1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Tleuova KZ, Shingisov AU, Khamitova BM, Kanseitova ET, Tulekbaeva AK. Isolation and molecular characterization of Lactobacillus delbrueckii subsp based on bulgaricus strain 1 from kefir shows probiotic and antimicrobial properties: Linking probiotics to UNSDG (United Nations Sustainable Development Goals) agenda: 2030. BRAZ J BIOL 2025; 84:e286969. [PMID: 39936794 DOI: 10.1590/1519-6984.286969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/23/2024] [Indexed: 02/13/2025] Open
Abstract
The global population increase necessitates the dire need for ample food as medicine. Good health and well-being are stressed on probiotic functional foods. The present study characterizes biochemical and molecular identification of potential lactic acid bacteria. The potent antimicrobial properties also affirm Lactobacillus delbrueckii subsp. bulgaricus strain 3286. Biochemical analysis comprises carbohydrate fermentation, tolerance to acids and bile salts, production of bioactive compounds, lecithinase production, gelatinase production, and strain ripening ability. Antibiotic sensitivity to various antibiotics was assessed employing minimum inhibitory concentration (MIC) and E-test. Strain resistance to increased salt concentrations coherently concludes the positive impact of gut microbiome and gut-brain axis health management. The preliminary assessment requires further in vitro, in vivo, and in silico analysis for commercialization, market strategy and utility as functional food supplementation. The study can be rationalized for sustainable development goals regarding SDG 3: good health and well-being. Further, the UNSDG agenda 2030 also ascertains the role of probiotic foods in life longevity and public health management systems.
Collapse
Affiliation(s)
- K Z Tleuova
- South Kazakhstan University named after. M. Auezov, Department of Biotechnology, Shymkent, Republic of Kazakhstan
| | - A U Shingisov
- South Kazakhstan University named after. M. Auezov, Department of Technology and Safety of Food Products, Academy of Natural Sciences of the Russian Federation, Shymkent, Kazakhstan
| | - B M Khamitova
- M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
| | - E T Kanseitova
- Agrotechnical University named after S. Seifullina, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, RSE "Southwestern Scientific and Production Center of Agriculture" - RSE "YZNPTSKH", Astana, Kazakhstan
- M. Auezov South Kazakhstan State University, South Kazakhstan University named after M. Auezov, Shymkent, Kazakhstan
| | - A K Tulekbaeva
- SKSU named after. M. Auezova, Department of "Standardization and Certification", Shymkent, Kazakhstan
| |
Collapse
|
3
|
Ye G, Guan L, Zhang M. Research progress on processing and nutritional properties of fermented cereals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:197-212. [PMID: 39868384 PMCID: PMC11757653 DOI: 10.1007/s13197-024-06099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 01/28/2025]
Abstract
Fermented foods, especially those derived from cereals, are significant contributors to the diversification of global diets. As people pay increasing attention to food taste, flavor, and nutritional balance, conducting a comprehensive and integrated evaluation of the role of fermentation technology in cereals has become a top priority. This article reviews relevant research conducted in recent years, summarizing the fermentation conditions of cereals and focusing on the effects of fermentation on the nutritional value and health benefits of cereals, including its impact on basic components such as starch and dietary fiber. Fermentation can enhance the content of bioactive substances in cereals, playing a positive role in preventing chronic diseases such as type 2 diabetes, cancer, and hypertension. Finally, the article summarizes prospects for future market development of fermented cereal products, aiming to provide insights for improving the edible quality of fermented cereal-based products and developing functional fermented cereal products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06099-6.
Collapse
Affiliation(s)
- Guodong Ye
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Lina Guan
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Min Zhang
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
4
|
Queiroz LP, Nogueira IBR, Ribeiro AM. Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics. Food Res Int 2024; 196:115100. [PMID: 39614513 DOI: 10.1016/j.foodres.2024.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
This state-of-the-art review comprehensively explores flavor development, spanning biological foundations, analytical methodologies, and the socio-cultural impact. It incorporates an industrial perspective and examines the role of artificial intelligence (AI) in flavor science. Initiating with the biological intricacies of flavor, the review delves into the interplay of taste, aroma, and texture rooted in sensory experiences. Advances in mathematical modeling and analytical techniques open avenues for interdisciplinary collaboration and technological innovation, addressing variations in flavor perception. The impact of flavor extends beyond gustatory experiences, influencing economics, society, nutrition, health, and technological innovation. This collective understanding deepens insight into the dynamic interplay between olfactory and flavor elements within cultural landscapes, emphasizing how sensory experiences are woven into human culture and heritage. The evolution of food flavor analysis, encompassing sensory analysis, instrumental analysis, a combination of both, and the integration of artificial intelligence techniques, signifies dynamic progression and, promising advancements in precision, efficiency, and innovation within the flavor industry. This comprehensive review involved analyzing key aspects within flavor engineering and related sectors. Articles and book chapters on these topics were collected using metadata analysis. The data for this analysis was extracted from major online databases, including Scopus, Web of Science, and ScienceDirect.
