1
|
Zhou X, Guo Y, Pan Y, Zhao Y, Liu H. Phenotypic heterogeneity and pathogenicity of Listeria monocytogenes under complex salinities of bile salts and sodium salts stress. Arch Microbiol 2025; 207:101. [PMID: 40133551 DOI: 10.1007/s00203-025-04272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025]
Abstract
Listeria monocytogenes is a foodborne pathogen that is widespread in the environment and food, and can cause zoonotic diseases. Previous studies have explored its growth under various environmental stressors, but little is known about its behavior under the complex effects of bile salts and sodium salts. Therefore, this study aimed to explore the differences of different salinities (Brain Heart Infusion (BHI) and BHI medium with 0.90% NaCl, 0.50% NaCl + 0.04% bile salts, and 0.90% NaCl + 0.04% bile salts) on growth, motility, biofilm formation, and virulence of L. monocytogenes. This study also artificially simulated L. monocytogenes contamination in pork samples. The results showed that the maximum specific growth rate (μmax) of 40 L. monocytogenes isolates was significantly reduced and the lag time (LT) was significantly prolonged under the complex salinity treatment, exhibiting greater growth heterogeneity; serotype 4b isolates exhibited strong resistance under complex salinities. L. monocytogenes biofilm formation was significantly reduced with the increase in complex salinities, motility was inhibited, and pathogenicity was enhanced, especially in serotype 1/2c isolates. Furthermore, the complex salinities also caused damage to the cell membrane of L. monocytogenes. L. monocytogenes grew wildly in pork samples, while its growth was inhibited when bile salts were added to form the complex salinities environment. These results highlight the phenotypic heterogeneity and pathogenicity of L. monocytogenes under complex salinities, offering insights for better risk assessment and pathogen control in food safety.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yingying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product On Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Food Industry Chain Ecological Recycling Research Institute of Food Science and Technology College, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Yang X, Peng Z, He M, Li Z, Fu G, Li S, Zhang J. Screening, probiotic properties, and inhibition mechanism of a Lactobacillus antagonistic to Listeria monocytogenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167587. [PMID: 37797767 DOI: 10.1016/j.scitotenv.2023.167587] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Listeria monocytogenes is one of the most lethal foodborne pathogens, and there is a lack of microorganisms that can strongly inhibit its growth. Safe lactic acid bacteria with probiotic and antibacterial properties are ideal sources of antagonistic bacteria. This study isolated a strain of Lactobacillus plantarum 4-10 that completely killed L. monocytogenes from northeastern Chinese sauerkraut. Probiotic characterization revealed broad-spectrum bacterial inhibition, antagonizing 16 Gram-positive, Gram-negative, and fungal species. After tolerance to simulated intestinal and gastric fluids, the survival rate was >45 %. L. plantarum 4-10 was sensitive to chloramphenicol, doxycycline, erythromycin, and tetracycline, and exhibited good hydrophobicity, auto-aggregation, and co-aggregation. It could disrupt the cell structure when co-cultured with L. monocytogenes and act as a lethal agent within 15 h. Through transcriptomic analysis and validation experiments, we found that L. plantarum 4-10 could inhibit the expression of L. monocytogenes membrane transport-related genes by producing bacteriocins, thus disrupting the cell membrane structure and inhibiting the growth, metabolic viability, and biofilm formation of L. monocytogenes in a short time. In conclusion, L. plantarum 4-10 has good probiotic properties and antibacterial effects and shows excellent research and application prospects as a natural bacteriostat.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengni He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhibin Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Guihua Fu
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Shaolei Li
- Fujian Maidu Food Development Co., Ltd, Quanzhou, Fujian 362000, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
3
|
