1
|
Zhang J, Cheng L, Huang L, Ng PH, Huang Q, Marques AR, MacKinnon B, Huang L, Yang Y, Ye R, Sophie SH. In situ generation of highly localized chlorine by laser-induced graphene electrodes during electrochemical disinfection. CHEMOSPHERE 2023:139123. [PMID: 37285986 DOI: 10.1016/j.chemosphere.2023.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Laser-induced graphene (LIG) has gained popularity for electrochemical water disinfection due to its efficient antimicrobial activity when activated with low voltages. However, the antimicrobial mechanism of LIG electrodes is not yet fully understood. This study demonstrated an array of mechanisms working synergistically to inactivate bacteria during electrochemical treatment using LIG electrodes, including the generation of oxidants, changes in pH-specifically high alkalinity associated with the cathode, and electro-adsorption on the electrodes. All these mechanisms may contribute to the disinfection process when bacteria are close to the surface of the electrodes where inactivation was independent of the reactive chlorine species (RCS); however, RCS was likely responsible for the predominant cause of antibacterial effects in the bulk solution (i.e., ≥100 mL in our study). Furthermore, the concentration and diffusion kinetics of RCS in solution was voltage-dependent. At 6 V, RCS achieved a high concentration in water, while at 3 V, RCS was highly localized on the LIG surface but not measurable in water. Despite this, the LIG electrodes activated by 3 V achieved a 5.5-log reduction in Escherichia coli (E.coli) after 120-min electrolysis without detectable chlorine, chlorate, or perchlorate in the water, suggesting a promising system for efficient, energy-saving, and safe electro-disinfection.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ana Rita Marques
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Brett MacKinnon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Yefeng Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - St-Hilaire Sophie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| |
Collapse
|
2
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14. [PMID: 34207716 DOI: 10.26434/chemrxiv.13489398.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
3
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3179. [PMID: 34207716 PMCID: PMC8226673 DOI: 10.3390/ma14123179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Swatantra P. Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel;
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
4
|
Compact High-Voltage Pulse Generator for Pulsed Electric Field Applications: Lab-Scale Development. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2020. [DOI: 10.1155/2020/6525483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Square wave pulses have been identified as more lethal compared to exponential decay pulses in PEF applications. This is because of the on-time which is longer causes a formidable impact on the microorganisms in the food media. To have a reliable high-voltage pulse generator, a technique of capacitor discharge was employed. Four units of capacitor rated 100 μF 1.2 kV were connected in series to produce 25 μF 4.8 kV which were used to store the energy of approximately 200 J. The energy stored was discharged via HTS 181-01-C to the load in the range of nano to microseconds of pulse duration. The maximum voltage applied was limited to 4 kV because it is a lab-scale project. The electrical circuit diagram and the development procedure, as well as experimental results, are presented.
Collapse
|
5
|
Gencturk E, Ulgen KO, Mutlu S. Thermoplastic microfluidic bioreactors with integrated electrodes to study tumor treating fields on yeast cells. BIOMICROFLUIDICS 2020; 14:034104. [PMID: 32477443 PMCID: PMC7237222 DOI: 10.1063/5.0008462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tumor-treating fields (TTFields) are alternating electrical fields of intermediate frequency and low intensity that can slow or inhibit tumor growth by disrupting mitosis division of cancerous cells through cell cycle proteins. In this work, for the first time, an in-house fabricated cyclo-olefin polymer made microfluidic bioreactors are integrated with Cr/Au interdigitated electrodes to test TTFields on yeast cells with fluorescent protein:Nop56 gene. A small gap between electrodes (50 μm) allows small voltages (<150 mV) to be applied on the cells; hence, uninsulated gold electrodes are used in the non-faradaic region without causing any electrochemical reaction at the electrode-medium interface. Electrochemical modeling as well as impedance characterization and analysis of the electrodes are done using four different cell nutrient media. The experiments with yeast cells are done with 150 mV, 150 kHz and 30 mV, 200 kHz sinusoidal signals to generate electrical field magnitudes of 6.58 V/cm and 1.33 V/cm, respectively. In the high electrical field experiment, the cells go through electroporation. In the experiment with the low electrical field magnitude for TTFields, the cells have prolonged mitosis from typical 80-90 min to 200-300 min. Our results confirm the validity of the electrochemical model and the importance of applying a correct magnitude of the electrical field. Compared to the so far reported alternatives with insulated electrodes, the here developed thermoplastic microfluidic bioreactors with uninsulated electrodes provide a new, versatile, and durable platform for in vitro cell studies toward the improvement of anti-cancer therapies including personalized treatment.