Collapse
Affiliation(s)
- L P Queiroz
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - I B R Nogueira
- Chemical Engineering Department, Norwegian University of Science and Technology, Sem Sælandsvei 4, Kjemiblokk 5, Trondheim 793101, Norway
| | - A M Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
5
|
Shumye Gebre T, Admassu Emire S, Okomo Aloo S, Chelliah R, Vijayalakshmi S, Hwan Oh D. Unveiling the potential of African fermented cereal-based beverages: Probiotics, functional drinks, health benefits and bioactive components. Food Res Int 2024; 191:114656. [PMID: 39059934 DOI: 10.1016/j.foodres.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Traditionally, dairy products have been the primary medium for delivering probiotics to humans. However, despite their numerous health benefits, such as nutrient supply and prevention and treatment of certain diseases, there are limitations to their use in many regions, including Africa. These limitations arise from allergens, lactose intolerance, hypercholesterolemia effects, the need for vegetarian options, cultural food taboos against milk, and religious beliefs. As a result, research efforts worldwide have focused on probiotics with health benefits. To address this issue, an integrative approach has been adopted, consolidating ideas and concepts from various studies. Researchers have explored different food matrices to determine their potential as probiotic carriers, specifically emphasizing cereals and cereal products. Studies have revealed that traditional African fermented cereal-based beverages show promise as probiotic carriers due to the presence of probiotic organisms involved in the fermentation process. This presents an opportunity to utilize African cereal beverages to deliver. This review paper provides comprehensive information on probiotics, including their sources, types, health benefits, and delivery vehicles. Specifically, it highlights the challenges and prospects for developing and consuming cereal-based probiotics in Africa. This opens up new avenues for providing probiotic benefits to a broader African population and contributes to the advancement of probiotic research and development in the region.
Collapse
Affiliation(s)
- Tuaumelsan Shumye Gebre
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, PO Box 385, King George VI Street, Addis Ababa, Ethiopia; College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Shimelis Admassu Emire
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, PO Box 385, King George VI Street, Addis Ababa, Ethiopia
| | - Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Kangwon Institute of Inclusive Technology KIIT, Kangwon National University, Chuncheon 24341, Republic of Korea; Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 600124, India
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea; Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Seveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
6
|
Houngbédji M, Jespersen JS, Wilfrid Padonou S, Jespersen L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38973125 DOI: 10.1080/10408398.2024.2365342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | | | - Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
8
|
Garzón AG, Veras FF, Brandelli A, Drago SR. Bio-functional and prebiotics properties of products based on whole grain sorghum fermented with lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2971-2979. [PMID: 38041655 DOI: 10.1002/jsfa.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Products fermented with lactic acid bacteria based on whole grain flours of red or white sorghum (Sorghum bicolor (L.) Moench) added with malted sorghum flour, or with skim milk (SM) were developed. Composition, protein amino acid profile, total acidity, pH, prebiotic potential, and bio-functional properties after simulation of gastrointestinal digestion were evaluated. RESULTS In all cases, a pH of 4.5 was obtained in approximately 4.5 h. The products added with SM presented higher acidity. Products made only with sorghum presented higher total dietary fiber, but lower protein content than products with added SM, the last ones having higher lysine content. All products exhibited prebiotic potential, white sorghum being a better ingredient to promote the growth of probiotic bacteria. The addition of malted sorghum or SM significantly increased the bio-functional properties of the products: the sorghum fermented products added with SM presented the highest antioxidant (ABTS•+ inhibition, 4.7 ± 0.2 mM Trolox), antihypertensive (Angiotensin converting enzyme-I inhibition, 57.3 ± 0.5%) and antidiabetogenic (dipeptidyl-peptidase IV inhibition, 31.3 ± 2.1%) activities, while the products added with malted sorghum presented the highest antioxidant (reducing power, 1.6 ± 0.1 mg ascorbic acid equivalent/mL) and antidiabetogenic (α-amylase inhibition, 38.1 ± 0.9%) activities. CONCLUSION The fermented whole grain sorghum-based products could be commercially exploited by the food industry to expand the offer of the three high-growth markets: gluten-free products, plant-based products (products without SM), and functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonela G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Flávio Fonseca Veras
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Adriano Brandelli
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| |
Collapse
|
9
|
Kim SJ, Ha S, Dang YM, Chang JY, Mun SY, Ha JH. Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation. J Microbiol Biotechnol 2024; 34:622-633. [PMID: 37997263 PMCID: PMC11016767 DOI: 10.4014/jmb.2310.10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.