In vitro virulence potential, surface attachment and transcriptional response of sublethally injured Listeria monocytogenes following exposure to peracetic acid. Appl Environ Microbiol 2021; 88:e0158221. [PMID: 34731051 DOI: 10.1128/aem.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disinfectant Peracetic acid (PAA) can cause high levels of sublethal injury to L. monocytogenes. This study aims to evaluate phenotypic and transcriptional characteristics concerning surface attachment and virulence potential of sublethally injured L. monocytogenes ScottA and EGDe after exposure to 0.75 ppm PAA for 90 min at 4°C and subsequent incubation in TSBY at 4°C. Results showed that injured L. monocytogenes cells (99% of total population) were able to attach (after 2 and 24h) on stainless steel coupons at 4°C and 20°C. In vitro virulence assays using human intestinal epithelial Caco-2 cells showed that injured L. monocytogenes could invade host cells but could not proliferate intracellularly. In vitro virulence response was strain-dependent; injured ScottA was more invasive than EGDe. Assessment of PAA-injury at the transcriptional level showed upregulation of genes (motB, flaA) involved in flagellum motility and surface attachment. The transcriptional response of L. monocytogenes EGDe and ScottA was different; only injured ScottA demonstrated upregulation of the virulence genes inlA and plcA. Downregulation of the stress-related genes fri and kat, and upregulation of lmo0669 was observed in injured ScottA. The obtained results indicate that sublethally-injured L. monocytogenes cells may retain part of their virulence properties as well as their ability to adhere on food processing surfaces. Transmission to food products and introduction of these cells in the food chain is therefore a plausible scenario that is worth taking into consideration in terms of risk assessment. Importance L. monocytogenes is the causative agent of listeriosis a serious food-borne illness. Antimicrobial practices, such as disinfectants used for the elimination of this pathogen in food industry can produce a sublethally injured population fraction. Injured cells of this pathogen, that may survive an antimicrobial treatment, may pose a food safety-risk. Nevertheless, knowledge regarding how sublethal injury may impact important cellular traits and phenotypic responses of this pathogen is limited. This work suggests that sublethally injured L. monocytogenes cells maintain the virulence and surface attachment potential and highlights the importance of the occurrence of sublethally injured cells regarding food safety.
Collapse
|
4
|
MAJDOUB N, KAAB LBB, VIEIRA AI, FALEIRO ML, EL-GUENDOUZ S, MIGUEL MG. Zn treatment effects on biological potential of fennel bulbs as affected by in vitro digestion process. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.34918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Varadarajan AR, Goetze S, Pavlou MP, Grosboillot V, Shen Y, Loessner MJ, Ahrens CH, Wollscheid B. A Proteogenomic Resource Enabling Integrated Analysis of Listeria Genotype-Proteotype-Phenotype Relationships. J Proteome Res 2020; 19:1647-1662. [PMID: 32091902 DOI: 10.1021/acs.jproteome.9b00842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen responsible for listeriosis, a potentially fatal foodborne disease. Many different Listeria strains and serotypes exist, but a proteogenomic resource that bridges the gap in our molecular understanding of the relationships between the Listeria genotypes and phenotypes via proteotypes is still missing. Here, we devised a next-generation proteogenomics strategy that enables the community to rapidly proteotype Listeria strains and relate this information back to the genotype. Based on sequencing and de novo assembly of the two most commonly used Listeria model strains, EGD-e and ScottA, we established two comprehensive Listeria proteogenomic databases. A genome comparison established core- and strain-specific genes potentially responsible for virulence differences. Next, we established a DIA/SWATH-based proteotyping strategy, including a new and robust sample preparation workflow, that enables the reproducible, sensitive, and relative quantitative measurement of Listeria proteotypes. This reusable and publicly available DIA/SWATH library covers 70% of open reading frames of Listeria and represents the most extensive spectral library for Listeria proteotype analysis to date. We used these two new resources to investigate the Listeria proteotype in states mimicking the upper gastrointestinal passage. Exposure of Listeria to bile salts at 37 °C, which simulates conditions encountered in the duodenum, showed significant proteotype perturbations including an increase of FlaA, the structural protein of flagella. Given that Listeria is known to lose its flagella above 30 °C, this was an unexpected finding. The formation of flagella, which might have implications on infectivity, was validated by parallel reaction monitoring and light and scanning electron microscopy. flaA transcript levels did not change significantly upon exposure to bile salts at 37 °C, suggesting regulation at the post-transcriptional level. Together, these analyses provide a comprehensive proteogenomic resource and toolbox for the Listeria community enabling the analysis of Listeria genotype-proteotype-phenotype relationships.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Maria P Pavlou
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| | - Virginie Grosboillot
