1
|
Fan Y, Li P, Zhu D, Zhao C, Jiao J, Ji X, Du X. Effects of ESA_00986 Gene on Adhesion/Invasion and Virulence of Cronobacter sakazakii and Its Molecular Mechanism. Foods 2023; 12:2572. [PMID: 37444309 DOI: 10.3390/foods12132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic Gram-negative pathogen that has been identified as a causative agent of severe foodborne infections with a higher risk of mortality in neonates, premature infants, the elderly, and immunocompromised populations. The specific pathogenesis mechanisms of C. sakazakii, such as adhesion and colonization, remain unclear. Previously, we conducted comparative proteomic studies on the two strains with the stronger and weaker infection ability, respectively, and found an interesting protein, ESA_00986, which was more highly expressed in the strain with the stronger ability. This unknown protein, predicted to be a type of invasitin related to invasion, may be a critical factor contributing to its virulence. This study aimed to elucidate the precise roles of the ESA_00986 gene in C. sakazakii by generating gene knockout mutants and complementary strains. The mutant and complementary strains were assessed for their biofilm formation, mobility, cell adhesion and invasion, and virulence in a rat model. Compared with the wild-type strain, the mutant strain exhibited a decrease in motility, whereas the complementary strain showed comparable motility to the wild-type. The biofilm-forming ability of the mutant was weakened, and the mutant also exhibited attenuated adhesion to/invasion of intestinal epithelial cells (HCT-8, HICE-6) and virulence in a rat model. This indicated that ESA_00986 plays a positive role in adhesion/invasion and virulence. This study proves that the ESA_00986 gene encodes a novel virulence factor and advances our understanding of the pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Wang X, Zhuo Q, Hong Y, Wu Y, Gu Q, Yuan D, Dong Q, Shao J. Correlation between Multilocus Sequence Typing and Antibiotic Resistance, Virulence Potential of Campylobacter jejuni Isolates from Poultry Meat. Foods 2022; 11:foods11121768. [PMID: 35741967 PMCID: PMC9222796 DOI: 10.3390/foods11121768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and can be transmitted to human beings via the consumption of poultry products. This study aimed to determine antibiotic resistance and virulence potential of one hundred C. jejuni isolates from poultry meat and to explore the correlation between them and the multilocus sequence types (MLST). A total of 29 STs and 13 CCs were identified by MLST, of which 8 STs were first identified. The dominant ST was ST583 (21%), followed by ST42 (15%), ST61 (12%), and ST2276 (10%). Eighty-eight isolates showed resistance to at least one antibiotic. The resistance rate to fluoroquinolones was the highest (81%), followed by tetracycline (59%), whereas all the isolates were susceptible to erythromycin and telithromycin. Multi-antibiotic resistance was detected in 18 C. jejuni isolates. Great variability in the adhesion and invasion ability to Caco-2 cells was observed for the 100 isolates, with adhesion rates varying between 0.02% and 28.48%, and invasion rates varied from 0 to 6.26%. A correlation between STs and antibiotic resistance or virulence was observed. The ST61 isolates were significantly sensitive to CIP, while the TET resistance was significantly associated with ST354 and ST6175 complex. ST11326 showed substantially higher resistance to gentamicin and higher adhesion and invasion abilities to Caco-2 cells. The results helped improve our understanding of the potential hazard of different genotypes C. jejuni and provided critical information for the risk assessment of campylobacteriosis infection.
Collapse
Affiliation(s)
- Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Qiyun Zhuo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
- Correspondence: (Y.W.); (J.S.); Tel.: +86-21-64252849 (Y.W.); +86-512-56302785 (J.S.)
| | - Qiang Gu
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
| | - Dawei Yuan
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
- Correspondence: (Y.W.); (J.S.); Tel.: +86-21-64252849 (Y.W.); +86-512-56302785 (J.S.)