Collapse
Affiliation(s)
- Su-Ji Kim
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sanghyun Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Yoon Chang
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - So Yeong Mun
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
10
|
Agunwah IM, Ogueke CC, Nwosu JN, Anyogu A. Microbiological evaluation of the indigenous fermented condiment okpeye available at various retail markets in the south-eastern region of Nigeria. Heliyon 2024; 10:e25493. [PMID: 38356605 PMCID: PMC10865259 DOI: 10.1016/j.heliyon.2024.e25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
In Africa, indigenous fermented condiments contribute to food security as a low-cost source of protein. Okpeye is an indigenous fermented condiment produced from Prosopis africana seeds. The reliance on spontaneous fermentation processes and unhygienic practices during production often results in the contamination of the final product with microbial hazards. A microbiological evaluation of 18 commercial samples of okpeye purchased from six markets in two cities in southeastern Nigeria was conducted. Fifty-nine (59) bacteria were isolated and identified at the species level by phenotyping and sequencing the 16S rRNA, gyrB and rpoB genes. Bacillus (47.4 %) and Staphylococcus (42.3 %) were the predominant bacterial genera in okpeye. Overall, B. amyloliquefaciens and S. simulans were the most frequently occurring bacteria and were present in all samples. In addition, B. cereus was isolated in samples obtained from all markets. Other bacterial species included B. velezensis, Oceanobacillus caeni, S. cohnii, Escherichia fergusonni and Vagacoccus lutrae. The B. cereus isolates (10) were screened for the presence of 8 enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM) and one emetic gene (cesB). The non-haemolytic enterotoxin (nheABC) and haemolytic enterotoxin (hblABD) complexes were present in 70 % and 50 % of B. cereus respectively. The positive rate of cytK and entFM genes was 70 %, while the cesB gene was 30 %. Antibiotic susceptibility assessment showed that most of the isolates were susceptible to gentamicin, tetracycline, streptomycin, and erythromycin but resistant to ciprofloxacin and vancomycin. These findings highlight the need for further controls to reduce contamination with potential pathogenic bacteria in indigenous fermented condiments such as okpeye. There is also a need to educate producers regarding hygienic practices to safeguard public health and food security.
Collapse
Affiliation(s)
- Ijeoma M. Agunwah
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chika C. Ogueke
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Justina N. Nwosu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St Mary's Road, Ealing, W5 5RF, London, UK
| |
Collapse
|
11
|
Szajewska H, Vinderola G. Current Regulatory Issues for the Use of Probiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:187-193. [PMID: 39060739 DOI: 10.1007/978-3-031-58572-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The chapter provides an overview of the current regulatory challenges surrounding the use of probiotics. It explores the global regulatory landscape, noting the need for uniform regulations across various regions. It emphasizes that these inconsistencies pose challenges for consumers, healthcare professionals, and industry stakeholders. Furthermore, the chapter highlights the ongoing efforts at the Codex Alimentarius to establish harmonized probiotic guidelines. The chapter also discusses labeling regulations, stressing the need for more accurate and comprehensive information on probiotic products to aid in evidence-based decision-making. Finally, it addresses safety concerns, particularly for vulnerable populations like children, and calls for a multi-layered approach to safety assessments. The chapter concludes by advocating harmonizing regulations and guidelines to facilitate probiotics' safer and more effective use.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland.
| | - Gabriel Vinderola
- INLAIN (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
12
|
Ghosh S, Bornman C, Meskini M, Joghataei M. Microbial Diversity in African Foods and Beverages: A Systematic Assessment. Curr Microbiol 2023; 81:19. [PMID: 38008849 PMCID: PMC10678836 DOI: 10.1007/s00284-023-03481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 11/28/2023]
Abstract
This article provides a comprehensive and in-depth examination of the microbial diversity inherent in African food and beverages, with a particular emphasis on fermented products. It identifies and characterizes the dominant microorganisms, including both prokaryotes and yeasts, prevalent in these foods, and furthermore, critically analyzes the health benefits of these microbial strains, especially their probiotic properties, which could potentially improve digestion and contribute to human health. Notably, it underscores the vital role these microorganisms play in bolstering food security across Africa by enhancing and preserving food quality and safety. It also delves into the potential applications of microbial products, such as metabolites, in the food industry, suggesting their possible use in food processing and preservation. Conclusively, with a summarization of the key findings, emphasizing the importance of gaining a deep understanding of microbial diversity in African beverages and foods. Such knowledge is crucial not only in promoting food security but also in advancing public health.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Charné Bornman
- Department of Engineering Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Maryam Meskini
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Microbiology Research Centre, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Joghataei
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Bryant KL, Hansen C, Hecht EE. Fermentation technology as a driver of human brain expansion. Commun Biol 2023; 6:1190. [PMID: 37996482 PMCID: PMC10667226 DOI: 10.1038/s42003-023-05517-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain tissue is metabolically expensive. Consequently, the evolution of humans' large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans'. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define "external fermentation" as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.