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Institute of Food, Nutrition and Health (IFNH), ETH Zürich, 8092 Zürich, Switzerland
| | - Christian H Ahrens
- Agroscope, Molecular Diagnostics, Genomics & Bioinformatics, 8820 Wädenswil, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zürich, 8092 Zürich, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.,Institute of Translational Medicine (ITM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Hadjilouka A, Gkolfakis P, Patlaka A, Grounta A, Vourli G, Paramithiotis S, Touloumi G, Triantafyllou K, Drosinos EH. In Vitro Gene Transcription of Listeria monocytogenes after Exposure to Human Gastric and Duodenal Aspirates. J Food Prot 2020; 83:89-100. [PMID: 31855615 DOI: 10.4315/0362-028x.jfp-19-210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to assess, for the first time to our knowledge, Listeria monocytogenes CFU changes, as well as to determine the transcription of key virulence genes, namely, sigB, prfA, hly, plcA, plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 after in vitro exposure to human gastric and duodenal aspirates. Furthermore, investigations of the potential correlation between CFU changes and gene regulation with factors influencing gastric (proton pump inhibitor intake and presence of gastric atrophy) and duodenal pH were the secondary study aims. Gastric and duodenal fluids that were collected from 25 individuals undergoing upper gastrointestinal endoscopy were inoculated with L. monocytogenes serotype 4b strain LQC 15257 at 9 log CFU·mL-1 and incubated at 37°C for 100 min and 2 h, respectively, with the time corresponding to the actual exposure time to gastric and duodenal fluids in the human gastrointestinal tract. Sampling was performed upon gastric fluid inoculation, after incubation of the inoculated gastric fluids, upon pathogen resuspension in duodenal fluids and after incubation of the inoculated duodenal fluids. L. monocytogenes CFU changes were assessed by colony counting, as well as reverse transcription quantitative PCR by using inlB as a target. Gene transcription was assessed by reverse transcription quantitative PCR. In 56% of the cases, reduction of the pathogen CFU occurred immediately after exposure to gastric aspirate. Upregulation of hly and inlC was observed in 52 and 58% of the cases, respectively. On the contrary, no upregulation or downregulation was noticed regarding sigB, prfA, plcA, plcB, inlA, inlB, inlJ, inlP, and lmo2672. In addition, sigB and plcA transcription was positively and negatively associated, respectively, with an increase of the pH value, and inlA transcription was negatively associated with the presence of gastric atrophy. Finally, a positive correlation between the transcriptomic responses of plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 was detected. This study revealed that the CFU of the pathogen was negatively affected after exposure to human gastroduodenal aspirates, as well as significant correlations between the characteristics of the aspirates with the virulence potential of the pathogen.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Apostolia Patlaka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Athena Grounta
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| |
Collapse
|
7
|
Listeria monocytogenes survival in raw Atlantic salmon (Salmo salar) fillet under in vitro simulated gastrointestinal conditions by culture, qPCR and PMA-qPCR detection methods. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Vieira AI, Guerreiro A, Antunes MD, Miguel MDG, Faleiro ML. Edible Coatings Enriched with Essential Oils on Apples Impair the Survival of Bacterial Pathogens through a Simulated Gastrointestinal System. Foods 2019; 8:E57. [PMID: 30720754 PMCID: PMC6406970 DOI: 10.3390/foods8020057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Edible coatings supplemented with essential oil components have been investigated to control spoilage microorganisms. In this study, the survival of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on apples treated with edible coatings based on sodium alginate (2%) (ECs) and supplemented with essential oil components, namely eugenol (Eug) at 0.2% or in combination with 0.1% (v/v) of Eug and citral (Cit) at 0.15% was determined. Both bacterial pathogens were exposed on apples treated with ECs supplemented with Eug or Eug + Cit and challenged with gastrointestinal fluids and their survival was examined. Both pathogens were able to survive on the surface of 'Bravo de Esmolfe' apple. The use of ECs in fresh-cut fruits impaired the survival of both bacterial populations over 72 h at 4 °C. The exposure of the pathogens on apples with ECs supplemented with Eug and Cit and challenged with gastrointestinal fluids significantly reduced their survival. This study evidences that the use of alginate edible coating enriched with Eug or the combination of Eug and Cit can contribute to the safer consumption of minimally processed fruits.
