1
|
Li W, Xie L, Zhou Y, Ji X, Wang H, Pang L, Liang F, Cheng G, Zhang J. Compositional Shifts in the Mycobiota of 'Shine Muscat' Grape ( Vitis labruscana Baily × V. vinifera L.) Bunches During Cold Storage at Different Temperatures. Foods 2025; 14:1169. [PMID: 40238311 PMCID: PMC11988345 DOI: 10.3390/foods14071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The cultivation of 'Shine Muscat' grapes is rapidly expanding in East Asia due to their desirable qualities and muscat flavor. Studies have revealed that storing these grapes at an controlled freezing-point temperature diminishes their muscat flavor, whereas storage at 10 °C preserves it. However, the impact of a higher storage temperature on the evolution of microbial communities remains unclear. This study aimed to analyze the mycobiota dynamics of 'Shine Muscat' grape bunches under different cold storage temperatures. A total of 1,892,842 and 1,643,200 sequences were obtained from berries and pedicels, identifying over 208 fungal genera from 6 phyla. Xylariaceae was the most abundant family, with a prevalence between 7.21% and 69.27% across all sample groups. The primary genera included Zygosporium, Cladosporium, Aspergillus, Acremonium, Podosordaria, Zasmidium, Penicillium, and Alternaria. Spoilage-related fungi varied with storage temperature, with Aspergillus, Penicillium, and Alternaria being dominant at 0 °C and Cladosporium, Aspergillus, Penicillium, and Alternaria being prevalent at 10 °C. The fungal profiles of berries and pedicels differed significantly, and storage temperature further influenced these variations. Our findings highlight distinct fungal diversity and spoilage patterns in 'Shine Muscat' grape bunches from the Nanning region compared to those grown in temperate areas, revealing the unique microbial evolution of grape bunches stored at different temperatures in Nanning.
Collapse
Affiliation(s)
- Wei Li
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Linjun Xie
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Yongmei Zhou
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Xian Ji
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China;
- Key Laboratory of Storage of Agricultural Products of the Ministry of Agriculture and Rural Affairs, Tianjin 300384, China
| | - Haijun Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Liting Pang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Feicui Liang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
| | - Guo Cheng
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jin Zhang
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (W.L.); (L.X.); (Y.Z.); (L.P.); (F.L.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
2
|
Steng K, Roy F, Kellner H, Moll J, Tittmann S, Frotscher J, Döring J. Functional diversity of the above-ground fungal community under long-term integrated, organic and biodynamic Vineyard Management. ENVIRONMENTAL MICROBIOME 2024; 19:89. [PMID: 39558428 PMCID: PMC11575106 DOI: 10.1186/s40793-024-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Sustainable agriculture increasingly emphasizes the importance of microbial communities in influencing plant health and productivity. In viticulture, understanding the impact of management practices on fungal communities is critical, given their role in disease dynamics, grape and wine quality. This study investigates the effects of integrated, organic, and biodynamic management practices on the diversity and function of fungal communities in a vineyard located in Geisenheim, Germany, focusing on above-ground parts such as bark, leaves, and grapes. RESULTS Our findings indicate that while overall fungal species richness did not significantly differ among management systems across various compartments, the composition of these communities was distinctly influenced by the type of management system. In particular, leaf and grape compartments showed notable variations in fungal community structure between integrated and organic/biodynamic management. No differences were observed between organic and biodynamic management. Integrated management demonstrated a significantly higher abundance of mycoparasites in comparison to organic and biodynamic management, primarily attributed to the increased presence of Sporobolomyces roseus, Sporobolomyces ellipsoideus and Rhodotorula glutinis. CONCLUSIONS The findings highlight the importance of management practices in shaping fungal community composition and function in vineyards. Although overall species richness remained unaffected, community composition and functional diversity varied, highlighting the potential for strategic microbiome management to enhance vineyard sustainability and plant health.
Collapse
Affiliation(s)
- Katharina Steng
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany.
| | - Friederike Roy
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Susanne Tittmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| | - Johanna Frotscher
- Department of Plant Breeding, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Johanna Döring
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| |
Collapse
|
3
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
4
|
Bunbury-Blanchette AL, Fan L, Kernaghan G. Yeast communities of a North American hybrid wine grape differ between organic and conventional vineyards. J Appl Microbiol 2024; 135:lxae092. [PMID: 38621715 DOI: 10.1093/jambio/lxae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
AIMS To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Saint Mary's University, Faculty of Graduate Studies and Research, 923 Robie St, Atrium Building, Suite 210, Halifax, Nova Scotia B3H 1G3, Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St, Kentville, Nova Scotia B4N 1J5, Canada
| | - Gavin Kernaghan
- Mount Saint Vincent University, Department of Biology, 166 Bedford Highway, Halifax, Nova Scotia, B3M 1J9, Canada
| |
Collapse
|
5
|
Iorizzo M, Bagnoli D, Vergalito F, Testa B, Tremonte P, Succi M, Pannella G, Letizia F, Albanese G, Lombardi SJ, Coppola R. Diversity of fungal communities on Cabernet and Aglianico grapes from vineyards located in Southern Italy. Front Microbiol 2024; 15:1399968. [PMID: 38725687 PMCID: PMC11079197 DOI: 10.3389/fmicb.2024.1399968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Grape-associated microbial community is influenced by a combination of viticultural, climatic, pedological and anthropological factors, collectively known as terroir. Therefore, grapes of the same cultivar grown in different areas can be appreciated for their distinctive biogeographic characteristics. In our previous study, we showed that the phenotypic response of Aglianico and Cabernet grapevines from Molise and Sicily regions is significantly influenced by the prevailing pedoclimatic conditions, particularly soil physical properties. However, the scale at which microbial communities differ could be important in clarifying the concept of terroir, including whether it is linked to the grape variety present in a particular vineyard. To explore this further, in the research presented here, a comparative study on the fungal communities inhabiting the berry surfaces of Cabernet and Aglianico cultivars was conducted on different vineyards located in Southern Italy (Molise, Sicily and Campania regions, the first two of which had been involved in our previous study) by using high-throughput sequencing (HTS) and multivariate data analysis. The descriptive approach through relative abundance analysis showed the most abundant phyla (Ascomycota, Basidiomycota, and Chytridiomycota), families (Cladosporiaceae, Saccotheciaceae, Pleosporaceae, Saccharomycodaceae, Sporidiobolaceae, Didymellaceae, Filobasidiaceae, Bulleribasidiaceae, and Saccharomycetaceae) and genera (Cladosporium, Aureobasidium, Alternaria, Stemphylium and Filobasidium) detected on grape berries. The multivariate data analysis performed by using different packages (phyloseq, Vegan, mixOmics, microbiomeMarker and ggplot2) highlighted that the variable "vineyard location" significantly affect the fungal community, while the variable "grape variety" has no significant effect. Thus, some taxa are found to be part of specific vineyard ecosystems rather than specific grape varieties, giving additional information on the microbial contribution to wine quality, thanks to the presence of fermentative yeasts or, conversely, to the involvement in negative or detrimental roles, due to the presence of grape-deriving fungi implied in the spoilage of wine or in grapevine pathogenesis. In this connection, the main functions of core taxa fungi, whose role in the vineyard environment is still poorly understood, are also described.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Diletta Bagnoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
6
|
Mucalo A, Budić-Leto I, Zdunić G. Effect of Sequential Fermentation with Lachancea thermotolerans/ S. cerevisiae on Aromatic and Flavonoid Profiles of Plavac Mali Wine. Foods 2023; 12:1912. [PMID: 37174449 PMCID: PMC10177817 DOI: 10.3390/foods12091912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, the effects of sequential fermentation of Lachancea thermotolerans/S. cerevisiae on the production of Plavac Mali wines were investigated in comparison with the commonly used inoculation of the commercial Saccharomyces cerevisiae strain and spontaneous fermentation. A total of 113 aroma compounds and 35 polyphenolic compounds were analyzed. Sequential inoculation resulted in a decrease in alcohol content and pH (up to 0.3% v/v and 0.12 units, respectively) and an increase in total acidity (0.6 g/L, expressed as tartaric acid). The wines produced by spontaneous fermentation exhibited the greatest diversity of volatile compounds and the highest concentration of C13 norisoprenoids, lactones, and other compounds. These wines exhibited maximum hydroxycinnamic acids, prodelphinidin monomer units, epigallocatechin, B1, B3, and B4 dimers, and total flavan-3-ols. Sequential inoculation decreased the content of the aromas and polyphenols in the wines. The practical significance of this procedure lies in the selective effect on aroma compounds, the decrease in green aromas, undetectable volatile phenols, and the decrease in bitter and astringent compounds such as gallic acid, flavan-3-ol monomers (catechin and epicatechin), and dimers (B1, B2, B3, and B4). This work demonstrates the potential of sequential and spontaneous fermentation to improve the aromatic characteristics and overall quality of Plavac Mali wines.