Collapse
Affiliation(s)
- Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France.
| | - Christi Hansen
- Hungry Heart Farm and Dietary Consulting, Conley, GA, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Laya A. Physicochemical Composition and Antioxidant Activity of Five Gari Processed from Cassava Roots ( Manihot esculenta Crantz) Harvested at Two Different Maturity Stages and Two Seasons. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4779424. [PMID: 37920786 PMCID: PMC10620029 DOI: 10.1155/2023/4779424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Gari is a partially gelatinized roasted fermented granular white or yellowish product made from storage roots of cassava. It is consumed as fast foods in many countries across the world. Physicochemical composition, particle size, colour, and antioxidant activities of five gari (92/0326, 96/1414, IRAD4115, EN, and AD) processed from fresh storage roots harvested at 12 months after planting (MAP) and 15MAP compared to four (4) commercial gari (M1, M2, M3, and M4) were evaluated. The analytical results revealed that colour value b∗ and particle size varied significantly (p < 0.05) among the gari samples. Bound flavonoid contents were lower than free flavonoids (3.93 to 10.50 mgQE/100 g and 2.40 to 8.85 mgQE/100 g, respectively). Fourier transform infrared confirmed the functional groups in all gari samples. The antioxidant activity of the bound phenolics showed significantly (p < 0.05) higher DPPH scavenging ability than free phenolics (gari M2: 2.70 μgTE/g). Similarly, the bound phenolics showed significant (p < 0.05) variation of HRSA scavenging activity (0.18-35.09 μgTE/g). However, the best HRSA scavenging activity was found with bound phenolics of gari 96/1414, whereas HRSA scavenging activity was not detected in gari 92/0326, 96/1414, and AD. The value of ABTS scavenging activity of gari varied significantly (p < 0.05) from 20.60 to 30.17 μgTE/g and from 20.70 to 34.39 for free and bound phenolics, respectively, while free phenolics showed higher FRAP value (7.97 mgTE/g) than the bound phenolics (4.59 mgTE/g). Additionally, phenolics and antioxidant activities showed significantly (p < 0.05) a positive correlation. The present study has provided an insight into the physicochemical composition, bioactive compounds, and antioxidant activities of various gari processed at different season and maturity period of harvesting. It reveals that consumers of cassava gari can get health benefits apart from the nutritional values.
Collapse
Affiliation(s)
- Alphonse Laya
- Department of Biology Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
- Fruit and Vegetable Technology Department, CSIR-Central Food Technology Research Institute, Mysuru 570020, India
| |
Collapse
|
15
|
Padonou SW, Houngbédji M, Hounhouigan MH, Chadare FJ, Hounhouigan DJ. B-vitamins and heat processed fermented starchy and vegetable foods in sub-Saharan Africa: A review. J Food Sci 2023; 88:3155-3188. [PMID: 37458298 DOI: 10.1111/1750-3841.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Micronutrient deficiency still occurs in sub-Saharan Africa (SSA) despite the availability of several food resources, particularly fermented foods and vegetables, with high nutritional potential. Fermentation enhances the quality of food in several aspects. Organoleptically, certain taste, aroma, and textures are developed. Health and safety are improved by inhibiting the growth of several foodborne pathogens and removing harmful toxic compounds. Furthermore, nutrition is enhanced by improving micronutrient contents and bioavailability from the food, especially vitamin B content. However, during processing and before final consumption, many fermented foods are heat treated (drying, pasteurization, cooking, etc.) to make the food digestible and safe for consumption. Heat treatment improves the bioavailability of B-vitamins in some foods. In other foods, heating decreases the nutritional value because some B-vitamins are degraded. In SSA, cooked starchy foods are often associated with vegetables in household meals. This paper reviews studies that have focused fermented starchy foods and vegetable foods in SSA with the potential to provide B-vitamins to consumers. The review also describes the process of the preparation of these foods for final consumption, and techniques that can prevent or lessen B-vitamin loss, or enrich B-vitamins prior to consumption.
