 8-OaS exhibits significant antipyretic and anti-inflammatory properties, potentially mediated by intestinal flora and metabolites of neurotransmitters. The results of this study may help to elucidate the antipyretic and anti-inflammatory mechanism of 8-OaS based on intestinal flora and metabolomics analysis.
Collapse
Affiliation(s)
- Xiaolin Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Tianlong Liu
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Keke Liang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Renjie Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Maoxing Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Academy of Military Medical, Academy of Military Sciences, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
2
|
Kougias DG, Atillasoy E, Southall MD, Scialli AR, Ejaz S, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Schaeffer TH, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental neurotoxicity of acetaminophen. Crit Rev Toxicol 2025; 55:124-178. [PMID: 39982125 DOI: 10.1080/10408444.2024.2442344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025]
Abstract
Acetaminophen [paracetamol; N-acetyl-para-aminophenol (APAP)] is an antipyretic/analgesic commonly used in the treatment of fever and mild to moderate pain, headache, myalgia, and dysmenorrhea. Recent literature has questioned the safety of acetaminophen use during pregnancy, with an emphasis on whether exposure to the developing nervous system results in behavioral changes consistent with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and/or other cognitive deficits in the offspring. No previous review has used a fully detailed, quantitative weight-of-evidence (QWoE) approach to critically examine the preclinical acetaminophen data with regards to potential developmental neurotoxicity (DNT). Following regulatory guidance, a QWoE framework using prespecified scoring criteria was developed consistent with previous approaches to characterize potential adverse DNT outcomes with considerations for biological relevance of the response to adverse outcomes (outcome score) and the strength of methods and study design (methods score). Considerations for the methods score included (1) experimental design, (2) details/reliability of measurement(s), (3) data transparency, and (4) translational/methodological relevance. Considerations for the outcome score included response-related (1) statistical significance, (2) dose-response, (3) relevance/reliability/magnitude, (4) plausibility, and (5) translational relevance, including consideration of systemic toxicity/hepatotoxicity and therapeutic and/or non-systemically toxic doses and durations of use. Application of this QWoE framework to the 34 in vivo studies identified that assess the potential DNT of acetaminophen resulted in 188 QWoE entries documented across 11 DNT endpoints: social behavior, stereotypic behavior, behavioral rigidity, attention/impulsivity, hyperactivity, anxiety-like behavior, sensorimotor function, spatial learning/memory, nonspatial learning/memory, neuroanatomy, and neurotransmission. For each endpoint, the mean outcome score and methods score were calculated for total entries and for entries segregated by sex to assist in determining data quality and potential adversity. Informed by all 188 entries, the QWoE analysis demonstrated data of moderate quality showing no consistent evidence of DNT in male and female rodents following exposure to acetaminophen at therapeutic and/or nonsystemically toxic doses. Although some of the DNT endpoints (behavioral rigidity, attention/impulsivity, spatial learning/memory, neuroanatomy, and neurotransmission) generally displayed a more limited dataset and/or relatively lower data quality, similar conclusions were drawn based on results indicating a lack of biological relevance and reliability of reported adverse effects. Overall, this QWoE analysis on the preclinical in vivo data demonstrates no consistent evidence of adverse effects following developmental exposure to acetaminophen at therapeutic and/or non-systemically toxic doses on the structure and function of the nervous system, including neuroanatomical, neurotransmission, and behavioral endpoints.