Collapse
Affiliation(s)
- Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (I.B.-L.); (G.Z.)
| | | | | |
Collapse
|
7
|
Ding Y, Wei R, Wang L, Wang W, Wang H, Li H. Exploring the ecological characteristics of natural microbial communities along the continuum from grape berries to winemaking. Food Res Int 2023; 167:112718. [PMID: 37087276 DOI: 10.1016/j.foodres.2023.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Under natural conditions, a complex and dynamic microbial ecosystem exists on the grape epidermis, which plays an important role in safeguarding grape health and facilitating the conversion of grapes into wine. However, current viticulture and vinification are flooded with excessive chemical additives and commercial ferments, leading to a reduction in microbial diversity, affecting the ecological balance of the natural microbiota and masking the wine terroir. This experiment comprehensively explored the continuous changes in the natural microbiota from the Ecolly (Vitis vinifera L.) grape epidermis to spontaneous fermentation over two years. The results suggested that microbial community structure and composition were significantly influenced by vintage and growing stage, with fungal genera being more stable than bacterial genera during the growing season. The fungal genera Alternaria, Ascochyta, Gibberella and Dissoconium and the bacterial genera Pantoea, Sediminibacterium, Ralstonia and Sphingomonas were mainly present on the grape epidermis in both years. The natural microbial diversity decreased from grape growth to spontaneous fermentation, and the fermentation environment reshapes the community structure, composition and diversity of the wine microbial consortium. These findings provide insights to promote cultivation and fermentation management strategies, advocate natural terroir attributes for grapes and wines, and promote sustainable development of the wine industry.
Collapse
|
8
|
Capturing the fungal community associated with conventional and organic Trebbiano Abruzzese grapes and its influence on wine characteristics. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Wei RT, Chen N, Ding YT, Wang L, Gao FF, Zhang L, Liu YH, Li H, Wang H. Diversity and Dynamics of Epidermal Microbes During Grape Development of Cabernet Sauvignon (Vitis vinifera L.) in the Ecological Viticulture Model in Wuhai, China. Front Microbiol 2022; 13:935647. [PMID: 35847061 PMCID: PMC9280189 DOI: 10.3389/fmicb.2022.935647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Grapevine-related microorganisms affect the health and yield of grapes, the metabolic pathways of the fermentation process, and the regional characteristics of wine. However, the diversity of epidermal microorganisms during the development of berries under the ecological viticulture model has not been described in detail. In this study, high-throughput amplicon sequencing technology was used to perform ITS and 16S sequencing of Cabernet Sauvignon epidermal microbes at different developmental stages in the Wuhai region to investigate the succession of epidermal microbes and their response to developmental stages and vineyard weather. The results showed that the diversity of fungi and bacteria decreased during development. Epidermal microorganisms recruited members according to their developmental stages, but retained the core taxa, such as the fungi genera Alternaria, Jattaea, and Jattaea and the bacteria genera Brevundimonas, Sphingomonas, Acinetobacter, and Pseudomonas. In addition, the microbial diversity was associated with specific meteorological parameters, implying that there was a connection between the environmental conditions of the vineyard and the microbial distribution pattern such as the fungus genus Filobasidium was positively correlated with relative humidity and negatively correlated with average high temperature, average low temperature, and average ground temperature; the bacterium genus Lactobacillus was positively correlated with sunlight time, and negatively correlated with relative humidity. In conclusion, this study can help vineyard managers understand the microbial consortia associated with particular diseases, and also the dynamics of infection processes in order to take preventive actions, especially at the most critical moments.
Collapse
Affiliation(s)
- Ru-teng Wei
- College of Enology, Northwest A&F University, Xianyang, China
| | - Ning Chen
- College of Enology, Northwest A&F University, Xianyang, China
| | - Yin-ting Ding
- College of Enology, Northwest A&F University, Xianyang, China
| | - Lin Wang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Fei-fei Gao
- College of Enology, Northwest A&F University, Xianyang, China
| | - Liang Zhang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Yi-hui Liu
- College of Enology, Northwest A&F University, Xianyang, China
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
- China Wine Industry Technology Institute, Zhongguancun Innovation Center, Yinchuan, China
- *Correspondence: Hua Li,
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China
- China Wine Industry Technology Institute, Zhongguancun Innovation Center, Yinchuan, China
- Hua Wang,
| |
Collapse
|
10
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Perpetuini G, Pio Rossetti A, Battistelli N, Zulli C, Cichelli A, Arfelli G, Tofalo R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res Int 2022; 158:111577. [DOI: 10.1016/j.foodres.2022.111577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
|
12
|
Olive Fungal Epiphytic Communities are Affected by Their Maturation Stage. Microorganisms 2022; 10:microorganisms10020376. [PMID: 35208831 PMCID: PMC8879224 DOI: 10.3390/microorganisms10020376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
The phyllosphere comprises the aerial parts of plants and is colonized by a great diversity of microorganisms, either growing inside (as endophytes) or on the surface (as epiphytes) of plant tissues. The factors that structure the diversity of epiphytes and the importance of these microorganisms for host plant protection have been less studied when compared to the case of endophytes. In this work, the epiphytic fungal communities from fruits of the olive tree (olives) in different maturation stages (green and semi-ripened), obtained from different olive orchard managements (integrated and organic production) and from distinct cultivars displaying different susceptibilities to olive anthracnose (Cobrançosa and Madural), are compared by using a metabarcoding approach. We discuss whether such differences in host resistance against anthracnose depend on both the fungal taxa or fungal community composition. A total of 1565 amplicon sequence variants (ASVs) were obtained, mainly belonging to the Ascomycota phylum and Saccharomycetes class. Although significant differences on epiphytic fungal richness were observed among olives obtained in different production systems and maturation stages, these factors in addition to host cultivar did not influence the composition of the epiphytes. Despite these results, a co-inertia analysis showed that Aureobasidium spp. and Sporocadaceae spp. were positively associated with the green olives of the cv. Madural produced under integrated production, while Saccharomycetales spp. (Kluyveromyces, Candida, Kazachstania and Saccharomyces) were positively associated with the semi-ripened olives of the cv. Cobrançosa obtained from organic production. The discriminant power of these fungi, some of them recognized as biocontrol agents, suggest that they might be important in conferring differences on host plant susceptibility to anthracnose.
Collapse
|
13
|
Belessi CE, Chalvantzi I, Marmaras I, Nisiotou A. The effect of vine variety and vintage on wine yeast community structure of grapes and ferments. J Appl Microbiol 2022; 132:3672-3684. [PMID: 35113470 DOI: 10.1111/jam.15471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
AIMS The yeast community structure associated with grapes is an essential part of the wine-growing chain with a significant effect on wine quality. The aim of the present study was to evaluate the effect of the varietal factor on the yeast community assembly on grapes and during must fermentation. METHODS AND RESULTS We analysed the wine yeast populations associated with four different grape varieties from the Greek national collection vineyard of Lykovryssi. The vintage effect was also considered by sampling the grapes for two consecutive years. Fourteen yeast species were recovered and genotyped to distinct subpopulations. A relatively stable yeast community structure was detected across vintages, with Hanseniaspora guilliermondii being the core species of the vineyard under study. The detected species subpopulations shared a relatively high genetic similarity with several genotypes persisting across vintages. CONCLUSIONS It was shown that different grape cultivars were associated with distinct yeast communities, pointing to their possible implication on wine chemical diversity. SIGNIFICANCE AND IMPACT OF THE STUDY Present findings show that the varietal factor is an important sharpener of the vineyard-associated wine yeast community, which may interfere with the organoleptic profile of the resulting wines.