Collapse
Affiliation(s)
- Ana Isabel Vieira
- University of Algarve, FCT, Center for Biomedical Research, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adriana Guerreiro
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria Dulce Antunes
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria da Graça Miguel
- University of Algarve, FCT, Meditbio, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria Leonor Faleiro
- University of Algarve, FCT, Center for Biomedical Research, Edf. 8, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
9
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
10
|
Pinto E, Anselmo M, Calha M, Bottrill A, Duarte I, Andrew PW, Faleiro ML. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. MICROBIOLOGY-SGM 2017; 163:161-174. [PMID: 28270263 DOI: 10.1099/mic.0.000412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
Collapse
Affiliation(s)
- Elsa Pinto
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisol Anselmo
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Manuela Calha
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Andrew Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester LE1 7RH, UK
| | - Isabel Duarte
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Maria L Faleiro
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Iglesias M, Viñas I, Colás-Medà P, Collazo C, Serrano J, Abadias M. Adhesion and invasion of Listeria monocytogenes and interaction with Lactobacillus rhamnosus GG after habituation on fresh-cut pear. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Colás-Medà P, Viñas I, Oliveira M, Anguera M, Serrano JC, Abadias M. Exposure to minimally processed pear and melon during shelf life could modify the pathogenic potential of Listeria monocytogenes. Food Microbiol 2017; 62:275-281. [DOI: 10.1016/j.fm.2016.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
|
13
|
Colás-Medà P, Abadias M, Oliveira M, Usall J, Viñas I. Influence of fruit matrix and storage temperature on the survival of Listeria monocytogenes in a gastrointestinal simulation. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Bahloul N, Bellili S, Aazza S, Chérif A, Faleiro ML, Antunes MD, Miguel MG, Mnif W. Aqueous Extracts from Tunisian Diplotaxis: Phenol Content, Antioxidant and Anti-Acetylcholinesterase Activities, and Impact of Exposure to Simulated Gastrointestinal Fluids. Antioxidants (Basel) 2016; 5:E12. [PMID: 27049399 PMCID: PMC4931533 DOI: 10.3390/antiox5020012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Antioxidants have been considered essential for preventing cell damage by scavenging deleterious free radicals. The consumption of antioxidant-rich plants is associated with a reduced risk of some chronic diseases. This study evaluates the antioxidant and acetylcholinesterase inhibition activities of aqueous extracts obtained from different parts of Diplotaxis simplex and Diplotaxis harra from Tunisia. The study also aimed to investigate the action of simulated gastrointestinal juice on antioxidant activities of both extracts. The total phenolic, flavone and flavonol, and flavanone and dihydroflavonol contents were determined by Folin-Ciocalteau, aluminum chloride and 2,4-dinitrophenylhydrazine colorimetric methods, respectively. The metal ion chelating activity, acetylcholinesterase inhibition capacity, and free radical scavenging potential of the extracts towards ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl), hydroxyl, superoxide and nitric oxide were also evaluated. The action of simulated gastro-intestinal fluids on the flavone and flavonol content and total antioxidant activity of the flower extracts was surveyed. Extracts from the seeds and flowers of D. simplex and D. harra displayed the highest amounts of phenols (2691.7 and 2694.5 mg Caffeic Acid Equivalent (CAE)/100 mg; 3433.4 and 2647.2 mg CAE/100 mg, respectively) and flavonols/flavones (2144.4 and 2061.1 mg Rutin Equivalent (RE)/100 g; 1922.6 and 1461.1 mg RE/100 g, respectively). The flower and seed extracts exhibited the highest rates of antioxidant and acetylcholinesterase inhibition activities. A decrease in the flavonoid content and antioxidant activity was observed after extract exposure to simulated saliva. Antioxidant and acetylcholinesterase inhibition activities were noted to depend on plant species and plant parts. In vitro gastrointestinal digestion is useful in assessing the bio-accessibility of compounds with biological activities from food. The simulated gastrointestinal fluids influenced the flavonoid concentration and antioxidant activity.
Collapse
Affiliation(s)
- Nada Bahloul
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources (BVBGR), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna-Bizerte 7021, Tunisia.
| | - Sana Bellili
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources (BVBGR), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Jarzouna-Bizerte 7021, Tunisia.
| | - Smail Aazza
- Laboratory of Physiology-Pharmacology-Environmental Health, Faculty of Sciences Dhar El Mehraz, BP 1796 Atlas, University Sidi Mohamed Ben Abdallah, Fez 30 000, Morocco.
| | - Ameur Chérif
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources (BVBGR), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia.
| | - Maria Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Center for Biomedical Research, Universidade do Algarve, Edf. 8, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Maria Dulce Antunes
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, MeditBio, Edif. 8, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, MeditBio, Edif. 8, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Wissem Mnif
- LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources (BVBGR), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia.