Collapse
Affiliation(s)
- Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Marcel Houngbédji
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Mênouwesso Harold Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Flora Josiane Chadare
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Djidjoho Joseph Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| |
Collapse
|
16
|
Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK. Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023; 64:10730-10748. [PMID: 37405373 DOI: 10.1080/10408398.2023.2227896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and β-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.
Collapse
Affiliation(s)
- Md Minhajul Abedin
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Puja Sarkar
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Mohali, Punjab, India
| | - Amit Kumar Rai
- National Agri-Food Biotechnology Institute (DBT-NABI), Mohali, Punjab, India
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
17
|
Olaniran AF, Osemwegie O, Taiwo EA, Okonkwo CE, Ojo OA, Abalaka M, Malomo AA, Iranloye YM, Akpor OB, Bamidele OP, Michael T. Application and Acceptability of Microbiomes in the Production Process of Nigerian Indigenous Foods: Drive towards Responsible Production and Consumption. Prev Nutr Food Sci 2023; 28:108-120. [PMID: 37416797 PMCID: PMC10321447 DOI: 10.3746/pnf.2023.28.2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 07/08/2023] Open
Abstract
In Nigeria, the use of microorganisms for food product modulation, development, and commercialization through biotechnological innovations remains unexplored and unaccepted. The microbiome-based sustainable innovation in the production process of Nigerian indigenous food requires a vigorous drive toward responsible consumption and production. The production process of locally fermented beverages and foods culturally varies in terms of fermentation techniques and is characterized by the distinctiveness of the microbiomes used for food and beverage production. This review was conducted to present the use of microbiome, its benefits, and utility as well as the perspectives toward and mediatory roles of biotechnology on the processing of locally fermented foods and their production in Nigeria. With the current concerns on global food insecurity, the utilization of modern molecular and genetic sciences to improve various rural food processing technologies to acceptable foreign exchange and socioeconomic scales has been gaining attention. Thus, further research on the various types of processing techniques for locally fermented foods using microbiomes in Nigeria is needed, with a focus on yield optimization using advanced techniques. This study demonstrates the adaptability of processed foods locally produced in Nigeria for the beneficial control of microbial dynamics, optimal nutrition, therapeutic, and organoleptic characteristics.
Collapse
Affiliation(s)
- Abiola Folakemi Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | - Osarenkhoe Osemwegie
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | - Ezekiel Abiola Taiwo
- Faculty of Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates (UAE) University, Al Ain 15551, UAE
| | | | - Moses Abalaka
- Department of Microbiology, Federal University of Technology, Minna, Niger State 920101, Nigeria
| | - Adekunbi Adetola Malomo
- Department of Food Science and Technology, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Osun State 220101, Nigeria
| | - Yetunde Mary Iranloye
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| | | | | | - Towobola Michael
- Department of Food Science and Microbiology, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State 251103, Nigeria
| |
Collapse
|
18
|
Moloto MR, Akinola SA, Seke F, Shoko T, Sultanbawa Y, Shai JL, Remize F, Sivakumar D. Influence of Fermentation on Functional Properties and Bioactivities of Different Cowpea Leaf Smoothies during In Vitro Digestion. Foods 2023; 12:foods12081701. [PMID: 37107496 PMCID: PMC10137366 DOI: 10.3390/foods12081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effects of Lactiplantibacillus plantarum 75 (LAB 75) fermentation at 37 °C for 48 h on the pH, total soluble solids (TSS), colour, total titratable acidity (TTA), carotenoids, and bioactivities of cowpea leaf smoothies from three cultivars (VOP 1, VOP 3, and VOP 4). Fermentation reduced the pH from 6.57 to 5.05 after 48 h. The TTA increased with the fermentation period, whilst the TSS reduced. Fermentation of the smoothies resulted in the least colour changes (∆E) in VOP 1 after 48 h. Fermentation of cowpea smoothies (VOP 1, VOP 3, and VOP 4) improved the antioxidant capacity (FRAP, DPPH, and ABTS), which was attributed to the increase in total phenolic compounds and carotenoid constituents in all of the fermented cowpea smoothies. VOP 1 was further selected for analysis due to its high phenolic content and antioxidant activity. The VOP 1 smoothie fermented for 24 h showed the lowest reduction in TPC (11%) and had the highest antioxidant (FRAP, DPPH, and ABTS) activity. Ltp. plantarum 75 was viable and survived the harsh conditions of the gastrointestinal tract, and, hence, could be used as a probiotic. VOP 1 intestinal digesta showed significantly higher glucose uptake relative to the undigested and the gastric digesta, while the gastric phase had higher levels of α-amylase and α-glucosidase compared to the undigested samples.