Collapse
Affiliation(s)
- C-E Belessi
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - I Chalvantzi
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - I Marmaras
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| | - A Nisiotou
- Hellenic Agricultural Organisation-DEMETER, Institute of Technology of Agricultural Products, S. Venizelou 1, 14123, Athens, Greece
| |
Collapse
|
14
|
Wei R, Ding Y, Gao F, Zhang L, Wang L, Li H, Wang H. Community succession of the grape epidermis microbes of cabernet sauvignon (Vitis vinifera L.) from different regions in China during fruit development. Int J Food Microbiol 2022; 362:109475. [PMID: 34798479 DOI: 10.1016/j.ijfoodmicro.2021.109475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Grape surface microorganisms play a vital role in grape health and yield, wine quality, and regional wine characteristics. To investigate the succession of fungal and bacterial communities of the grape epidermis and the effects of development stages, vineyard location, and macroclimatic conditions on the diversity of epidermal microorganisms, 16S and ITS sequences of 36 samples from three different regions and four development stages were sequenced using the Illumina Novaseq platform. The Shannon index showed that the α-diversity of fungi and bacteria decreased during development. An analysis of variance showed that microbial diversity was influenced by development stage and vineyard location, and the development stage had a greater impact on the microbial diversity than the vineyard location. Grapes recruited microbes according to their developmental stages, but retain the core microbiome. Based on network analysis, this study found a significant correlation between epidermal microbial communities and macroclimatic conditions. In conclusion, the study described in detail the complex community dynamics of grape epidermal microorganisms during berry development. The result will help improve vineyard management techniques, rationally utilize the ecological functions of the vineyard, and reduce the application of chemical fungicides or pesticides to keep the vines healthy, produce high-quality grapes, and highlight the regional characteristics of the wine.
Collapse
Affiliation(s)
- Ruteng Wei
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China
| | - Yinting Ding
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China
| | - Feifei Gao
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China
| | - Liang Zhang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China
| | - Lin Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China; China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia 750000, PR China.
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China; Shaanxi Engineering Research Center for Viti-Viniculture, No. 22, Xinong Road, Yangling, Shaanxi 710000, PR China; China Wine Industry Technology Institute, Zhongguancun innovation Center, Yinchuan, Ningxia 750000, PR China.
| |
Collapse
|
15
|
Windholtz S, Vinsonneau E, Farris L, Thibon C, Masneuf-Pomarède I. Yeast and Filamentous Fungi Microbial Communities in Organic Red Grape Juice: Effect of Vintage, Maturity Stage, SO 2, and Bioprotection. Front Microbiol 2022; 12:748416. [PMID: 35002998 PMCID: PMC8740202 DOI: 10.3389/fmicb.2021.748416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023] Open
Abstract
Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.
Collapse
Affiliation(s)
- Sara Windholtz
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | | | - Laura Farris
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| | - Cécile Thibon
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| |
Collapse
|
16
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Zahid MS, Li D, Javed HU, Sabir IA, Wang L, Jiu S, Song S, Ma C, Wang D, Zhang C, Zhou X, Xu W, Wang S. Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. BMC Microbiol 2021; 21:317. [PMID: 34784893 PMCID: PMC8594160 DOI: 10.1186/s12866-021-02376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The root-zone restriction cultivation technique is used to achieve superior fruit quality at the cost of limited vegetative and enhanced reproductive development of grapevines. Fungal interactions and diversity in grapevines are well established; however, our knowledge about fungal diversity under the root-zone restriction technique is still unexplored. To provide insights into the role of mycobiota in the regulation of growth and fruit quality of grapevine under root-zone restriction, DNA from rhizosphere and plant compartments, including white roots (new roots), leaves, flowers, and berries of root-zone restricted (treatment) and conventionally grown plants (control), was extracted at three growth stages (full bloom, veraison, and maturity). RESULTS Diversity analysis based on the ITS1 region was performed using QIIME2. We observed that the root-zone restriction technique primarily affected the fungal communities of the soil and plant compartments at different growth stages. Interestingly, Fusarium, Ilyonectria, Cladosporium and Aspergillus spp observed in the rhizosphere overlapped with the phyllosphere at all phenological stages, having distinctive abundance in grapevine habitats. Peak richness and diversity were observed in the rhizosphere at the full bloom stage of control plants, white roots at the veraison stage of treatment, leaves at the maturity stage of treatment, flowers at the full bloom stage and berries at the veraison stage of control plants. Except for white roots, the diversity of soil and plant compartments of treated plants tended to increase until maturity. At the maturity stage of the treated and control plants, the abundance of Aspergillus spp. was 25.99 and 29.48%, respectively. Moreover, the total soluble sugar content of berries was 19.03 obrix and 16 obrix in treated and control plants, respectively, at the maturity stage. CONCLUSIONS This is the first elucidative study targeting the fungal diversity of conventional and root-restricted cultivation techniques in a single vineyard. Species richness and diversity are affected by stressful cultivation known as root zone restriction. There is an association between the abundance of Aspergillus spp. and fruit quality because despite causing stress to the grapevine, superior quality of fruit is retrieved in root-zone restricted plants.
Collapse
Affiliation(s)
- Muhammad Salman Zahid
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hafiz Umer Javed
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dapeng Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xuhui Zhou
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241 China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
18
|
Diversity and dynamics of microbial ecosystem on berry surface during the ripening of Ecolly (Vitis vinifera L.) grape in Wuhai, China. World J Microbiol Biotechnol 2021; 37:214. [PMID: 34746990 DOI: 10.1007/s11274-021-03170-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
The structural and functional diversities of the microbial ecosystem on the grape surface affect the health of berries and the flavor of wines, which are also changed by many factors such as climate, weather conditions, agronomic practices, and physiological development. To understand and explore the natural characteristics of the grape surface microbial ecosystem during ripening, the species composition and dynamics of fungal and bacterial communities on the skin of Ecolly grape were determined by Illumina Novaseq platform sequencing. The results showed that 2146 fungal OTUs and 4175 bacterial OTUs were obtained, belonging to four fungal phyla and 20 bacterial phyla. The Shannon index indicated that the fungal community had the highest species diversity at the véraison stage and the bacterial community at the harvest stage. The four dominant fungal genera during grape ripening were Alternaria, Naganishia, Filobasidium, and Aureobasidium, which accounted for 82.8% of the total fungal community, and the dominant bacterial genera included Sphingomonas, Brevundimonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Massilia, which accounted for 77.9% of the total bacterial community. The species richness and diversity in the grape microbial ecosystem changed constantly during the maturation stages, and there were strong correlations between certain core microbial genera, which may have an important impact on the function and ecological role of the community. This study provides a basis for understanding the natural characteristics of the microbial ecosystem on the grape surface during grape ripening, as well as the sustainable production concept of the microecology driving the viticulture management system.
Collapse
|
19
|
Cureau N, Threlfall R, Marasini D, Lavefve L, Carbonero F. Year, Location, and Variety Impact on Grape-Associated Mycobiota of Arkansas-Grown Wine Grapes for Wine Production. MICROBIAL ECOLOGY 2021; 82:845-858. [PMID: 33665722 DOI: 10.1007/s00248-021-01705-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Wine grape berries (Vitis spp.) harbor a wide variety of yeasts and filamentous fungi that impact grapevine health and the winemaking process. Identification of these fungi could be important for controlling and improving wine production. The use of high-throughput sequencing (HTS) strategies has enabled identification and quantification of bacterial and fungal species in vineyards. The aims of this study were to identify mycobiota from Cabernet Sauvignon and Zinfandel (V. vinifera), Carlos and Noble muscadines (V. rotundifolia), Cynthiana (V. aestivalis), and Vignoles hybrid (cross of different Vitis spp.) grapes, and investigate the effect of grape variety, location, and year on grape fungal communities. Grape berries were collected in 2016 and 2017 from four vineyards located in Arkansas. The HTS of the Internal Transcribed Spacer 1 region was used to identify grape indigenous epiphytic and endophytic fungal communities. The predominant genera identified on the Arkansas wine grapes were Uwebraunia, Zymoseptoria, Papiliotrema, Meyerozyma, Filobasidium, and Curvibasidium. Overall, the data suggested that grape fungal community distribution and relative abundance were influenced by grape variety, year, and location, but each was influenced to a different extent. Not only were grape mycobiota influenced by year, variety, and location but also it appeared that communities from the previous year impacted microbial communities the following year. For example, an increase of the mycoparasite Ampelomyces quisqualis was noticed in 2017 on grapes that carried the causal agent of powdery mildew, Erysiphe necator, in 2016, thus, amplifying the importance of vineyard microbiota knowledge for disease management and winemaking.
Collapse
Affiliation(s)
- Natacha Cureau
- Food Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Renee Threlfall
- Food Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Daya Marasini
- Food Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Laura Lavefve
- Food Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA.
