1
|
Parra-Aguilar TJ, Yáñez-Morales MDJ, Almaraz-Sánchez A, Hernández AJ, Aranda-Ocampo S. [Gluconobacter spp. and Paenibacillus polymyxa cause spoilage in apparently healthy commercial carrots]. Rev Argent Microbiol 2025:S0325-7541(25)00002-1. [PMID: 39956676 DOI: 10.1016/j.ram.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025] Open
Abstract
Postharvest diseases of carrots are one of the most important concerns in carrot storage, as they affect the shelf life of carrots and cause significant financial losses. In this study, ten commercial carrot samples from supermarkets and local markets in Texcoco, State of Mexico, Mexico, were analyzed for bacterial spoilage after incubation at 28°C in a humidity chamber. Carrots from seven samples developed bacterial spoilage after five days of incubation, of which baby carrots (industrially processed) showed the most severe rot. Twenty-three bacterial strains were isolated from the tissues of spoiled carrots. To identify and characterize the spoilage pathogens, the isolated strains were inoculated into healthy carrots in laboratory tests. Of the 23 strains analyzed, eight caused carrot tissue spoilage. Biochemical and molecular characterization by 16S ribosomal RNA gene sequencing identified Gluconobacter cerinus (1032.2, 1059 and 1070.1), G.kondonii (1027.1), G.wancherniae (1033.1) and Paenibacillus polymyxa (1074.2, 1076 and 1077) as the causal agents of the carrot rot evaluated in this study. In addition, these bacteria showed virulence in other plant pathogenicity tests; Gluconobacter strains induced a hypersensitivity reaction in tobacco leaves and Paenibacillus strains showed pectolytic activity in potato tubers. This study is the first to report G.cerinus, G.kondonii, G.wancherniae and P.polymyxa as causal agents of commercial carrot rot.
Collapse
Affiliation(s)
- Thelma J Parra-Aguilar
- Fitosanidad-Fitopatología, Colegio de Postgraduados Campus Montecillo, Texcoco, Estado de México, Mexico
| | | | - Alejandra Almaraz-Sánchez
- Fitosanidad-Fitopatología, Colegio de Postgraduados Campus Montecillo, Texcoco, Estado de México, Mexico
| | - Alfonsina Judith Hernández
- Fitosanidad-Fitopatología, Colegio de Postgraduados Campus Montecillo, Texcoco, Estado de México, Mexico
| | - Sergio Aranda-Ocampo
- Fitosanidad-Fitopatología, Colegio de Postgraduados Campus Montecillo, Texcoco, Estado de México, Mexico.
| |
Collapse
|
2
|
Brischetto C, Rossi V, Salotti I, Languasco L, Fedele G. Temperature Requirements Can Affect the Microbial Composition Causing Sour Rot in Grapes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70061. [PMID: 39871424 PMCID: PMC11772317 DOI: 10.1111/1758-2229.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g., Drosophila spp.), the presence of wounds or microcracks on grape berry surfaces, and environmental conditions during berry ripening. The microbial complexes within SR-affected grapes exhibit variability among different bioclimates and seasons, with certain microorganisms predominating under specific conditions. This study examined the influence of environmental conditions on the microbiome composition associated with SR-affected grape bunches, utilising data from 41 locations across three distinct Italian bioclimates. We selected nine yeast and two bacterial species frequently isolated from sour-rotted grapes for analysis. The growth responses of these microorganisms to temperature were assessed by categorising them into four ecophysiological clusters. Furthermore, we analysed the distribution of these microorganisms and their respective ecophysiological clusters across the three bioclimates. The results indicate that the microbiomes involved in SR can vary according to the bioclimatic conditions of the grape-growing area. Further research is required to comprehend the ecological requirements of these microorganisms, define their ecological niches to understand their geographical distribution and epidemiology, and enhance SR management strategies.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Luca Languasco
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.)Università Cattolica del Sacro CuorePiacenzaItaly
- Research Center on Plant Health Modelling (PHeM)Università Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
3
|
Brischetto C, Rossi V, Fedele G. The microbiome analysis of ripen grape berries supports the complex etiology of sour rot. Front Microbiol 2024; 15:1450443. [PMID: 39575185 PMCID: PMC11578972 DOI: 10.3389/fmicb.2024.1450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Sour rot (SR) is a grapevine disease complex that is not completely understood in its etiology and epidemiology. Recently, SR has received special attention due to its increasing economic importance due to crop losses and reduced wine quality. In this study, the fungal and bacterial microbiota of healthy (i.e., without rot symptoms) and rotten (i.e., exhibiting visual and olfactory SR symptoms) ripe bunches were characterized across 47 epidemics (39 vineyards in six Italian grape-growing areas) over three years. The 16S rRNA gene, ITS high-throughput amplicon sequencing, and quantitative PCR were