Collapse
Affiliation(s)
| | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | | | - Anthony R Scialli
- Reproductive Toxicology Center, A Non-Profit Foundation, Washington, DC, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | | | |
Collapse
|
3
|
Harshaw C, Warner AG. Interleukin-1β-induced inflammation and acetaminophen during infancy: Distinct and interactive effects on social-emotional and repetitive behavior in C57BL/6J mice. Pharmacol Biochem Behav 2022; 220:173463. [PMID: 36100070 DOI: 10.1016/j.pbb.2022.173463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Acetaminophen (APAP) exposure early in life has been associated with increased risk of neurodevelopmental disorders in epidemiological studies. In rodent models, early-life APAP has similarly been shown to produce long-term changes in brain and behavior, including altered activity levels and social behavior. Most rodent studies to date have, nevertheless, attempted to model early-life APAP without considering that most APAP exposure occurs in a context of immune activation and/or fever. To mimic the repeated infections common during infancy, we employed the cytokine interleukin-1β (IL-1β) to induce immune activation three times during early postnatal development (i.e., day 5, 8, and 11). On these days, C57BL/6J pups were administered either IL-1β (0.2 μg/kg) or saline vehicle followed, after 45 min, by either APAP (103.9 mg/kg) or vehicle. Mice were subsequently administered a battery of tests of social-emotional and repetitive behavior. A number of distinct long-term effects of IL-1β and APAP treatments were found, including sex-specific shifts in repetitive behavior and emotional hyperthermia following early-life IL-1β and increased social caution in males following early-life APAP. We also observed significant interaction between IL-1β and APAP: as adults, 'two-hit' IL-1β + APAP females displayed greater anxiety-related thigmotaxis across a number of tests, including an open field. 'Two hit' males, in turn, showed elevated levels of avoidance of an unfamiliar social partner during a social interaction test. Our results highlight that IL-1β-induced inflammation and APAP have both distinct effects and significant interactions during early life, with enduring sex-specific effects on phenotypes relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Anna G Warner
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| |
Collapse
|
4
|
Labba NA, Wæhler HA, Houdaifi N, Zosen D, Haugen F, Paulsen RE, Hadera MG, Eskeland R. Paracetamol perturbs neuronal arborization and disrupts the cytoskeletal proteins SPTBN1 and TUBB3 in both human and chicken in vitro models. Toxicol Appl Pharmacol 2022; 449:116130. [PMID: 35714712 DOI: 10.1016/j.taap.2022.116130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 μM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein β2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein β3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of β2-spectrin and disruption of the integrity of β3-tubulin, both proteins of which play important roles in neuronal structure and function.
Collapse
Affiliation(s)
- Nils-Anders Labba
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Hallvard Austin Wæhler
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Nora Houdaifi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.
| |
Collapse
|
5
|
Herrington JA, Guss Darwich J, Harshaw C, Brigande AM, Leif EB, Currie PJ. Elevated ghrelin alters the behavioral effects of perinatal acetaminophen exposure in rats. Dev Psychobiol 2022; 64:e22252. [DOI: 10.1002/dev.22252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua A. Herrington
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Janet Guss Darwich
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Christopher Harshaw
- Department of Psychology University of New Orleans New Orleans Louisiana USA
| | - Alev M. Brigande
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Erica B. Leif
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| | - Paul J. Currie
- Department of Psychology Reed College 3203 SE Woodstock Blvd, Portland OR 97202, USA Portland Oregon USA
| |
Collapse
|
6
|
Rigobello C, Klein RM, Debiasi JD, Ursini LG, Michelin AP, Matsumoto AK, Barbosa DS, Moreira EG. Perinatal exposure to paracetamol: Dose and sex-dependent effects in behaviour and brain's oxidative stress markers in progeny. Behav Brain Res 2021; 408:113294. [PMID: 33836167 DOI: 10.1016/j.bbr.2021.113294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Paracetamol (PAR) has been employed worldwide for pain and fever treatment during pregnancy and lactation. Epidemiologic studies have shown that exposure to PAR can increase the risk for developmental disorders, such as attention-deficit hyperactive disorder and autism spectrum disorder. This study aimed to investigate if gestational and lactational exposure to human-relevant doses of PAR could alter behavioural and brain oxidative stress parameters in the rat`s offspring. Wistar dams were gavaged daily with water or PAR (35 mg/kg/ or 350 mg/kg) during gestational day 6 to weaning (postnatal day 21). Behavioural assessments occurred at post-natal days 10 (nest seeking test), 27 (behavioural stereotypy) and 28 (three chamber sociability test and open field). Concentration of advanced oxidation protein products (AOPP), reduced glutathione (GSH), lipid hydroperoxides (LOOH) and activity of superoxide dismutase (SOD) were estimate in prefrontal cortex, hippocampus, striatum and cerebellum of 22-day-old rats. Compared to CON animals, males exposed to PAR during pregnancy and lactation augmented apomorphine-induced stereotyped behaviour (350 mg/kg) and ambulation in open-field test (35 mg/kg). Reduced exploratory behaviour in three chamber sociability test was observed in pups exposed to PAR at 350 mg/kg in both sexes. PAR treatment decreased hippocampal GSH level and striatal SOD activity in males exposed to 35 mg/kg, suggesting the vulnerability of these areas in PAR-induced developmental neurotoxicity. Findings suggest PAR use during pregnancy and lactation as a potential risk factor for neurodevelopmental disorders with males being more susceptible.