- School of Food Science, Washington State University, Pullman, WA, USA.
| |
Collapse
|
20
|
Zhu L, Li T, Xu X, Shi X, Wang B. Succession of Fungal Communities at Different Developmental Stages of Cabernet Sauvignon Grapes From an Organic Vineyard in Xinjiang. Front Microbiol 2021; 12:718261. [PMID: 34531840 PMCID: PMC8439140 DOI: 10.3389/fmicb.2021.718261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Fungi present on grape surface considerably impact grape growth and quality. However, information of the fungal community structures and dynamics on the worldwide cash crop, the Cabernet Sauvignon grape, from the budding to ripening stages remains limited. Here, we investigated the succession of fungal communities on Cabernet Sauvignon grapes from an organic vineyard in Xinjiang, China at different developmental stages via high-throughput sequencing combined with multivariate data analysis. In total, 439 fungal amplicon sequence variants (ASVs) from six phyla were identified. The fungal communities differed over the budding to the berry stages. Moreover, Aspergillus, Malassezia, Metschnikowia, and Udeniomyces were predominant during the unripe stage, whereas Erysiphe, Cryptococcus, Vishniacozyma, and Cladosporium were dominant in the ripe stages. Notably, Vishniacozyma was the most abundant genus, conserved in all development stages. Moreover, network analysis resulted in 171 edges—96 negative and 75 positive. Moreover, fungal genera such as Vishniacozyma, Sporobolomyces, Aspergillus, Alternaria, Erysiphe, Toxicodendron, and Metschnikowia were present in the hubs serving as the main connecting nodes. Extensive mutualistic interactions potentially occur among the fungi on the grape surface. In conclusion, the current study expounded the characteristics of the Cabernet Sauvignon grape fungal community during the plant growth process, and the results provided essential insights into the potential impacts of fungal communities on grape growth and health.
Collapse
Affiliation(s)
- Lihua Zhu
- Food College, Shihezi University, Shihezi, China
| | - Tian Li
- Food College, Shihezi University, Shihezi, China
| | - Xiaoyu Xu
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Native Yeasts and Lactic Acid Bacteria Isolated from Spontaneous Fermentation of Seven Grape Cultivars from the Maule Region (Chile). Foods 2021; 10:foods10081737. [PMID: 34441515 PMCID: PMC8391128 DOI: 10.3390/foods10081737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.
Collapse
|
22
|
Gao F, Zeng G, Wang B, Xiao J, Zhang L, Cheng W, Wang H, Li H, Shi X. Discrimination of the geographic origins and varieties of wine grapes using high-throughput sequencing assisted by a random forest model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Wu L, Li Z, Zhao F, Zhao B, Phillip FO, Feng J, Liu H, Yu K. Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Front Microbiol 2021; 12:628503. [PMID: 34025598 PMCID: PMC8139630 DOI: 10.3389/fmicb.2021.628503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Fertilizer practices can significantly impact the fruit quality and microbial diversity of the orchards. The fungi on the surface of fruits are essential for fruit storability and safety. However, it is not clear whether fertilization affects the fungal diversity and community structure on the surface of grape berries. Here, grape quality and the fungal diversity on the surface of grapes harvested from three fertilizer treatments were analyzed shortly after grape picking (T0) and following 8 days of storage (T1). The study involved three treatments: (1) common chemical fertilizer for 2 years (CH); (2) increased organic fertilizer and reduced chemical fertilizer for 1 year (A.O); and (3) increased organic fertilizer and reduced chemical fertilizer for 2 years (B.O). The application of increased organic fertilizer and reduced chemical fertilizer increased the soluble solids content (SSC) of the grape berries and decreased the pH of the grape juice. A total of 827,947 high-quality fungal sequences were recovered and assigned to 527 operational taxonomic units. Members of the Ascomycota phylum were dominant in all samples and accounted for 94.41% of the total number of detected sequences, followed by the Basidiomycota (5.05%), and unidentified fungi (0.54%). Alpha and beta diversity analyses revealed significantly different fungal populations in the three fertilizer treatments over the two time periods. The fungal diversity and richness on the grape berry surface in the B.O and A.O treatments were higher than those in the CH treatment. Among the detected fungi, the B.O treatments were mainly Pichia, Aureobasidium, and Candida genera, while the CH treatments were Botrytis, Aspergillus, and Penicillium. Moreover, significant differences were revealed between the two assessment times (T0 and T1). The samples from the T0 timepoint had higher fungal richness and diversity than the samples from T1 timepoint. Increasing organic fertilizer usage in grape management could improve grape quality and went on to increase the fungal diversity, as well as the relative abundance (RA) of beneficial fungi on grape berry surfaces. The correlation analysis suggested that the pH of the grape juice was significantly negatively correlated with fungal diversity parameters.
Collapse
Affiliation(s)
- Linnan Wu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Zhiqiang Li
- Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Fengyun Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Benzhou Zhao
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Fesobi Olumide Phillip
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| | - Kun Yu
- Department of Horticulture, College of Agriculture, The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germoplasm Resources of the Xinjiang Production and Construction Crops, Shihezi University, Shihezi, China
| |
Collapse
|
24
|
Wang X, Schlatter DC, Glawe DA, Edwards CG, Weller DM, Paulitz TC, Abatzoglou JT, Okubara PA. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation. Int J Food Microbiol 2021; 350:109225. [PMID: 34023678 DOI: 10.1016/j.ijfoodmicro.2021.109225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
To address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years. These yeast species were monitored from the vineyard into laboratory-scale spontaneous fermentations. Taxa assignable to Metschnikowia and Saccharomyces persisted during fermentation, whereas Curvibasidium, which also has possible impact on biocontrol and wine quality, did not. Sulfite generally reduced yeast diversity and richness, but its effect on the abundance of specific yeasts during fermentation was negligible. Among the 106 recurring non-yeast fungal taxa, Alternaria, Cladosporium and Ulocladium were especially abundant in the vineyard. Vineyard location was the primary factor that accounted for the variation among both communities, followed by year and berry developmental stage. The Washington mycobiomes were compared to those from other parts of the world. Sixteen recurrent yeast species appeared to be unique to Washington State vineyards. This subset also contained a higher proportion of species associated with cold and extreme environments, relative to other localities. Certain yeast and non-yeast fungal species known to suppress diseases or modify wine sensory properties were present in Washington vineyards, and likely have consequences to vineyard health and wine quality.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Enology, Northwest A&F University, Shaanxi 712100, China; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Daniel C Schlatter
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Dean A Glawe
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA 99163-6376, USA.
| | - David M Weller
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - Timothy C Paulitz
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| | - John T Abatzoglou
- Management of Complex Systems, University of California, Merced, Merced, CA 95343, USA.
| | - Patricia A Okubara
- USDA-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman 99163-6430, WA, USA.
| |
Collapse
|
25
|
Network Properties of Local Fungal Communities Reveal the Anthropogenic Disturbance Consequences of Farming Practices in Vineyard Soils. mSystems 2021; 6:6/3/e00344-21. [PMID: 33947807 PMCID: PMC8269225 DOI: 10.1128/msystems.00344-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Agroecosystems are human-managed ecosystems subject to generalized ecological rules. Understanding the ecology behind the assembly and dynamics of soil fungal communities is a fruitful way to improve management practices and plant productivity. Thus, monitoring soil health would benefit from the use of metrics that arise from ecological explanations that can also be informative for agricultural management. Beyond traditional biodiversity descriptors, community-level properties have the potential of informing about particular ecological situations. Here we assess the impact of different farming practices in a survey of 350 vineyard soils from the United States and Spain by estimating network properties based on spatial associations. Our observations using traditional approaches show results concurring with previous literature: the influence of geographic and climatic factors on sample distributions, or different operational taxonomic unit (OTU) compositions depending on agricultural managements. Furthermore, using network properties, we observe that fungal communities ranged from dense arrangements of associations to a sparser structure of associations, indicating differential levels of niche specialization. We detect fungal arrangements capable of thriving in wider or smaller ranges of temperature, revealing that niche specialization may be a critical soil process impacting soil health. Low-intervention practices (organic and biodynamic managements) promoted densely clustered networks, describing an equilibrium state based on mixed collaborative communities. In contrast, conventionally managed vineyards had highly modular sparser communities, supported by a higher coexclusion proportion. Thus, we hypothesize that network properties at the community level may help to understand how the environment and land use can affect community structure and ecological processes in agroecosystems. IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability. The complexity of fungal communities, at both taxonomic and functional levels, makes it difficult to find clear patterns connecting community composition with ecosystem function and to understand the impact of biotic (interspecies interactions) and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we combine network analysis methods and properties, proposing a novel analytical approach: to infer ecological properties from local networks, which we apply to the study of fungal communities in vineyard soils. We conclude that different levels of farming intensification may lead to different ecological strategies in soil fungal communities settled by particular association arrangements. Author Video: An author video summary of this article is available.