Collapse
Affiliation(s)
- Mapula R Moloto
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Stephen A Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Faith Seke
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Tinotenda Shoko
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
| | - Yasmina Sultanbawa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| | - Jerry L Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Arcadia, Pretoria 0001, South Africa
| | - Fabienne Remize
- SPO, Université de Montpellier, Université de La Réunion, Institut Agro, INRAE, 2 Place Viala, F-34000 Montpellier, France
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria 0001, South Africa
- Australian Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, Centre for Food Science and Nutrition, The University of Queensland, Elkhorn Building (#1024), 80 Meiers Road, Indooroopilly, Brisbane, QLD 4068, Australia
| |
Collapse
|
19
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
20
|
Mogmenga I, Somda MK, Ouattara CAT, Keita I, Dabiré Y, Diguță CF, Toma RC, Ezeogu LI, Ugwuanyi JO, Ouattara AS, Matei F. Promising Probiotic Properties of the Yeasts Isolated from Rabilé, a Traditionally Fermented Beer Produced in Burkina Faso. Microorganisms 2023; 11:microorganisms11030802. [PMID: 36985375 PMCID: PMC10051331 DOI: 10.3390/microorganisms11030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, research on yeasts as probiotics has gained more and more interest, which will allow the development of "new" products in the probiotics market. In this context, seventeen yeast strains isolated from Rabilé, a traditional beer produced in Burkina Faso, were assessed for their probiotic attributes. The yeast identification was performed by molecular methods, including PCR-RFLP and 5.8S-ITS region sequencing. Saccharomyces cerevisiae (14 strains) was the predominantly identified species, followed by Pichia kudriavzevii (2 strains) and Rhodotorula mucilaginosa (1 strain). Except for R. mucilaginosa, all yeast strains grew well at human temperature. The yeast strains showed high resistance when they were exposed to simulated gastrointestinal conditions. Auto-aggregation ability was between 70.20 ± 10.53% and 91.82 ± 1.96%, while co-aggregation with E. coli ranged from 24.92 ± 3.96% to 80.68 ± 9.53% and with S. enterica serovar Typhimurium from 40.89 ± 8.18% to 74.06 ± 7.94%. Furthermore, the hydrophobicity of isolated strains toward n-hexane was in the range from 43.17 ± 5.07% to 70.73 ± 2.42%. All yeast strains displayed high antioxidant capabilities, and the strains did not show hemolysis halos, such that they can be considered safe. Additionally, S. cerevisiae strains strongly inhibited the growth of foodborne pathogens. This is the first preliminary study to identify and characterize the yeast strains isolated from Rabilé with interesting probiotic properties.
Collapse
Affiliation(s)
- Iliassou Mogmenga
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Centre Universitaire de Banfora, Université Nazi BONI, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Marius Kounbèsiounè Somda
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Cheik Amadou Tidiane Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Ibrahim Keita
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Yérobessor Dabiré
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Radu Cristian Toma
- Laboratoire de Biochimie, Biotechnologie, Technologie Alimentaire et Nutrition (LABIOTAN), Département de Biochimie Microbiologie, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Lewis I Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Jerry O Ugwuanyi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Aboubakar S Ouattara
- Laboratoire de Microbiologie et de Biotechnologies Microbiennes, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
21
|
Rapoo SM, Budeli P, Thaoge ML. Recovery of Potential Starter Cultures and Probiotics from Fermented Sorghum (Ting) Slurries. Microorganisms 2023; 11:microorganisms11030715. [PMID: 36985287 PMCID: PMC10054160 DOI: 10.3390/microorganisms11030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Fermented foods are thought to provide a source of probiotics that promote gut health. Consequently, isolation and characterization of fermented food strains and their applications in a controlled fermentation process or as probiotics present a new facet in this area of research. Therefore, the current study sought to identify dominant strains in sorghum-fermented foods (ting) and characterize their probiotic potential in vitro. Recovered isolates were identified as Lactobacillus helveticus, Lactobacillus amylolyticus, Lacticaseibacillus paracasei, Lacticaseibacillus paracasei subsp paracasei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Loigolactobacillus coryniformis and Loigolactobacillus coryniformis subsp torquens based on the their 16S rRNA sequences. Increased biomass was noted in seven out of nine under a low pH of 3 and a high bile concentration of 2% in vitro. Bactericidal activities of isolated LABs presented varying degrees of resistance against selected pathogenic bacteria ranging between (1.57 to 41 mm), (10 to 41 mm), and (11.26 to 42 mm) for Salmonella typhimurium ATTC 14028, Staphylococcus aureus ATTC 6538 and Escherichia coli ATTC8739, respectively. Ampicillin, erythromycin, mupirocin, tetracycline and chloramphenicol were able to inhibit growth of all selected LABs. Thus, isolates recovered from ting partially satisfy the potential candidacy for probiotics by virtue of being more tolerant to acid and bile, antibacterial activity and antibiotic resistance.