used to assess the relative abundance and dynamic changes of microorganisms associated with SR. The estimators of genera richness of fungal communities within samples indicated a significantly different diversity between healthy and rotten bunches. For bacterial communities, the healthy and rotten bunches significantly differed in the total number of species, but not in abundance distribution across species. The bunch status (i.e., healthy and rotten) was a significant source of diversity (p < 0.01) when the community composition between samples was evaluated, indicating that microbiome composition varied between healthy and rotten bunches. In particular, healthy and rotten bunches shared 43.1 and 54.8% of fungal and bacterial genera, respectively; 31.3% (fungal) and 26.2% (bacterial) genera were associated with rotten bunches only. The yeast genera Zygosaccharomyces, Zygoascus, Saccharomycopsis, Issatchenkia, and Pichia and the bacterial genera Orbus, Gluconobacter, Komagataeibacter, Gluconacetobacter, and Wolbachia were strongly associated with bunches showing SR symptoms based on a linear discriminant analysis. These microorganisms have been associated with Drosophila insects in literature. The relationships between the microflora associated with SR-affected bunches and the roles of Drosophila in SR development need further investigation, which may open perspectives for more effective disease control.
Collapse
Affiliation(s)
- Chiara Brischetto
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center on Plant Health Modelling (PHeM), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
4
|
Kaczmarek A, Maciejewska A, Kasperkiewicz K, Noszczyńska M, Łukasiewicz J. Structure of the O-specific polysaccharide of Asaia bogorensis ATCC BAA-21 lipopolysaccharide. Carbohydr Res 2024; 545:109266. [PMID: 39260148 DOI: 10.1016/j.carres.2024.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Asaia bogorensis is a Gram-negative bacterium isolated from flowers and fruits growing in tropical climate, reproductive system of mosquitoes, and rarely from immunocompromised patients. In Europe, A. bogorensis is responsible for the contamination of flavoured mineral waters. One of the important surface antigen and an element of the bacterial biofilm is lipopolysaccharide (LPS, endotoxin). To date, no data on A. bogorensis LPS structure has been reported. Chemical analysis and 1H,13C nuclear magnetic resonance spectroscopy revealed the novel structure of the O-specific polysaccharide of A. bogorensis ATCC BAA-21 LPS. It was concluded that the repeating unit of the O-antigen is a branched trisaccharide with the following structure: →6)-α-d-Glcp-(1→2)-[β-d-Glcp-(1→3)]-α-l-Rhap-(1→ .
Collapse
Affiliation(s)
- Anna Kaczmarek
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Anna Maciejewska
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Katarzyna Kasperkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Jolanta Łukasiewicz
- Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
5
|
Brischetto C, Rossi V, Fedele G. Knowledge gaps on grape sour rot inferred from a systematic literature review. FRONTIERS IN PLANT SCIENCE 2024; 15:1415379. [PMID: 39022603 PMCID: PMC11251901 DOI: 10.3389/fpls.2024.1415379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Sour rot (SR) is one of the major diseases affecting grapevine berries, causing severe yield losses and deterioration of wine quality. SR is caused by an etiologic complex of microorganisms, including yeasts, bacteria, and filamentous fungi. This systematic review focuses on the etiology, epidemiology, and control of SR. A total of 74 papers published between 1986 and 2023 were assessed in this review. Description of disease symptoms was quite consistent across the papers, including oxidation of the grape skin, disaggregation of the internal tissues, and detachment of the rotten berries from the pedicel. The affected bunches are characterized by the smell of acetic acid and ethyl acetate that attracts fruit flies (Drosophila spp.). However, several knowledge gaps and/or inconsistencies were identified with respect to SR etiology, epidemiology, and control. Overall, 146 microorganisms were isolated from the affected berries (44.5% yeasts, 34.3% bacteria, and 21.2% filamentous fungi); however, the selected papers could not definitively clarify which species are primarily involved in the etiology of the disease. A general inconsistency was also observed in the methods used to assess the incidence and severity of SR in vineyards, making inter-study comparisons extremely challenging. Inconsistencies were also found in the methods used for pathogenicity assessment in artificial inoculation studies. Furthermore, gaps were detected in terms of SR epidemiology, with a focus on environmental conditions affecting the disease development. The SR management options are limited, and efficacy trials often result in poor, variable, and inconsistent levels of control, which might be attributed to the lack of knowledge on disease epidemiology. These knowledge gaps and inconsistencies were analyzed in this review to inform future research activities.