Collapse
|
26
|
Griggs RG, Steenwerth KL, Mills DA, Cantu D, Bokulich NA. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front Microbiol 2021; 12:673810. [PMID: 33927711 PMCID: PMC8076609 DOI: 10.3389/fmicb.2021.673810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing – where diverse fungi and bacteria can exert positive and negative effects on grape health and wine quality. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations in microbiota within and between vineyards may contribute to regional wine characteristics. This includes distinctions in microbiomes and microbiota at the strain level, which can contribute to wine flavor and aroma, supporting the role of microbes in the accepted notion of terroir as a biological phenomenon. Little is known about the factors driving microbial biodiversity within and between vineyards, or those that influence annual assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent product of vineyards, and as such, understanding the sources of microbiota in vineyards is critical to the assessment of whether or not microbial terroir persists with inter-annual stability, and is a key factor in regional wine character, as stable as the geographic distances between vineyards. This review examines the potential sources and vectors of microbiota within vineyards, general rules governing plant microbiome assembly, and how these factors combine to influence plant-microbe interactions relevant to winemaking.
Collapse
Affiliation(s)
- Reid G Griggs
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Kerri L Steenwerth
- USDA-ARS, Crops Pathology and Genetics Research Unit, Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - David A Mills
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Gava A, Emer CD, Ficagna E, Fernandes de Andrade S, Fuentefria AM. Occurrence and impact of fungicides residues on fermentation during wine production- A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:943-961. [PMID: 33784228 DOI: 10.1080/19440049.2021.1894357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Continuous fungicide spraying is required to eliminate fungal pathogens on grapes. However, this practice is associated with several risks, including contamination and environmental imbalance, as well as toxicity to operators and the induction of resistance in pathogens. In addition, a strong correlation has been reported between the presence of fungicides and the occurrence of issues during alcoholic fermentation, resulting in negative impacts on the sensory quality of the final products. Numerous studies have evaluated residue concentrations of phytosanitary products in grapes, juices, and wines, and a significant number of studies have assessed the impact of different agrochemicals on bioprocesses. However, a review compiling the key results of these studies is currently lacking. This review incorporates results obtained in the last decade from research on the presence of fungicide residues, including azoxystrobin, boscalid, captan, copper, fenhexamid, folpet, pyraclostrobin, pyrimethanil and tebuconazole, and their effects on fermentation kinetics. Practical solutions to mitigate these problems, both in vineyards and industry, are also presented and discussed. This review highlights the constant high fungicidal agent concentrations (greater than 1 or 2 mg L-1) used throughout the winemaking process, with the impact of residues being of particular concern, especially with regard to their effect on yeast activity and the fermentation process. Thus, the adoption of methodologies that allow winemakers to control and trace these residues is an important step in avoiding or reducing fermentation problems throughout the winemaking process.[Figure: see text].
Collapse
Affiliation(s)
- Angelo Gava
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cassandro Davi Emer
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Evandro Ficagna
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Bento Gonçalves, Bento Gonçalves, RS, Brazil
| | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Andreolli M, Lampis S, Lorenzini M, Zapparoli G. Features of basidiomycetous yeasts from grapes and apples associated with crop environment and fermenting juice. J Appl Microbiol 2021; 131:1932-1941. [PMID: 33759285 DOI: 10.1111/jam.15083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS The characterization of grape and apple yeasts was carried out to investigate the ecology of basidiomycetes associated with crop environment and fermenting juice. METHODS AND RESULTS A total of 15 basidiomycetous strains were analysed for plant-growth promoting properties, sensitivity to fungicides and features related to their survival in fermenting juice (low pH, SO2 and ethanol sensitivity). Only one strain displayed 1-aminocyclopropane-1-carboxylate deaminase activity, whereas other strains were able to produce ammonia and indole-3-acetic acid, solubilize calcium phosphate, and display catalase activity and antagonism against Botrytis cinerea. Strains presented great variability in their sensitivity to fungicides. Rhodotorula mucilaginosa Yl26 and Sporobolomyces agrorum PYCC 8108T displayed low sensitivity to all fungicides, with high tolerance to SO2 and ethanol, and were able to survive in fermenting grape and apple juice. CONCLUSIONS This study revealed the diversity of basidiomycetous yeasts in the important physiological traits that affect their growth, either in the crop environment or in fermenting juice. SIGNIFICANCE AND IMPACT OF THE STUDY Identify the possibility of selective effects of fungicide treatments on basidiomycetous yeasts that could offer benefits for grapevines and apple trees, as well as the survival of strains that are better adapted to fermenting juice and that potentially have a role in the aroma of beverages.
Collapse
Affiliation(s)
- M Andreolli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - S Lampis
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | | | - G Zapparoli
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
29
|
Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field. Sci Rep 2021; 11:1201. [PMID: 33441642 PMCID: PMC7806593 DOI: 10.1038/s41598-020-79691-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Drosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.
Collapse
|
30
|
Liu D, Howell K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ Microbiol 2020; 23:1842-1857. [PMID: 32686214 DOI: 10.1111/1462-2920.15172] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Microbial ecology and activity in wine production influences grapevine health and productivity, conversion of sugar to ethanol during fermentation, wine aroma, wine quality and distinctiveness. Fungi in the vineyard ecosystem are not well described. Here, we characterized the spatial and temporal dynamics of fungal communities associated with the grapevine (grapes, flowers, leaves, and roots) and soils over an annual growth cycle in two vineyards to investigate the influences of grape habitat, plant developmental stage (flowering, fruit set, veraison, and harvest), vineyards, and climatic conditions. Fungi were influenced by both the grapevine habitat and plant development stage. The core microbiome was prioritized over space and time, and the identified core members drove seasonal community succession. The developmental stage of veraison, where the grapes undergo a dramatic change in metabolism and start accumulating sugar, coincided with a distinct shift in fungal communities. Co-occurrence networks showed strong correlations between the plant microbiome, the soil microbiome, and weather indices. Our study describes the complex ecological dynamics that occur in microbial assemblages over a growing season and highlight succession of the core community in vineyards.
Collapse
Affiliation(s)
- Di Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| |
Collapse
|
31
|
Carvalho CR, Dias AC, Homma SK, Cardoso EJ. Phyllosphere bacterial assembly in citrus crop under conventional and ecological management. PeerJ 2020; 8:e9152. [PMID: 32547860 PMCID: PMC7274167 DOI: 10.7717/peerj.9152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/17/2020] [Indexed: 11/20/2022] Open
Abstract
Divergences between agricultural management can result in different types of biological interactions between plants and microorganisms, which may affect food quality and productivity. Conventional practices are well-established in the agroindustry as very efficient and lucrative; however, the increasing demand for sustainable alternatives has turned attention towards agroecological approaches. Here we intend to explore microbial dynamics according to the agricultural management used, based on the composition and structure of these bacterial communities on the most environmentally exposed habitat, the phyllosphere. Leaf samples were collected from a Citrus crop (cultivated Orange) in Mogi-Guaçu (SP, Brazil), where either conventional or ecological management systems were properly applied in two different areas. NGS sequencing analysis and quantitative PCR allowed us to comprehend the phyllosphere behavior and µ-XRF (micro X-ray fluorescence) could provide an insight on agrochemical persistence on foliar tissues. Our results demonstrate that there is considerable variation in the phyllosphere community due to the management practices used in the citrus orchard, and it was possible to quantify most of this variation. Equally, high copper concentrations may have influenced bacterial abundance, having a relevant impact on the differences observed. Moreover, we highlight the intricate relationship microorganisms have with crop production, and presumably with crop yield as well.
Collapse
Affiliation(s)
- Carolinne R Carvalho
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Armando Cf Dias
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Elke Jbn Cardoso
- Department of Soil Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
32
|
Unusual Non-Saccharomyces Yeasts Isolated from Unripened Grapes without Antifungal Treatments. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There a lot of studies including the use of non-Saccharomyces yeasts in the process of wine fermentation. The attention is focused on the first steps of fermentation. However, the processes and changes that the non-Saccharomyces yeast populations may have suffered during the different stages of grape berry ripening, caused by several environmental factors, including antifungal treatments, have not been considered in depth. In our study, we have monitored the population dynamics of non-Saccharomyces yeasts during the ripening process, both with biochemical identification systems (API 20C AUX and API ID 32C), molecular techniques (RFLP-PCR) and enzymatic analyses. Some unusual non-Saccharomyces yeasts have been identified (Metschnikowia pulcherrima, Aureobasidium pullulans, Cryptococcus sp. and Rhodotorula mucilaginosa). These yeasts could be affected by antifungal treatments used in wineries, and this fact could explain the novelty involved in their isolation and identification. These yeasts can be a novel source for novel biotechnological uses to be explored in future work.