Collapse
Affiliation(s)
- Camila Rigobello
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil
| | - Rodrigo Moreno Klein
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil
| | - Juliana Diosti Debiasi
- Department of Physiological Sciences, State University of Londrina, 86057-970, Londrina, PR, Brazil
| | - Luis Guilherme Ursini
- Department of Physiological Sciences, State University of Londrina, 86057-970, Londrina, PR, Brazil
| | - Ana Paula Michelin
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil
| | - Andressa Keiko Matsumoto
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil
| | - Décio Sabbatini Barbosa
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil
| | - Estefânia Gastaldello Moreira
- Graduation Program in Health Sciences, State University of Londrina, 86038-350, Londrina, PR, Brazil; Department of Physiological Sciences, State University of Londrina, 86057-970, Londrina, PR, Brazil.
| |
Collapse
|
7
|
Blecharz-Klin K, Sznejder-Pachołek A, Wawer A, Pyrzanowska J, Piechal A, Joniec-Maciejak I, Mirowska-Guzel D, Widy-Tyszkiewicz E. Early exposure to paracetamol reduces level of testicular testosterone and changes gonadal expression of genes relevant for steroidogenesis in rats offspring. Drug Chem Toxicol 2021; 45:1862-1869. [PMID: 33657953 DOI: 10.1080/01480545.2021.1892941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we investigated the effects of early paracetamol treatment on the testicular level of testosterone and expression of genes important for steroid biosynthesis and reproduction in male rats offspring. Rats were continuously exposed to paracetamol at doses of 5 or 15 mg/kg b.w. during pregnancy and the first two months of the postpartum development. Testosterone level was determined by ELISA. Profile of gene expression for the testicular steroidogenic factors were evaluated using the Real-Time PCR. Our results showed that paracetamol reduces testicular testosterone level and causes compensatory transactivation of genes important for steroidogenesis and reproductive capacity. We have observed significant over-expression of several genes involved in cholesterol transport and steroid biosynthesis e.g., genes for steroidogenic acute regulatory protein, hydroxysteroid dehydrogenases, luteinizing hormone subunit beta, gonadotropin and androgen receptors. Up-regulation of these genes with parallel testosterone reduction in the testicles could be the possible mechanism that maintains and prevents the loss of the steroidogenic function.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Anna Sznejder-Pachołek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| |
Collapse
|
8
|
Allegaert K, van den Anker J. How to translate neurocognitive and behavioural outcome data in animals exposed to paracetamol to the human perinatal setting? Arch Med Sci 2020; 20:1294-1306. [PMID: 39439697 PMCID: PMC11493077 DOI: 10.5114/aoms.2020.100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 10/25/2024] Open
Abstract
Introduction There are epidemiological - not necessary causal - observations that link perinatal paracetamol (acetaminophen) exposure to impaired neuro-cognition and behaviour, but animal models may assist to better understand the mechanisms. Material and methods To provide an overview on preclinical data and mechanisms explored, we conducted a structured literature search on animal models and neuro-cognition and behavioural outcome following perinatal paracetamol exposure. Results This search resulted in 20 papers (rat (n = 9), zebrafish larvae (n = 6), mice (n = 5)), published between 2009 and 2020. Eight discussed pregnancy/fetal paracetamol exposure, 6 juvenile, 6 studies combined pregnancy and juvenile exposure. Quality assessment (SYRCLE's bias risk) showed a heterogeneous pattern with blinding issues. Most papers (n = 16) described paracetamol exposure without indication, except for an induced fever and repetitive needle pricking (rat), brain injury (mice), and a zebrafish nociception model. Reported outcomes related to biochemistry (mono-amines, amino acids, protein expression), anatomy (teratogen, morphology, nuclear size) or behaviour (spatial memory, motor, social behaviour and exploration, sexual behaviour). On mechanisms, the cumulative data support an interesting 'cannabinoid' hypothesis to link paracetamol to neuro-cognitive and behavioural outcome. Besides limited species diversity, there is relevant within-species paracetamol dosing variability (dose, duration) with undocumented exposure. Conclusions Models should further integrate clinical indications, as non-exposure is the obvious safest setting in the absence of an indication. Besides pain and fever and related to the cannabinoid hypothesis, this should include perinatal brain injury, as there is animal experimental evidence that cannabinoids are neuroprotective in newborn brain injury or asphyxia, further supported by evidence from non-perinatal models of paracetamol-related neuroprotective effects.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - John van den Anker
- Department of Pediatrics, Pharmacology and Physiology, Children’s National Medical Center, Washington DC, USA
- Intensive Care, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Pediatric Pharmacology, University Children’s Hospital Basel, Basel, Switzerland
| |
Collapse
|