Collapse
Affiliation(s)
- Elif Gencturk
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Biosystems Engineering Laboratory, Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- BUMEMS Laboratory, Department of Electrical and Electronics Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
6
|
Singh SP, Li Y, Be'er A, Oren Y, Tour JM, Arnusch CJ. Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18238-18247. [PMID: 28520397 DOI: 10.1021/acsami.7b04863] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prevention of fouling on surfaces is a major challenge that broadly impacts society. Water treatment technologies, hospital infrastructure, and seawater pipes exemplify surfaces that are susceptible to biofouling. Here we show that laser-induced graphene (LIG) printed on a polyimide film by irradiation with a CO2 infrared laser under ambient conditions is extremely biofilm resistant while as an electrode is strongly antibacterial. We investigated the antibacterial activity of the LIG surface using LIG powder in suspension or deposited on surfaces, and its activity depended on the particle size and oxygen content. Remarkably, the antimicrobial effects of the surface were greatly amplified when voltages in the range of 1.1-2.5 were applied in an electrode configuration in bacterial solutions. The bactericidal mechanism was directly observed using microscopy and fast photography, which showed a rapid bacterial movement toward the LIG surface and subsequent bacterial killing. In addition, electrochemical generation of H2O2 was observed; however, the bacterial killing mechanism depended strongly on the physical and electrical contact of the bacterial cells to the surfaces. The anti-biofilm activity of the LIG surfaces and electrodes could lead to efficient protection of surfaces that are susceptible to biofouling in environmental applications by incorporating LIG onto the surfaces.
Collapse
Affiliation(s)
- Swatantra P Singh
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - Yilun Li
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Avraham Be'er
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - Yoram Oren
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, 84990, Israel
| |
Collapse
|
7
|
Ou QX, Nikolic-Jaric M, Gänzle M. Mechanisms of inactivation of Candida humilis and Saccharomyces cerevisiae by pulsed electric fields. Bioelectrochemistry 2016; 115:47-55. [PMID: 28063751 DOI: 10.1016/j.bioelechem.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
AIMS This study aimed to determine how electric field strength, pulse width and shape, and specific energy input relate to the effect of pulsed electric fields (PEF) on viability and membrane permeabilization in Candida humilis and Saccharomyces cerevisiae suspended in potassium phosphate buffer. METHODS AND RESULTS Cells were treated with a micro-scale system with parallel plate electrodes. Propidium iodide was added before or after treatments to differentiate between reversible and irreversible membrane permeabilization. Treatments of C. humilis with 71kV/cm and 48kJ/kg reduced cell counts by 3.9±0.6 log (cfu/mL). Pulse shape or width had only a small influence on the treatment lethality. Variation of electric field strength (17-71kV/cm), pulse width (0.086-4μs), and specific energy input (8-46kJ/kg) demonstrated that specific energy input correlated to the membrane permeabilization (r2=0.84), while other parameters were uncorrelated. A minimum energy input of 3 and 12kJ/kg was required to achieve reversible membrane permeabilization and a reduction of cell counts, respectively, of C. humilis. CONCLUSIONS Energy input was the parameter that best described the inactivation efficiency of PEF. SIGNIFICANCE AND IMPACT OF STUDY This study is an important step to identify key process parameters and to facilitate process design for improved cost-effectiveness of commercial PEF treatment.