Collapse
|
33
|
Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int 2020; 129:108845. [DOI: 10.1016/j.foodres.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
|
34
|
Gao CC, Lin Q, Dong CH, Ji HP, Yu JZ, Chen CK, Zhu ZQ, Ban Z, Zhang N, Bao YY. Effects of ozone concentration on the postharvest quality and microbial diversity of Muscat Hamburg grapes. RSC Adv 2020; 10:9037-9045. [PMID: 35496545 PMCID: PMC9050027 DOI: 10.1039/c9ra10479h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Grapevines are widely planted around the world. Although grapes have high nutritional value, they are highly perishable. To explore the effect of ozone concentration on the postharvest quality of Muscat Hamburg grapes, the ethylene production rate, respiratory intensity, soluble solids, titratable acidity, firmness, threshing rate, total yeast and mold counts, and the activities of superoxide dismutase, peroxidase, catalase, polyphenol oxidase and phenylalanine ammonia lyase were determined, and the fungal metagenome on the grape surface was analyzed. Among the ozone treatment groups, 14.98 mg m-3 ozone showed a positive effect on grape preservation. After 80 days of storage, the contents of soluble solids and titratable acidity increased by 3.1% and 0.03%, respectively, compared with the control group. Over the same period, firmness increased by 4.22 N and the threshing rate decreased by 0.5%. During storage, the activity of polyphenol oxidase was inhibited and the activities of superoxide dismutase, peroxidase, catalase, and phenylalanine ammonia lyase were maintained, which delayed the senescence of grapes and maintained freshness. Ozone can reduce the number of fungi on the grape surface, change the colony structure, and reduce the occurrence of diseases. An ozone concentration of 14.98 mg m-3 can delay the senescence of Muscat Hamburg grapes and improve storage quality.
Collapse
Affiliation(s)
- Cong-Cong Gao
- College of Food Science and Technology, Yunnan Agricultural University No. 452, Fengyuan Road, Panlong District Kunming 650000 China
| | - Qi Lin
- College of Food Science and Technology, Yunnan Agricultural University No. 452, Fengyuan Road, Panlong District Kunming 650000 China
| | - Cheng-Hu Dong
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Hai-Peng Ji
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Jin-Ze Yu
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Cun-Kun Chen
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Zhi-Qiang Zhu
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang University of Science and Technology Hangzhou China
| | - Na Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin 300384 China
| | - Yuan-Yuan Bao
- College of Food Science and Technology, Yunnan Agricultural University No. 452, Fengyuan Road, Panlong District Kunming 650000 China
| |
Collapse
|
35
|
Abstract
The aim of the present study was to identify yeasts in grape, new wine “federweisser” and unfiltered wine samples. A total amount of 30 grapes, 30 new wine samples and 30 wine samples (15 white and 15 red) were collected from August until September, 2018, from a local Slovak winemaker, including Green Veltliner (3), Mūller Thurgau (3), Palava (3), Rhein Riesling (3), Sauvignon Blanc (3), Alibernet (3), André (3), Blue Frankish (3), Cabernet Sauvignon (3), and Dornfelder (3) grapes; federweisser and unfiltered wine samples were also used in our study. Wort agar (WA), yeast extract peptone dextrose agar (YPDA), malt extract agar (MEA) and Sabouraud dextrose agar (SDA) were used for microbiological testing of yeasts. MALDI-TOF Mass Spectrometry (Microflex LT/SH) (Bruker Daltonics, Germany) was used for the identification of yeasts. A total of 1668 isolates were identified with mass spectrometry. The most isolated species from the grapes was Hanseniaspora uvarum, and from federweisser and the wine—Saccharomyces cerevisiae.
Collapse
|
36
|
Kioroglou D, Kraeva-Deloire E, Schmidtke LM, Mas A, Portillo MC. Geographical Origin Has a Greater Impact on Grape Berry Fungal Community than Grape Variety and Maturation State. Microorganisms 2019; 7:E669. [PMID: 31835464 PMCID: PMC6956300 DOI: 10.3390/microorganisms7120669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 11/30/2022] Open
Abstract
We used barcoded sequencing to analyze the eukaryotic population in the grape berries at different ripening states in four Australian vineyards. Furthermore, we used an innovative compositional data analysis for assessing the diversity of microbiome communities. The novelty was the introduction of log-ratio balances between the detected genera. Altogether, our results suggest that fungal communities were more impacted by the geographical origin of the Australian vineyards than grape variety and harvest time. Even if the most abundant genera were Aureobasidium and Mycosphaerella, they were ubiquitous to all samples and were not discriminative. In fact, the balances and the fungal community structure seemed to be greatly affected by changes of the genera Penicillium, Colletotrichum, Aspergillus, Rhodotorula, and Botrytis. These results were not evident from the comparison of relative abundance based on OTU counts alone, remarking the importance of the balance analysis for microbiome studies.
Collapse
Affiliation(s)
- Dimitrios Kioroglou
- Depertment Bioquímica i Biotecnologia, Facultat d‘Enologia, Rovira i Virgili University, 43007 Tarragona, Spain (A.M.)
| | - Elena Kraeva-Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (E.K.-D.); (L.M.S.)
| | - Leigh M. Schmidtke
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (E.K.-D.); (L.M.S.)
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Albert Mas
- Depertment Bioquímica i Biotecnologia, Facultat d‘Enologia, Rovira i Virgili University, 43007 Tarragona, Spain (A.M.)
| | - Maria C. Portillo
- Depertment Bioquímica i Biotecnologia, Facultat d‘Enologia, Rovira i Virgili University, 43007 Tarragona, Spain (A.M.)
| |
Collapse
|
37
|
Liu D, Zhang P, Chen D, Howell K. From the Vineyard to the Winery: How Microbial Ecology Drives Regional Distinctiveness of Wine. Front Microbiol 2019; 10:2679. [PMID: 31824462 PMCID: PMC6880775 DOI: 10.3389/fmicb.2019.02679] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Wine production is a complex process from the vineyard to the winery. On this journey, microbes play a decisive role. From the environment where the vines grow, encompassing soil, topography, weather and climate through to management practices in vineyards, the microbes present can potentially change the composition of wine. Introduction of grapes into the winery and the start of winemaking processes modify microbial communities further. Recent advances in next-generation sequencing (NGS) technology have progressed our understanding of microbial communities associated with grapes and fermentations. We now have a finer appreciation of microbial diversity across wine producing regions to begin to understand how diversity can contribute to wine quality and style characteristics. In this review, we highlight literature surrounding wine-related microorganisms and how these affect factors interact with and shape microbial communities and contribute to wine quality. By discussing the geography, climate and soil of environments and viticulture and winemaking practices, we claim microbial biogeography as a new perspective to impact wine quality and regionality. Depending on geospatial scales, habitats, and taxa, the microbial community respond to local conditions. We discuss the effect of a changing climate on local conditions and how this may alter microbial diversity and thus wine style. With increasing understanding of microbial diversity and their effects on wine fermentation, wine production can be optimised with enhancing the expression of regional characteristics by understanding and managing the microbes present.
Collapse
Affiliation(s)
| | | | | | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Gao F, Chen J, Xiao J, Cheng W, Zheng X, Wang B, Shi X. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China. Food Res Int 2019; 122:348-360. [DOI: 10.1016/j.foodres.2019.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/15/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
|
39
|
Diversity of epiphytic fungi on the surface of Kyoho grape berries during ripening process in summer and winter at Nanning region, Guangxi, China. Fungal Biol 2019; 123:283-289. [PMID: 30928037 DOI: 10.1016/j.funbio.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 11/23/2022]
Abstract
The two-harvest-per-year farming system allow table grape to be harvested a year both in summer and winter in southern China. Herein, we used high-throughput sequencing to investigate the diversity of fungi on grape fruits surface during the ripening process in summer and winter at subtropical Nanning region, Guangxi, China. The results showed that 23 fungal species existed in all samples. Among them, the five most dominant species were Cladosporium ramotenellum, Pseudozyma aphidis, Gyrothrix spp., Gibberella intricans and Acremonium alternatum, with abundance from 61.62 % to 91.26 %. Analysis using the student's t-test for Shannon index indicated that components of fungal community varied significantly between the two ripening seasons. The dominant genera of core fungal community were Cladosporium, Gyrothrix, Paramycosphaerella, Acremonium, Penicillium and Tilletiopsis in the summer and Cladosporium, Pseudozyma, Gibberella, Colletotrichum, Sporobolomyces, Rhodosporidium, Alternaria and Aspergillus in the winter. Overall, fungi diversity on grape fruits surface at Nanning showed significantly differences between different ripening seasons. Our results ennrich the understanding of epiphytic communities of grape fruits in subtropics.