Collapse
Affiliation(s)
| | | | - Giorgia Fedele
- Research Center on Plant Health Modelling (PHeM), Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
6
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
7
|
Ohwofasa A, Dhami M, Tian B, Winefield C, On SL. Environmental influences on microbial community development during organic pinot noir wine production in outdoor and indoor fermentation conditions. Heliyon 2023; 9:e15658. [PMID: 37206017 PMCID: PMC10189187 DOI: 10.1016/j.heliyon.2023.e15658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
The role of microbial diversity in influencing the organoleptic properties of wine and other fermented products is well est ablished, and understanding microbial dynamics within fermentation processes can be critical for quality assurance and product innovation. This is especially true for winemakers using spontaneous fermentation techniques, where environmental factors may play an important role in consistency of product. Here, we use a metabarcoding approach to investigate the influence of two environmental systems used by an organic winemaker to produce wines; vineyard (outdoors) and winery (indoors) to the bacterial and fungal communities throughout the duration of a spontaneous fermentation of the same batch of Pinot Noir grapes. Bacterial (RANOSIM = 0.5814, p = 0.0001) and fungal (RANOSIM = 0.603, p = 0.0001) diversity differed significantly across the fermentation stages in both systems. Members of the Hyphomicrobium genus were found in winemaking for the first time, as a bacterial genus that can survive alcoholic fermentation. Our results also indicate that Torulaspora delbrueckii and Fructobacillus species might be sensitive to environmental systems. These results clearly reflect the substantial influence that environmental conditions exert on microbial populations at every point in the process of transforming grape juice to wine via fermentation, and offer new insights into the challenges and opportunities for wine production in an ever-changing global climate.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen L.W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
- Corresponding author. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
8
|
Es-sbata I, Castro R, Durán-Guerrero E, Zouhair R, Astola A. Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chen H, Liu Y, Chen J, Fu X, Suo R, Chitrakar B, Wang J. Effects of spontaneous fermentation on microbial succession and its correlation with volatile compounds during fermentation of Petit Verdot wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Lin Y, Lai D, Wang D, Zhou F, Tan BK, Zhang Z, Hu J, Lin S. Application of curcumin-mediated antibacterial photodynamic technology for preservation of fresh Tremella Fuciformis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Diffusible Compounds Produced by Hanseniaspora osmophila and Gluconobacter cerinus Help to Control the Causal Agents of Gray Rot and Summer Bunch Rot of Table Grapes. Antibiotics (Basel) 2021; 10:antibiotics10060664. [PMID: 34199335 PMCID: PMC8230015 DOI: 10.3390/antibiotics10060664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.
Collapse
|
12
|
Carpena M, Fraga-Corral M, Otero P, Nogueira RA, Garcia-Oliveira P, Prieto MA, Simal-Gandara J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020; 10:foods10010051. [PMID: 33375439 PMCID: PMC7824511 DOI: 10.3390/foods10010051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Aroma profile is one of the main features for the acceptance of wine. Yeasts and bacteria are the responsible organisms to carry out both, alcoholic and malolactic fermentation. Alcoholic fermentation is in turn, responsible for transforming grape juice into wine and providing secondary aromas. Secondary aroma can be influenced by different factors; however, the influence of the microorganisms is one of the main agents affecting final wine aroma profile. Saccharomyces cerevisiae has historically been the most used yeast for winemaking process for its specific characteristics: high fermentative metabolism and kinetics, low acetic acid production, resistance to high levels of sugar, ethanol, sulfur dioxide and also, the production of pleasant aromatic compounds. Nevertheless, in the last years, the use of non-saccharomyces yeasts has been progressively growing according to their capacity to enhance aroma complexity and interact with S. cerevisiae, especially in mixed cultures. Hence, this review article is aimed at associating the main secondary aroma compounds present in wine with the microorganisms involved in the spontaneous and guided fermentations, as well as an approach to the strain variability of species, the genetic modifications that can occur and their relevance to wine aroma construction.