| |
Collapse
|
3
|
Bai J, Chen Z, Luo K, Zeng F, Qu X, Zhang H, Chen K, Lin Q, He H, Liao M, Zhang J. Highly Prevalent Multidrug-Resistant Campylobacter spp. Isolated From a Yellow-Feathered Broiler Slaughterhouse in South China. Front Microbiol 2021; 12:682741. [PMID: 34220768 PMCID: PMC8242590 DOI: 10.3389/fmicb.2021.682741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the prevalence, antimicrobial resistance, virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered broiler slaughtering line in Southern China from December 2018 to June 2019. A total of 157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6% (75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples, 18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4% (2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5% Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4% (142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA, with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA, cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent. Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that Campylobacter spp. could be cross-contaminated throughout the entire slaughtering line. These results show that it is imperative to study the Campylobacter spp. from the yellow-feathered broiler along the slaughtering line in China to develop preventative and treatment measures for the poultry industry, as well as food safety and public health.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhengquan Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifeng Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qijie Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haishan He
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Ohadi E, Bakhshi B, Talebi M, Irajian G. A genomic concept in cellular interaction of clinical Campylobacter spp. with human epithelial colorectal adenocarcinoma cells. INFECTION GENETICS AND EVOLUTION 2020; 86:104596. [PMID: 33075509 DOI: 10.1016/j.meegid.2020.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to realize the genomic concept of cellular interaction of clinical Campylobacter spp. with human epithelial colorectal adenocarcinoma cells. It was indicated that the mean adherence and invasion rate of C.jejuni isolates was significantly higher than C.coli and the highest adhesion rate among the C.jejuni and C.coli belonged to strains harboring 4 (flaA, cadF, peb1A, and flpA) and 3 (flaA, cadF, and peb1A) adherence genes, respectively, which indicates that the adhesion potential of C.coli and C.jejuni strains is associated with the coordinate function and cumulative effect of selected virulence-associated genes. The highest invasion rate in C.jejuni (10.3%) and C.coli (8.4%) isolates belonged to strains which concomitantly contained 3 (ciaB, iamA, and tlp1) and 2 (ciaB and iamA) invasion-associated genes which emphasizes on the cooperative roles of these genes in C.jejuni and C.coli invasion to Caco-2 cells. The toxicity of C.jejuni for Caco-2 cells was proved higher than that of C.coli. There was a positive correlation between adherence, invasion and toxicity of both C.jejuni and C.coli isolates. Moreover, the expression levels of CDT-producing genes in C.jejuni strains was significantly higher than that of C.coli. The average cytotoxicity of the strains with all three CDT-encoding genes (cdtA, cdtB and cdtC) was statistically higher than those lacking one or more CDT subunits. A crucial contribution of CdtB to the cytotoxicity of Campylobacter strains was detected. Following the treatment of epithelial cells with C.jejuni or C.coli, IL-8 and TNF-α were significantly increased compared to untreated Caco-2 cells, and the highest IL-8 expression was observed in both C.jejuni and C.coli expressing all CDTs (cdtA, cdtB, and cdtC). We, for the first time, indicated the major contribution of TLR2 and TLR4 in campylobacter initiation of pathogenesis, while increased invasiveness and cytotoxicity was significantly associated with the increased expression of TLR4 in C.jejuni isolates.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maliheh Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
An adapted in vitro assay to assess Campylobacter jejuni interaction with intestinal epithelial cells: Taking into stimulation with TNFα. J Microbiol Methods 2018; 149:67-72. [PMID: 29729311 DOI: 10.1016/j.mimet.2018.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
Abstract
Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 108 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells.
Collapse
|
6
|
Antioxidant activity and influence of Citrus byproduct extracts on adherence and invasion of Campylobacter jejuni and on the relative expression of cadF and ciaB. Food Sci Biotechnol 2017; 26:453-459. [PMID: 30263564 DOI: 10.1007/s10068-017-0062-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 10/19/2022] Open
Abstract
Adherence and invasion to cells are the key processes during infection development by Campylobacter jejuni (C. jejuni). In this study, extracts from the byproducts of Citrus limon, Citrus aurantium, and Citrus medica were added to the cultures of C. jejuni, and the adherence and invasion of C. jejuni to HeLa cells and the expression of cadF and ciaB genes were analyzed. The relative expression of the genes was determined by quantitative reverse transcription PCR (qRT-PCR). The antioxidant activity was determined using spectrophotometric methods. Byproduct extracts at subinhibitory concentrations affected the adherence (reduced 2.3 to 99%) and invasion (reduced 71.3 to 99.2%) to the HeLa cells. The expression of cadF and ciaB was reduced from 66 to 99% and from 81 to 99%, respectively. The total phenolic content of the byproducts varied from 92 to 26 mg GAE/g and the total flavonoids varied from 161 to 29.29 mg QE/g. C. aurantium showed the highest percentage of radical scavenging activity (RSA, 90.1). These extracts can prove as effective alternatives for devising new strategies to control Campylobacter infections.