- Faculty of Sciences and Arts in Balgarn PO BOX 60 Balgarn, Bisha University, Sabt Al Alaya 61985, Saudi Arabia.
| |
Collapse
|
15
|
Greppi A, Rantsiou K. Methodological advancements in foodborne pathogen determination: from presence to behavior. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Impact of Moderate Heat, Carvacrol, and Thymol Treatments on the Viability, Injury, and Stress Response of Listeria monocytogenes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:548930. [PMID: 26539510 PMCID: PMC4619816 DOI: 10.1155/2015/548930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022]
Abstract
The microbial safety and stability of minimally processed foods are based on the application of combined preservative factors. Since microorganisms are able to develop adaptive networks to survive under conditions of stress, food safety may be affected, and therefore understanding of stress adaptive mechanisms plays a key role in designing safe food processing conditions. In the present study, the viability and the sublethal injury of Listeria monocytogenes exposed to moderate heat (55 °C) and/or essential oil compounds (carvacrol and thymol, 0.3 mM) treatments were studied. Synergistic effects were obtained when combining mild heat (55 °C) with one or both essential oil compounds, leading to inactivation kinetics values three to four times lower than when using heat alone. All the treatments applied caused some injury in the population. The injury levels ranged from around 20% of the surviving population under the mildest conditions to more than 99.99% under the most stringent conditions. Protein extracts of cells exposed to these treatments were analysed by two-dimensional gel electrophoresis. The results obtained revealed that stressed cells exhibited differential protein expression to control cells. The proteins upregulated under these stressing conditions were implicated, among other functions, in stress response, metabolism, and protein refolding.
Collapse
|
17
|
Affiliation(s)
- Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;
| | - Colin Hill
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;
| |
Collapse
|
18
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Poirier I, Kuhn L, Caplat C, Hammann P, Bertrand M. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:120-133. [PMID: 25456226 DOI: 10.1016/j.aquatox.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
This study examined the effect of cold stress on the proteome and metal tolerance of Pseudomonas fluorescens BA3SM1, a marine strain isolated from tidal flat sediments. When cold stress (+10 °C for 36 h) was applied before moderate metal stress (0.4 mM Cd, 0.6 mM Cd, 1.5 mM Zn, and 1.5 mM Cu), growth disturbances induced by metal, in comparison with respective controls, were reduced for Cd and Zn while they were pronounced for Cu. This marine strain was able to respond to cold stress through a number of changes in protein regulation. Analysis of the predicted differentially expressed protein functions demonstrated that some mechanisms developed under cold stress were similar to those developed in response to Cd, Zn, and Cu. Therefore, pre-cold stress could help this strain to better counteract toxicity of moderate concentrations of some metals. P. fluorescens BA3SM1 was able to remove up to 404.3 mg Cd/g dry weight, 172.5 mg Zn/g dry weight, and 11.3 mg Cu/g dry weight and its metal biosorption ability seemed to be related to the bacterial growth phase. Thus, P. fluorescens BA3SM1 appears as a promising agent for bioremediation processes, even at low temperatures.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Christelle Caplat
- UMR BOREA, Université de Caen Basse-Normandie, Esplanade de la Paix, BP 5186, 14032 Caen Cedex, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Martine Bertrand
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France
| |
Collapse
|
20
|
Gahan CGM, Hill C. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 2014; 4:9. [PMID: 24551601 PMCID: PMC3913888 DOI: 10.3389/fcimb.2014.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/18/2014] [Indexed: 12/27/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes has the capacity to survive and grow in a diverse range of natural environments. The transition from a food environment to the gastrointestinal tract begins a process of adaptation that may culminate in invasive systemic disease. Here we describe recent advances in our understanding of how L. monocytogenes adapts to the gastrointestinal environment prior to initiating systemic infection. We will discuss mechanisms used by the pathogen to survive encounters with acidic environments (which include the glutamate decarboxylase and arginine deiminase systems), and those which enable the organism to cope with bile acids (including bile salt hydrolase) and competition with the resident microbiota. An increased understanding of how the pathogen survives in this environment is likely to inform the future design of novel prophylactic approaches that exploit specific pharmabiotics; including probiotics, prebiotics, or phages.
Collapse
Affiliation(s)
- Cormac G M Gahan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland ; School of Pharmacy, University College Cork Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
21
|
Petriz BA, Franco OL. Application of Cutting-Edge Proteomics Technologies for Elucidating Host–Bacteria Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:1-24. [DOI: 10.1016/b978-0-12-800453-1.00001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|