Collapse
Affiliation(s)
- Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Raquel A. Nogueira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
13
|
Gao H, Yin X, Jiang X, Shi H, Yang Y, Wang C, Dai X, Chen Y, Wu X. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China. PeerJ 2020; 8:e9376. [PMID: 32607286 PMCID: PMC7315622 DOI: 10.7717/peerj.9376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
As a polymicrobial disease, sour rot decreases grape berry yield and wine quality. The diversity of microbial communities in sour rot-affected grapes depends on the cultivation site, but the microbes responsible for this disease in eastern coastal China, has not been reported. To identify the microbes that cause sour grape rot in this important grape-producing region, the diversity and abundance of bacteria and fungi were assessed by metagenomic analysis and cultivation-dependent techniques. A total of 15 bacteria and 10 fungi were isolated from sour rot-affected grapes. High-throughput sequencing of PCR-amplicons generated from diseased grapes revealed 1343 OTUs of bacteria and 1038 OTUs of fungi. Proteobacteria and Firmicutes were dominant phyla among the 19 bacterial phyla identified. Ascomycota was the dominant fungal phylum and the fungi Issatchenkia terricola, Colletotrichum viniferum, Hanseniaspora vineae, Saprochaete gigas, and Candida diversa represented the vast majority ofmicrobial species associated with sour rot-affected grapes. An in vitro spoilage assay confirmed that four of the isolated bacteria strains (two Cronobacter species, Serratia marcescens and Lysinibacillus fusiformis) and five of the isolated fungi strains (three Aspergillus species, Alternaria tenuissima, and Fusarium proliferatum) spoiled grapes. These microorganisms, which appear responsible for spoiling grapes in eastern China, appear closely related to microbes that cause this plant disease around the world.
Collapse
Affiliation(s)
- Huanhuan Gao
- Shandong Academy of Grape, Jinan, China.,Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
| | | | | | | | - Yang Yang
- Shandong Academy of Grape, Jinan, China
| | | | - Xiaoyan Dai
- Shandong Academy of Grape, Jinan, China.,Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
| | | | | |
Collapse
|
14
|
Vashisht A, Thakur K, Kauldhar BS, Kumar V, Yadav SK. Waste valorization: Identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:956-964. [PMID: 31302559 DOI: 10.1016/j.scitotenv.2019.07.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
In present study, a potential bacterial isolate Acetobacter pasteurianus SKYAA25 was found to be very effective in the bioconversion of apple pomace to acetic acid. The isolated strain was tolerant to high ethanol concentrations of upto 14% and temperature of 42 °C. Fermentation of apple pomace alone in presence of brewing yeast produced 7.3% of bio-ethanol which was further used for acetic acid production. Apple pomace in combination with cane molasses produced 14% of bio-ethanol. The fermented bio-ethanol was used as medium for acetic acid production which yielded 52.4 g of acetic acid/100 g of DM (Dry Matter) of apple pomace. Hence, an ecofriendly process has been developed that is entirely based on microbial processing of apple pomace to produce acetic acid without involving commercial enzymes. The present bio-conversion will prove to be beneficial for utilizing food and beverage industrial waste in the production of acetic acid.