Collapse
|
7
|
Klančnik A, Pogačar MŠ, Raspor P, Abram M, Možina SS, Vučković D. Virulence genes and cytokine profile in systemic murine Campylobacter coli infection. Virulence 2015; 6:581-90. [PMID: 26039573 DOI: 10.1080/21505594.2015.1042642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Campylobacter coli are one of the most common bacteria in bacterial gastroenteritis and acute enterocolitis in humans. However, relatively little is known regarding the mechanisms of pathogenesis and host response to C. coli infections. To investigate the influence of genetic changes, we first used PCR to demonstrate the presence of the known virulence genes cadF, virB11, cdtB, cdtC and ceuE in the clinical isolate C. coli 26536, which was isolated from the liver of infected BALB/c mice. Sequence analyses of the cadF, virB11, cdtB and ceuE genes in C. coli 26536 confirmed the stability in these virulence genes during their transmission through the host. We further investigated C. coli infection for the bacterial clearance from the liver and spleen of infected mice, and for their immune response. C. coli persisted well in both organs, with better survival in the liver. We also determined the levels of several pro-inflammatory cytokines (i.e., interleukin [IL]-6, IL-12, interferon-γ, tumor necrosis factor-α) and the anti-inflammatory cytokine IL-10 in plasma and in liver homogenates from the infected mice, using enzyme-linked immunosorbent assays. The lowest levels among these cytokines were for tumor necrosis factor-α in the plasma and IL-6 in the liver on days 1, 3 and 8 post-infection. The most pronounced production was for IL-10, in both plasma (days 1 and 8 post-infection) and liver (day 8 post-infection), which suggests that it has a role in healing of the organ inflammation. Our findings showed dynamic relationships between pro- and anti-inflammatory cytokines and thus contribute toward clarification of the healing processes involved in the resolution of C. coli infections.
Collapse
Affiliation(s)
- Anja Klančnik
- a Department of Food Science and Technology ; Biotechnical Faculty; University of Ljubljana ; Ljubljana , Slovenia
| | | | - Peter Raspor
- d Institute of Food, Nutrition and Health; Faculty of Health Sciences; University of Primorska ; Izola , Slovenia
| | - Maja Abram
- c Department of Microbiology ; Medical Faculty; University of Rijeka ; Rijeka , Croatia
| | - Sonja Smole Možina
- a Department of Food Science and Technology ; Biotechnical Faculty; University of Ljubljana ; Ljubljana , Slovenia
| | - Darinka Vučković
- c Department of Microbiology ; Medical Faculty; University of Rijeka ; Rijeka , Croatia
| |
Collapse
|
8
|
Xu F, Wu C, Guo F, Cui G, Zeng X, Yang B, Lin J. Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine. Front Microbiol 2015; 6:452. [PMID: 26042101 PMCID: PMC4435418 DOI: 10.3389/fmicb.2015.00452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/27/2015] [Indexed: 12/02/2022] Open
Abstract
Upon colonization in the host gastrointestinal tract, the enteric bacterial pathogen Campylobacter jejuni is exposed to a variety of signaling molecules including the catecholamine hormones epinephrine (Epi) and norepinephrine (NE). NE has been observed to stimulate the growth and potentially enhance the pathogenicity of C. jejuni. However, the underlying mechanisms are still largely unknown. In this study, both Epi and NE were also observed to promote C. jejuni growth in MEMα-based iron-restricted medium. Adhesion and invasion of Caco-2 cells by C. jejuni were also enhanced upon exposure to Epi or NE. To further examine the effect of Epi or NE on the pathobiology of C. jejuni, transcriptomic profiles were conducted for C. jejuni NCTC 11168 that was cultured in iron-restricted medium supplemented with Epi or NE. Compared to the genes expressed in the absence of the catecholamine hormones, 183 and 156 genes were differentially expressed in C. jejuni NCTC 11168 that was grown in the presence of Epi and NE, respectively. Of these differentially expressed genes, 102 genes were common for both Epi and NE treatments. The genes differentially expressed by Epi or NE are involved in diverse cellular functions including iron uptake, motility, virulence, oxidative stress response, nitrosative stress tolerance, enzyme metabolism, DNA repair and metabolism and ribosomal protein biosynthesis. The transcriptome analysis indicated that Epi and NE have similar effects on the gene expression of C. jejuni, and provided insights into the delicate interaction between C. jejuni and intestinal stress hormones in the host.
Collapse
Affiliation(s)
- Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Cun Wu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Guolin Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee Knoxville, TN, USA
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee Knoxville, TN, USA
| |
Collapse
|
9
|
Wong A, Lange D, Houle S, Arbatsky NP, Valvano MA, Knirel YA, Dozois CM, Creuzenet C. Role of capsular modified heptose in the virulence ofCampylobacter jejuni. Mol Microbiol 2015; 96:1136-58. [DOI: 10.1111/mmi.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony Wong
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| | - Dirk Lange
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| | | | - Nikolay P. Arbatsky
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russia
| | - Miguel A. Valvano
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
- Centre for Infection and Immunity; Queen's University of Belfast; Belfast UK
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russia
| | | | - Carole Creuzenet
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| |
Collapse
|
10
|
O'Donovan D, Corcoran GD, Lucey B, Sleator RD. Campylobacter ureolyticus: a portrait of the pathogen. Virulence 2014; 5:498-506. [PMID: 24717836 PMCID: PMC4063811 DOI: 10.4161/viru.28776] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/29/2023] Open
Abstract
Herein, we provide a brief overview of the emerging bacterial pathogen Campylobacter ureolyticus. We describe the identification of the pathogen by molecular as opposed to classical culture based diagnostics and discuss candidate reservoirs of infection. We also review the available genomic data, outlining some of the major virulence factors, and discuss how these mechanisms likely contribute to pathogenesis of the organism.