Collapse
|
22
|
Olayanju A, Mellor D, Khatri Y, Pickles N. The efficacy of fermented foods in the treatment and management of diarrhoeal diseases: A systematic review and meta-analysis. Nutr Health 2023; 29:71-83. [PMID: 35484792 PMCID: PMC10009476 DOI: 10.1177/02601060221095678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Diarrhoeal disease is a major cause of global infant mortality, and compromises the ability of many countries with respect to achieving sustainable development goals. The WHO's recommendation of Oral Rehydration Solution (ORS) and zinc in the management of this disease, may not be readily available. Consideration and assessment of cultural practices in its management has been an area of increased interest over the last decade. Aim: This study aims to systematically evaluate efficacy of the consumption of traditional fermented foods as functional products for the treatment and management of diarrhoea. Methods: Following PRISMA guidelines, a systematic review was conducted of electronic databases (Cochrane Library, Ovid Medline and Pubmed) databases with no restrictions on language and publication date for RCTs that investigated the effect of consumption of fermented foods on the treatment of diarrhoea in children under five years of age. Results: Seven RCTs were included. Meta-analysis showed that compared to control, consumption of fermented foods significantly reduced mean duration of diarrhoea, -0.61 days; (95% CI, -1.04, -0.18); length of hospitalization, -0.35 days (95% CI, -0.69, -0.02); but not mean daily frequency of stool -2.00 (95% CI,-7.03, 3.04). Conclusion: Limited available evidence suggests that consumption of fermented foods may help reduce duration and severity of symptoms as a treatment of diarrhoea. More high quality research needs to be undertaken to investigate the efficacy of fermented food as an effective alternative to ORS as a potential WHO recommendation for management of diarrhoeal disease.
Collapse
Affiliation(s)
- Adetokunbo Olayanju
- School of Health Sciences, 151625Liverpool Hope University, Hope Park, L16 9JD
| | - Duane Mellor
- College of Health and Life Sciences, 1722Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Yunus Khatri
- Department of Food Science and Nutrition, 4468University of Leeds, Leeds, LS2 1JT
| | - Neil Pickles
- Faculty of Arts, Science and Technology, 282385Wrexham Glyndŵr University, Mold Road, Wrexham, Wales, LL11 2AW, UK
| |
Collapse
|
23
|
Diet Diversification and Priming with Kunu: An Indigenous Probiotic Cereal-Based Non-Alcoholic Beverage in Nigeria. BEVERAGES 2023. [DOI: 10.3390/beverages9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Kunu is a fermented non-alcoholic beverage consumed all over Nigeria. The drink is served as an alternative to alcohol due to its perceived extreme nourishing and therapeutic properties. Varieties of this beverage are determined mostly by the type of grain, the supplements, sensory additives used, and the process employed during its production. Dietary quality is paramount in nutritional well-being and a key factor in human overall health development. The nutritional quality of grains utilised for Kunu production makes the drink more appealing to a large growing population when compared to some other drinks. Some use Kunu drink as an infant weaning drink, thus serving as a priming beverage for infants due to its rich probiotic and nutritional properties. However, this beverage’s short shelf-life has limited its production scale. This review therefore elaborates succinctly on the diverse therapeutic nutritional properties of the Kunu beverage and the effect of additives and fermentation on the microbial dynamics during Kunu production, as well as the prospect of Kunu in diet diversification and priming for weaning infants.
Collapse
|
24
|
Huligere SS, Chandana Kumari VB, Alqadi T, Kumar S, Cull CA, Amachawadi RG, Ramu R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front Microbiol 2023; 13:1042263. [PMID: 36756202 PMCID: PMC9901530 DOI: 10.3389/fmicb.2022.1042263] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023] Open
Abstract
Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,Raghavendra G. Amachawadi,
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Ramith Ramu,
| |
Collapse
|
25
|
Banwo K, Tosin Ojetunde J, Falade T. Probiotic and Cyanide Degrading Potentials of Pediococcus Pentosaceus and Pichia Exigua Isolated from Cassava Products Effluent. FOOD BIOTECHNOL 2023. [DOI: 10.1080/08905436.2022.2163252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kolawole Banwo
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | | | - Titilayo Falade
- Plant Pathology/Aflasafe Unit, International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
26
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Mehlomakulu NN, Moyo SM, Kayitesi E. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Qin H, Wu H, Shen K, Liu Y, Li M, Wang H, Qiao Z, Mu Z. Fermented Minor Grain Foods: Classification, Functional Components, and Probiotic Potential. Foods 2022; 11:3155. [PMID: 37430904 PMCID: PMC9601907 DOI: 10.3390/foods11203155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/05/2023] Open
Abstract
Fermented minor grain (MG) foods often have unique nutritional value and functional characteristics, which are important for developing dietary culture worldwide. As a kind of special raw material in fermented food, minor grains have special functional components, such as trace elements, dietary fiber, and polyphenols. Fermented MG foods have excellent nutrients, phytochemicals, and bioactive compounds and are consumed as a rich source of probiotic microbes. Thus, the purpose of this review is to introduce the latest progress in research related to the fermentation products of MGs. Specific discussion is focused on the classification of fermented MG foods and their nutritional and health implications, including studies of microbial diversity, functional components, and probiotic potential. Furthermore, this review discusses how mixed fermentation of grain mixtures is a better method for developing new functional foods to increase the nutritional value of meals based on cereals and legumes in terms of dietary protein and micronutrients.