Collapse
Affiliation(s)
- Alokika Vashisht
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306 (PB), India
| | - Karnika Thakur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306 (PB), India
| | - Baljinder S Kauldhar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306 (PB), India
| | - Vinod Kumar
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306 (PB), India
| | - Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Knowledge City, Mohali 140306 (PB), India.
| |
Collapse
|
15
|
Volatile compounds associated with growth of Asaia bogorensis and Asaia lannensis-unusual spoilage bacteria of functional beverages. Food Res Int 2019; 121:379-386. [PMID: 31108760 DOI: 10.1016/j.foodres.2019.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Acetic acid bacteria of the genus Asaia are recognized as common bacterial spoilage in the beverage industry. Their growth in contaminated soft drinks can be visible in the form of flocs, turbidity and flavor changes. Volatile profiles associated with the growth and metabolic activities of Asaia lannensis and As. bogorensis strains were evaluated using comprehensive gas chromatography-time of flight mass spectrometry (GC × GC-ToF MS). Based on obtained results, 33 main compounds were identified. The greatest variety of volatile metabolites was noted for As. lannensis strain W4. 2-Phenylethanol, 3-pentanone, 2-nonanol, 2-hydroxy-3-pentanone, and 2-nitro-1-butanol were detected as dominant volatile compounds. Additionally, As. lannensis strains formed 2-propenoic acid ethyl ester. As. bogorensis ISD1 was distinguished by the higher concentration of 2-hydroxy-3-pentanone and 3-methyl-1-butene but the lowest concentration of 2-phenylethanol. Based on these results, it was found that volatile profiles of Asaia spp. are unique among acetic acid bacteria. Moreover, obtained profiles depended not only on bacterial species and strains but also on the composition of culture media.
Collapse
|
16
|
Pinto L, Malfeito-Ferreira M, Quintieri L, Silva AC, Baruzzi F. Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Int J Food Microbiol 2019; 296:65-74. [PMID: 30851642 DOI: 10.1016/j.ijfoodmicro.2019.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 01/23/2023]
Abstract
The present study was designed to evaluate possible sugar-based trophic interactions between acetic acid bacteria (AAB) and non-Saccharomyces yeasts (NSY) involved in table grape sour rot, a disease in which berries spoilage is caused by the accumulation of several microbial metabolites. Acetobacter syzygii LMG 21419 (As) and Candida zemplinina CBS 9494 (Cz), a simplified AAB-NSY association responsible for table grape sour rot, grew differently in a minimal medium (YP) supplemented with glucose, ethanol, acetic and gluconic acid under monoculture conditions. In As -Cz co-culture media, after 24 h of incubation, As showed high relative abundance in YP-ethanol, whereas Cz was the dominant strain in YP-glucose medium. Co-culture in YP-glucose showed that glucose was converted into ethanol by Cz that, in turn, promoted the growth of As population. Gluconic acid was the main bacterial metabolite from glucose in monoculture, whereas acetic acid putatively derived from ethanol oxidation was found only in co-culture. However, gluconic acid showed inhibitory effect against As whereas acetic acid mainly inhibited Cz. Negative effects of both metabolites were mitigated in the glucose-supplemented medium. The results suggest a possible metabolic- based temporal succession between AAB and NSY during grape sour rot development. At the begin of sour rot, low glucose concentration promotes NSY producing ethanol, then, the AAB could take advantage from the oxidation of ethanol into acetic acid, becoming the dominant microbial sour rot population during the late stages of the process.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - M Malfeito-Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Center, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - L Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - A C Silva
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Center, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
17
|
Gopu G, Govindan S. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes. Prep Biochem Biotechnol 2018; 48:842-852. [DOI: 10.1080/10826068.2018.1513032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Gayathri Gopu
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, India
| | - Srinikethan Govindan
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, India
| |
Collapse
|
18
|
Lleixà J, Kioroglou D, Mas A, Portillo MDC. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Int J Food Microbiol 2018; 281:36-46. [DOI: 10.1016/j.ijfoodmicro.2018.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022]
|
19
|
Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, Spano G, Chiesa M, Mita G, Grieco F. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Quillaja saponaria Saponins with Potential to Enhance the Effectiveness of Disinfection Processes in the Beverage Industry. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Philippe C, Krupovic M, Jaomanjaka F, Claisse O, Petrel M, le Marrec C. Bacteriophage GC1, a Novel Tectivirus Infecting Gluconobacter Cerinus, an Acetic Acid Bacterium Associated with Wine-Making. Viruses 2018; 10:v10010039. [PMID: 29337868 PMCID: PMC5795452 DOI: 10.3390/v10010039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022] Open
Abstract
The Gluconobacter phage GC1 is a novel member of the Tectiviridae family isolated from a juice sample collected during dry white wine making. The bacteriophage infects Gluconobacter cerinus, an acetic acid bacterium which represents a spoilage microorganism during wine making, mainly because it is able to produce ethyl alcohol and transform it into acetic acid. Transmission electron microscopy revealed tail-less icosahedral particles with a diameter of ~78 nm. The linear double-stranded DNA genome of GC1 (16,523 base pairs) contains terminal inverted repeats and carries 36 open reading frames, only a handful of which could be functionally annotated. These encode for the key proteins involved in DNA replication (protein-primed family B DNA polymerase) as well as in virion structure and assembly (major capsid protein, genome packaging ATPase (adenosine triphosphatase) and several minor capsid proteins). GC1 is the first tectivirus infecting an alphaproteobacterial host and is thus far the only temperate tectivirus of gram-negative bacteria. Based on distinctive sequence and life-style features, we propose that GC1 represents a new genus within the Tectiviridae, which we tentatively named “Gammatectivirus”. Furthermore, GC1 helps to bridge the gap in the sequence space between alphatectiviruses and betatectiviruses.