Collapse
Affiliation(s)
- Dylan O'Donovan
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Gerard D Corcoran
- Department of Diagnostic Microbiology; Cork University Hospital; Wilton, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| |
Collapse
|
11
|
Guyard-Nicodème M, Tresse O, Houard E, Jugiau F, Courtillon C, El Manaa K, Laisney MJ, Chemaly M. Characterization of Campylobacter spp. transferred from naturally contaminated chicken legs to cooked chicken slices via a cutting board. Int J Food Microbiol 2013; 164:7-14. [PMID: 23587707 DOI: 10.1016/j.ijfoodmicro.2013.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/05/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Campylobacter represents the leading cause of gastroenteritis in Europe. Campylobacteriosis is mainly due to C. jejuni and C. coli. Poultry meat is the main source of contamination, and cross-contaminations in the consumer's kitchen appear to be the important route for exposure. The aim of this study was to examine the transfer of Campylobacter from naturally contaminated raw poultry products to a cooked chicken product via the cutting board and to determine the characteristics of the involved isolates. This study showed that transfer occurred in nearly 30% of the assays and that both the C. jejuni and C. coli species were able to transfer. Transfer seems to be linked to specific isolates: some were able to transfer during separate trials while others were not. No correlation was found between transfer and adhesion to inert surfaces, but more than 90% of the isolates presented moderate or high adhesion ability. All tested isolates had the ability to adhere and invade Caco-2 cells, but presented high variability between isolates. Our results highlighted the occurrence of Campylobacter cross-contamination via the cutting board in the kitchen. Moreover, they provided new interesting data to be considered in risk assessment studies.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Anses, Ploufragan/Plouzané Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP 53, Ploufragan, F-22440, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Patrone V, Campana R, Vallorani L, Dominici S, Federici S, Casadei L, Gioacchini AM, Stocchi V, Baffone W. CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie van Leeuwenhoek 2013; 103:979-88. [PMID: 23314927 DOI: 10.1007/s10482-013-9877-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/05/2013] [Indexed: 11/25/2022]
Abstract
Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins such as fibronectin. The aim of this work was to study in vitro the adhesive properties of C. jejuni ATCC 33291 and C. jejuni 241 strains, in both culturable and viable but non-culturable (VBNC) forms. To this end, the expression of the outer-membrane protein CadF, which mediates C. jejuni binding to fibronectin, was evaluated. VBNC bacteria were obtained after 46-48 days of incubation in freshwater at 4 °C. In both cellular forms, the expression of the cadF gene, assessed at different time points by RT-PCR, was at high levels until the third week of VBNC induction, while the intensity of the signal declined during the last stage of incubation. CadF protein expression by the two C. jejuni strains was analysed using 2-dimensional electrophoresis and mass spectrometry; the results indicated that the protein, although at low levels, is also present in the VBNC state. Adhesion assays with culturable and VBNC cells, evaluated on Caco-2 monolayers, showed that non-culturable bacteria retain their ability to adhere to intestinal cells, though at a reduced rate. Our results demonstrate that the C. jejuni VBNC population maintains an ability to adhere and this may thus have an important role in the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- Vania Patrone
- Division of Toxicology, Hygienic and Environmental Sciences Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The recent detection and isolation of the aflagellate Campylobacter ureolyticus (previously known as Bacteroides ureolyticus) from intestinal biopsy specimens and fecal samples of children with newly diagnosed Crohn's disease led us to investigate the pathogenic potential of this bacterium. Adherence and gentamicin protection assays were employed to quantify the levels of adherence to and invasion into host cells. C. ureolyticus UNSWCD was able to adhere to the Caco-2 intestinal epithelial cell line with a value of 5.341% ± 0.74% but was not able to invade the Caco-2 cells. The addition of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), to the cell line did not affect attachment or invasion, with attachment levels being 4.156% ± 0.61% (P = 0.270) for TNF-α and 6.472% ± 0.61% (P = 0.235) for IFN-γ. Scanning electron microscopy visually confirmed attachment and revealed that C. ureolyticus UNSWCD colonizes and adheres to intestinal cells, inducing cellular damage and microvillus degradation. Purification and identification of the C. ureolyticus UNSWCD secretome detected a total of 111 proteins, from which 29 were bioinformatically predicted to be secretory proteins. Functional classification revealed three putative virulence and colonization factors: the surface antigen CjaA, an outer membrane fibronectin binding protein, and an S-layer RTX toxin. These results suggest that C. ureolyticus has the potential to be a pathogen of the gastrointestinal tract.
Collapse
|