Collapse
|
40
|
Vitulo N, Lemos WJF, Calgaro M, Confalone M, Felis GE, Zapparoli G, Nardi T. Bark and Grape Microbiome of Vitis vinifera: Influence of Geographic Patterns and Agronomic Management on Bacterial Diversity. Front Microbiol 2019; 9:3203. [PMID: 30671035 PMCID: PMC6331396 DOI: 10.3389/fmicb.2018.03203] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the concept of “microbial terroir” has been introduced in the frame of the more renowned notion of “vitivinicultural terroir,’ since several studies demonstrated that wine characteristics are related to regional microbial community compositions. Most of the existing research focused on grape berries microbiota, since it can directly impact wine quality. In this work we studied, for the first time through next-generation sequencing, the epiphytic bacterial community of vine bark and its relationships with grape microbiota. The study was carried out in two Italian wine appellations (situated in different regions) to explore the impact of biogeography, and the influence of two agronomical practices (biodynamic and conventional) was evaluated as well. Overall, our results show that grapevine bark harbors a rich epiphytic microbiota and displays a higher microbial biodiversity than grape berry. Moreover, this study suggests that geographic and anthropogenic factors impact both bark and grape bacteriomes, but to a different extent. The evidence of a “microbial terroir” seems to be even more marked in bark than in berries, possibly due to its permanence over time and to its physical proximity with soil. The importance of vine trunk bark, as potential source of inoculum for grapes and as interesting bacterial diversity habitat, is evidenced. This opens new fields of investigation, not only for researchers that aim at describing this little-known habitat within the vineyard, but also for stakeholders from the wine industry that want to understand the roles of microorganisms on the entire winemaking process, from vineyard to cellar.
Collapse
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Matteo Calgaro
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Marco Confalone
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Tiziana Nardi
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics-CREA, Conegliano, Italy
| |
Collapse
|
41
|
Lorenzini M, Zapparoli G. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity. Int J Food Microbiol 2019; 289:223-230. [DOI: 10.1016/j.ijfoodmicro.2018.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
42
|
Castañeda LE, Miura T, Sánchez R, Barbosa O. Effects of agricultural management on phyllosphere fungal diversity in vineyards and the association with adjacent native forests. PeerJ 2018; 6:e5715. [PMID: 30397540 PMCID: PMC6211267 DOI: 10.7717/peerj.5715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Agriculture is one of the main drivers of land conversion, and agriculture practices can impact on microbial diversity. Here we characterized the phyllosphere fungal diversity associated with Carménère grapevines under conventional and organic agricultural management. We also explored the fungal diversity present in the adjacent sclerophyllous forests to explore the potential role of native forest on vineyard phyllosphere. After conducting D2 and ITS2 amplicon sequencing, we found that fungal diversity indices did not change between conventional and organic vineyards, but community structure was sensitive to the agricultural management. On the other hand, we found a high proportion of shared fungal OTUs between vineyards and native forests. In addition, both habitats had similar levels of fungal diversity despite forest samples were derived from multiple plant species. In contrast, the community structure was different in both habitats. Interestingly, the native forest had more unidentified species and unique OTUs than vineyards. Forest dominant species were Aureobasidium pullulans and Endoconidioma populi, whereas Davidiella tassiana, Didymella sp., and Alternaria eichhorniae were more abundant in vineyards. Overall, this study argues that a better understanding of the relationship native forests and agroecosystems is needed for maintaining and enhancing ecosystem services provided by natural ecosystems. Finally, knowledge of microbial communities living in the Chilean Mediterranean biome is needed for appropriate conservation management of these biomes and their classification as biodiversity hotspots.
Collapse
Affiliation(s)
- Luis E. Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Toshiko Miura
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Roland Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Olga Barbosa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
43
|
Escribano-Viana R, Portu J, Garijo P, Gutiérrez AR, Santamaría P, López-Alfaro I, López R, González-Arenzana L. Evaluating a preventive biological control agent applied on grapevines against Botrytis cinerea and its influence on winemaking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4517-4526. [PMID: 29479822 DOI: 10.1002/jsfa.8977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/19/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND This research was aimed to study the influence on grape and wine quality and on the fermentation processes of the application of a preventive biological treatment against Botrytis cinerea in Tempranillo Rioja grapevines. For this purpose, a biofungicide containing Bacillus subtilis QST713 was applied twice to the vineyard. RESULTS Results were compared with non-treated samples from the same vineyard and with samples treated with a chemical fungicide composed of fenhexamid. Data showed that general grape quality and spontaneous alcoholic fermentation performance were not influenced by either fungicide application. The chemical fungicide had a considerable influence on the clonal diversity of Saccharomyces cerevisiae species, which led to the alcoholic fermentation. Furthermore, it caused longer malolactic fermentation than with the biological fungicide and in the control. The biofungicide made malolactic fermentation 1 day shorter because the establishment of the commercial lactic acid bacteria used as a starter culture was total. After malolactic fermentation, the wines did not show significant differences in general oenological parameters. CONCLUSION Preventive biofungicide treatment against B. cinerea did not negatively influence the quality of grapes and wines and the fermentation processes. Therefore, biological control of B. cinerea with B. subtilis applied on grapevines could be advisable in oenological terms. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rocío Escribano-Viana
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Javier Portu
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Patrocinio Garijo
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Ana Rosa Gutiérrez
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Pilar Santamaría
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Isabel López-Alfaro
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Rosa López
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| | - Lucía González-Arenzana
- ICVV, Instituto de Ciencias de la Vid y del Vino, (Gobierno de La Rioja, Universidad de La Rioja, CSIC), Finca La Grajera, Ctra. Burgos km 6, Logroño (La Rioja), Spain
| |
Collapse
|
44
|
Chou MY, Vanden Heuvel J, Bell TH, Panke-Buisse K, Kao-Kniffin J. Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Sci Rep 2018; 8:11039. [PMID: 30038291 PMCID: PMC6056419 DOI: 10.1038/s41598-018-29346-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/03/2018] [Indexed: 12/02/2022] Open
Abstract
The microbiome of a vineyard may play a critical role in fruit development, and consequently, may impact quality properties of grape and wine. Vineyard management approaches that have directly manipulated the microbiome of grape clusters have been studied, but little is known about how vineyard management practices that impact the soil microbial pool can influence this dynamic. We examined three under-vine soil management practices: 1) herbicide application, 2) soil cultivation (vegetation removal), and 3) natural vegetation (no vegetation removal) in a Riesling vineyard in New York over a three-year period. The microbiomes associated with soil and grapes were profiled using high-throughput sequencing of the bacterial 16 S rRNA gene and fungal ITS regions. Our results showed that soil bacterial composition under natural vegetation differs from that seen in glyphosate-maintained bare soil. Soil fungal composition under the natural vegetation treatment was distinct from other treatments. Although our study revealed soil microbiome shifts based on under-vine management, there were no corresponding changes in fruit-associated microbial composition. These results suggested that other vineyard management practices or environmental factors are more influential in shaping the grape-associated microbiome.
Collapse
Affiliation(s)
- Ming-Yi Chou
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.,New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Justine Vanden Heuvel
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.,New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin Panke-Buisse
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Madison, WI, 53706, USA
| | - Jenny Kao-Kniffin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
45
|
Sternes PR, Lee D, Kutyna DR, Borneman AR. A combined meta-barcoding and shotgun metagenomic analysis of spontaneous wine fermentation. Gigascience 2018; 6:1-10. [PMID: 28595314 PMCID: PMC5570097 DOI: 10.1093/gigascience/gix040] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Wine is a complex beverage, comprising hundreds of metabolites produced through the action of yeasts and bacteria in fermenting grape must. Commercially, there is now a growing trend away from using wine yeast (Saccharomyces) starter cultures, toward the historic practice of uninoculated or “wild” fermentation, where the yeasts and bacteria associated with the grapes and/or winery perform the fermentation. It is the varied metabolic contributions of these numerous non-Saccharomyces species that are thought to impart complexity and desirable taste and aroma attributes to wild ferments in comparison to their inoculated counterparts. To map the microflora of spontaneous fermentation, metagenomic techniques were employed to characterize and monitor the progression of fungal species in 5 different wild fermentations. Both amplicon-based ribosomal DNA internal transcribed spacer (ITS) phylotyping and shotgun metagenomics were used to assess community structure across different stages of fermentation. While providing a sensitive and highly accurate means of characterizing the wine microbiome, the shotgun metagenomic data also uncovered a significant overabundance bias in the ITS phylotyping abundance estimations for the common non-Saccharomyces wine yeast genus Metschnikowia. By identifying biases such as that observed for Metschnikowia, abundance measurements from future ITS phylotyping datasets can be corrected to provide more accurate species representation. Ultimately, as more shotgun metagenomic and single-strain de novo assemblies for key wine species become available, the accuracy of both ITS-amplicon and shotgun studies will greatly increase, providing a powerful methodology for deciphering the influence of the microbial community on the wine flavor and aroma.