Collapse
Affiliation(s)
- Cécile Philippe
- Institut des Sciences de la Vigne et du Vin (ISVV), University Bordeaux, Equipe d'Accueil 4577, Unité de Recherche Oenologie, 33882 Villenave d'Ornon, France.
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, 75015 Paris, France.
| | - Fety Jaomanjaka
- Institut des Sciences de la Vigne et du Vin (ISVV), University Bordeaux, Equipe d'Accueil 4577, Unité de Recherche Oenologie, 33882 Villenave d'Ornon, France.
| | - Olivier Claisse
- Institut des Sciences de la Vigne et du Vin (ISVV), University Bordeaux, Equipe d'Accueil 4577, Unité de Recherche Oenologie, 33882 Villenave d'Ornon, France.
- Institut National de la Recherche Agronomique (INRA), ISVV, Unité Sous Contrat 1366 Oenologie, 33882 Villenave d'Ornon, France.
| | - Melina Petrel
- Bordeaux Imaging Center, University Bordeaux, Unité Mixte de Service 3420 CNRS-Unité de Service 4, Institut National de la Santé et de la Recherche Médicale, 33076 Bordeaux, France.
| | - Claire le Marrec
- Institut des Sciences de la Vigne et du Vin (ISVV), University Bordeaux, Equipe d'Accueil 4577, Unité de Recherche Oenologie, 33882 Villenave d'Ornon, France.
| |
Collapse
|
22
|
Pinto L, Caputo L, Quintieri L, de Candia S, Baruzzi F. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Food Microbiol 2017; 66:190-198. [PMID: 28576368 DOI: 10.1016/j.fm.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m-3) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - S de Candia
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
23
|
Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00621-16. [PMID: 27365351 PMCID: PMC4929514 DOI: 10.1128/genomea.00621-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose.
Collapse
|
24
|
Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00620-16. [PMID: 27340078 PMCID: PMC4919417 DOI: 10.1128/genomea.00620-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present article reports the draft genome sequence of the strain Acetobacter malorum CECT 7742, an acetic acid bacterium isolated from strawberry vinegar. This species is characterized by the production of d-gluconic acid from d-glucose, which it further metabolizes to keto-d-gluconic acids.
Collapse
|
25
|
Zeravik J, Fohlerova Z, Milovanovic M, Kubesa O, Zeisbergerova M, Lacina K, Petrovic A, Glatz Z, Skladal P. Various instrumental approaches for determination of organic acids in wines. Food Chem 2016; 194:432-40. [DOI: 10.1016/j.foodchem.2015.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
26
|
Godálová Z, Kraková L, Puškárová A, Bučková M, Kuchta T, Piknová Ľ, Pangallo D. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené). Int J Food Microbiol 2016; 217:110-6. [DOI: 10.1016/j.ijfoodmicro.2015.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|
27
|
González-Arenzana L, Portu J, López R, López N, Santamaría P, Garde-Cerdán T, López-Alfaro I. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Valera MJ, Torija MJ, Mas A, Mateo E. Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiol 2015; 46:452-462. [DOI: 10.1016/j.fm.2014.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023]
|