Collapse
Affiliation(s)
- Qi-Xing Ou
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | | | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, School of Food and Pharmaceutical Engineering, Wuhan, China.
| |
Collapse
|
8
|
Flisar K, Meglic SH, Morelj J, Golob J, Miklavcic D. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 2014; 100:44-51. [DOI: 10.1016/j.bioelechem.2014.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/30/2022]
|
9
|
Liquid food pasteurization by pulsed electric fields: dimensionless analysis via Sherwood number for a comprehensive understanding. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2268-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71:98-114. [PMID: 23751778 DOI: 10.1016/j.addr.2013.05.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
Collapse
|
11
|
Marx G, Moody A, Bermúdez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: high hydrostatic pressure, pulsed electric fields and thermo-sonication. Int J Food Microbiol 2011; 151:327-37. [PMID: 22015244 DOI: 10.1016/j.ijfoodmicro.2011.09.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
Abstract
Nonthermal technologies are becoming more popular in food processing; however, little detailed research has been conducted on the study of the lethal effect of these technologies on certain microorganisms. Saccharomyces cerevisiae is a yeast related to spoilage of fruit products such as juices; novel technologies have been explored to inactivate this yeast. Three nonthermal technologies, high hydrostatic pressure (HHP), pulsed electric fields (PEF) and thermo-sonication (TS), were used to evaluate and to compare the structural damage of yeast cells after processing. Processing conditions were chosen based on previous experiments to ensure the death of cells; HHP was conducted at 600 MPa for 7 min (room temperature, 21 °C); for PEF, 30.76 kV/cm at 40 °C and 21 pulses (2 μs each), and finally for TS the conditions were 120 μm, 60 °C and 30 min in continuous and pulsed modes; all treatments were applied in apple juice. Cells were prepared for electron microscopy using an innovative and short microwave assisted dehydration technique. Scanning electron microscopy showed the degree of damage to the cells after processing and illustrated the important and particular characteristics of each technology. Cells treated with high hydrostatic pressure showed a total disruption of the cell membrane, perforation, and release of the cell wall; scars were also observed on the surface of the pressurized cells. PEF treated cells showed less superficial damage, with the main changes being the deformation of the cells, apparent fusion of cells, the formation of pores, and the breakdown of the cell wall in some cells. Finally, the thermo-sonicated cells showed a similar degree of cellular damage to their structure regardless of whether the TS was applied continuously or pulsed. The main characteristics of cellular death for this technology were the erosion and disruption of the cellular membrane, formation of orifices on the surface, lysis of cells causing the release of intracellular contents, roughness of the cell membrane, and displacement of cell debris to the surface of other cells. This study confirms some theories about cell inactivation and presents new and detailed results about nonthermal technologies, but also shows that after using the above mentioned conditions, recovery of cells, specifically those that are pressurized and thermo-sonicated, it is not possible to do it following the high extent of damage observed in the entire population. Furthermore, a faster methodology that was used in sample preparation for electron microscopy provided high quality resolution images, allowing closer study of the detail of structural lethal effects on treated cells.
Collapse
Affiliation(s)
- Gretchen Marx
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | | |
Collapse
|
12
|
Son SU, Garrell RL. Transport of live yeast and zebrafish embryo on a droplet digital microfluidic platform. LAB ON A CHIP 2009; 9:2398-401. [PMID: 19636473 DOI: 10.1039/b906257b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the first programmed transport of live yeast (Saccharomyces cerevisiae) and a zebrafish embryo (Danio rerio) within droplets in a two-plate digital microfluidic device. The yeast remained viable after transport, and the actuated droplets left no yeast behind. A zebrafish embryo transported 2 hours after fertilization developed normally and hatched. Dechorionation was demonstrated by mixing a droplet of digestive reagent droplet with a droplet containing the embryo. These results demonstrate the potential for using a droplet microfluidic device as an alternative to microwell plates for yeast and zebrafish assays.
Collapse
Affiliation(s)
- Sang Uk Son
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|
13
|
Shynkaryk M, Lebovka N, Lanoisellé JL, Nonus M, Bedel-Clotour C, Vorobiev E. Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). J FOOD ENG 2009. [DOI: 10.1016/j.jfoodeng.2008.10.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Xin Q, Zhang X, Lei L. Inactivation of Bacteria in Oil-Field Reinjection Water by Pulsed Electric Field (PEF) Process. Ind Eng Chem Res 2008. [DOI: 10.1021/ie8000524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Xin
- Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, P.R. China
| | - Xingwang Zhang
- Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, P.R. China
| | - Lecheng Lei
- Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, P.R. China
| |
Collapse
|
15
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|