Collapse
Affiliation(s)
- Peter R Sternes
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Wooloongabba, Queensland, Australia
| | - Danna Lee
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dariusz R Kutyna
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064.,Department of Genetics and Evolution, University of Adelaide, South Australia, 5000
| |
Collapse
|
46
|
Carmichael PC, Siyoum N, Chidamba L, Korsten L. Characterization of fungal communities of developmental stages in table grape grown in the northern region of South Africa. J Appl Microbiol 2018; 123:1251-1262. [PMID: 28862786 DOI: 10.1111/jam.13577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Abstract
AIMS To determine fungal communities that characterize table grapes during berry development. METHODS AND RESULTS Two agro-ecologically different table grape commercial farms (site A and B) were used in this study. Samples were collected at full bloom, pea size and mature stages, from three positions (inside centre, eastern and western peripheral ends) per site. Total DNA extraction, Illumina sequencing and analysis of 18 pooled samples for fungal diversity targeting ITS1-2 generated a total of 2 035 933 high-quality sequences. The phylum Ascomycota (77.0%) and Basidiomycota (23.0%) were the most dominant, while the genera, Alternaria (33.1%) and Cladosporium (24.2%) were the overall dominant postharvest decay causing fungi throughout the developmental stages. Inside centre of site A were more diverse at full bloom (3.82) than those at the peripheral ends (<3.8), while at site B, the peripheral ends showed better diversity, particularly the eastern part at both full bloom (3.3) and pea size (3.7). CONCLUSION Fungal population diversity varies with different phenological table grape growth stages and is further influenced by site and vine position within a specific vineyard. SIGNIFICANCE AND IMPACT OF THE STUDY The information on fungal diversity and succession in table grapes during preharvest growth stages is critical in the development of a more targeted control strategy, to improve postharvest quality of table grapes.
Collapse
Affiliation(s)
- P C Carmichael
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - N Siyoum
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
47
|
Escribano-Viana R, López-Alfaro I, López R, Santamaría P, Gutiérrez AR, González-Arenzana L. Impact of Chemical and Biological Fungicides Applied to Grapevine on Grape Biofilm, Must, and Wine Microbial Diversity. Front Microbiol 2018; 9:59. [PMID: 29467723 PMCID: PMC5808214 DOI: 10.3389/fmicb.2018.00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to measure the impact of the application of a bio-fungicide against Botrytis cinerea on the microbiota involved in the alcoholic fermentation (AF) of Tempranillo Rioja wines. For this purpose, a bio-fungicide composed of the biological control bacterium Bacillus subtilis QST713 was applied to the vineyard. The microbial diversity was analyzed from grape biofilm to wine. Impact on microbial diversity was measured employing indexes assessed with the software PAST 3.10 P.D. Results were compared to non-treated samples and to samples treated with a chemical fungicide mainly composed by fenhexamid. Overall, the impact of the biological-fungicide (bio-fungicide) on the microbial diversity assessed for grape biofilm and for musts was not remarkable. Neither of the tested fungicides enhanced the growth of any species or acted against the development of any microbial groups. The bio-fungicide had no significant impact on the wine microbiota whereas the chemical fungicide caused a reduction of microbial community richness and diversity. Although environmental threats might generate a detriment of the microbial species richness, in this study the tested bio-fungicide did not modify the structure of the microbial community. Indeed, some of the Bacillus applied at the grape surface, were detected at the end of the AF showing its resilience to the harsh environment of the winemaking; in contrast, its impact on wine quality during aging is yet unknown.
Collapse
Affiliation(s)
- Rocío Escribano-Viana
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| | - Isabel López-Alfaro
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| | - Rosa López
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| | - Pilar Santamaría
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| | - Ana R Gutiérrez
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| | - Lucía González-Arenzana
- Instituto de Ciencias de la Vid y del Vino, ICVV (Gobierno de La Rioja, Centro Superior de Investigaciones Científicas and Universidad de La Rioja), Logroño, Spain
| |
Collapse
|
48
|
Oliveira M, Arenas M, Lage O, Cunha M, Amorim MI. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions. Lett Appl Microbiol 2017; 66:93-102. [PMID: 29139139 DOI: 10.1111/lam.12826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
In this work, fungi present in the grapevine's phyllosphere collected from the main demarcated wine regions of Portugal were identified, and their phylogenetic relationships were analysed. A total of 46 vine samples (leaves and berries) were collected from different parts of the country, being isolated a total of 117 fungal colonies that were identified to the genus level and sequenced in the following genetic regions: internal transcribed spacer region and 18S rRNA and β-tubulin gene. Next, a phylogenetic tree reconstruction for each genetic region was built. The isolates retrieved from environmental samples belonged to the genera Alternaria (31%), Cladosporium (21%), Penicillium (19%), Aspergillus (7%) and Epicoccum (3%). No genetic signatures of exchange of genetic material were detected, and consequently, the reconstructed phylogenetic trees allowed to distinguish between these different species/genera. In the fungal composition of the Vitis vinifera phyllosphere, several potential pathogens were identified that can be associated with decreases in crop productivity. Knowledge of fungi identification and genetic diversity is pivotal for the development of more adequate crop management strategies. Furthermore, this information will provide guidelines for a more specific and wiser use of fungicides. SIGNIFICANCE AND IMPACT OF THE STUDY The knowledge on the composition of the phyllosphere microbial community is still limited, especially when fungi are concerned. These micro-organisms not only play a crucial role in crop health and productivity but also interact with the winemaking process, determining the safety and quality of grape and grape-derived products. The elucidation of the micro-organisms present in the phyllosphere will have a notorious impact on plant breeding and protection programmes and disease management strategies, allowing a better control of pesticide applications.
Collapse
Affiliation(s)
- M Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Arenas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - O Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M Cunha
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M I Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,BioISI - Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute, Porto, Portugal
| |
Collapse
|
49
|
Grangeteau C, David V, Hervé A, Guilloux-Benatier M, Rousseaux S. The sensitivity of yeasts and yeasts-like fungi to copper and sulfur could explain lower yeast biodiversity in organic vineyards. FEMS Yeast Res 2017; 17:4675217. [DOI: 10.1093/femsyr/fox092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/27/2017] [Indexed: 11/14/2022] Open
|
50
|
Cordero-Bueso G, Mangieri N, Maghradze D, Foschino R, Valdetara F, Cantoral JM, Vigentini I. Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens. Front Microbiol 2017; 8:2025. [PMID: 29163377 PMCID: PMC5675894 DOI: 10.3389/fmicb.2017.02025] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
The increasing level of hazardous residues in the environment and food chains has led the European Union to restrict the use of chemical fungicides. Thus, exploiting new natural antagonistic microorganisms against fungal diseases could serve the agricultural production to reduce pre- and post-harvest losses, to boost safer practices for workers and to protect the consumers' health. The main aim of this work was to evaluate the antagonistic potential of epiphytic yeasts against Botrytis cinerea, Aspergillus carbonarius, and Penicillium expansum pathogen species. In particular, yeast isolation was carried out from grape berries of Vitis vinifera ssp sylvestris populations, of the Eurasian area, and V. vinifera ssp vinifera cultivars from three different farming systems (organic, biodynamic, and conventional). Strains able to inhibit or slow the growth of pathogens were selected by in vitro and in vivo experiments. The most effective antagonist yeast strains were subsequently assayed for their capability to colonize the grape berries. Finally, possible modes of action, such as nutrients and space competition, iron depletion, cell wall degrading enzymes, diffusible and volatile antimicrobial compounds, and biofilm formation, were investigated as well. Two hundred and thirty-one yeast strains belonging to 26 different species were isolated; 20 of them, ascribed to eight species, showed antagonistic action against all molds. Yeasts isolated from V. vinifera ssp sylvestris were more effective (up to 50%) against B. cinerea rather than those isolated from V. vinifera ssp vinifera. Six strains, all isolated from wild vines, belonging to four species (Meyerozyma guilliermondii, Hanseniaspora uvarum, Hanseniaspora clermontiae, and Pichia kluyveri) revealed one or more phenotypical characteristics associated to the analyzed modes of antagonistic action.
Collapse
Affiliation(s)
- Gustavo Cordero-Bueso
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | - Nicola Mangieri
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - David Maghradze
- Department of Viticulture and Enology, Institute of Horticulture, Viticulture and Oenology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Federica Valdetara
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Jesús M. Cantoral
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|