Collapse
Affiliation(s)
- Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Houbin Wu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Ke Shen
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Yilin Liu
- Shennong Technology Group Co., Ltd., Jinzhong 030801, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031, China
| |
Collapse
|
29
|
Pswarayi F, Gänzle M. African cereal fermentations: A review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages. Int J Food Microbiol 2022; 378:109815. [PMID: 35763938 DOI: 10.1016/j.ijfoodmicro.2022.109815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
Africa has a rich tradition of cereal fermentations to produce diverse products including baked goods, porridges, non-alcoholic beverages and alcoholic beverages. Diversity also relates to the choice of the fermentation substrates, which include wheat, maize, teff, sorghum and millet, and the fermentation processes that are used in food production. For fermentation processes that are used in baking and brewing, it is well established that the composition of fermentation microbiota and thus the impact of fermentation on product quality is determined by the choice of fermentation conditions. This link has not been systematically explored for African cereal fermentations. This review therefore aims to provide an overview on the diversity of African fermented cereal products, and to interrogate currently available literature data with respect to the impact of fermentation substrate and fermentation processes on the assembly of fermentation microorganisms and product quality.
Collapse
Affiliation(s)
- Felicitas Pswarayi
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada..
| |
Collapse
|
30
|
Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022; 10:microorganisms10061151. [PMID: 35744669 PMCID: PMC9227559 DOI: 10.3390/microorganisms10061151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Traditional fermented foods and beverages play an important role in a range of human diets, and several experimental studies have shown their potential positive effects on human health. Studies from different continents have revealed strong associations between the microorganisms present in certain fermented foods (e.g., agave fructans, kefir, yeats, kombucha, chungkookjang, cheeses and vegetables, among others) and weight maintenance, reductions in the risk of cardiovascular disease, antidiabetic and constipation benefits, improvement of glucose and lipids levels, stimulation of the immunological system, anticarcinogenic effects and, most importantly, reduced mortality. Accordingly, the aim of this review is to corroborate information reported in experimental studies that comprised interventions involving the consumption of traditional fermented foods or beverages and their association with human health. This work focuses on studies that used fermented food from 2014 to the present. In conclusion, traditional fermented foods or beverages could be important in the promotion of human health. Further studies are needed to understand the mechanisms involved in inflammatory, immune, chronic and gastrointestinal diseases and the roles of fermented traditional foods and beverages in terms of preventing or managing those diseases.
Collapse
|
31
|
Mukherjee A, Gómez-Sala B, O'Connor EM, Kenny JG, Cotter PD. Global Regulatory Frameworks for Fermented Foods: A Review. Front Nutr 2022; 9:902642. [PMID: 35719144 PMCID: PMC9198641 DOI: 10.3389/fnut.2022.902642] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been a global resurgence of public interest in fermented foods. In parallel, there have been several new studies that associate the consumption of fermented foods with a variety of beneficial impacts. These combined developments have led to a renewed focus in research and innovation vis-à-vis fermented foods, particularly traditional fermented foods, with an aim to harness this information to develop novel fermented foodstuffs and ingredients and make them available in the market. Consequently, an ever greater and more diverse array of fermented foods, including functional fermented foods with health benefits, are becoming available for public consumption in global markets, with the number expected to grow substantially in the coming decade. This rapidly expanding portfolio of commercially available fermented foods has in turn required an evolution in the corresponding global regulatory frameworks. Due to the innovative and emerging nature of these foods, combined with historical differences in regulator approaches, significant disharmony exists across these frameworks, with individual nations and organizations often adopting unique approaches relating to the establishment of standards and specifications. In this review, we provide an overview of the current regulatory frameworks for a diversity of fermented foods across multiple jurisdictions, with special emphasis on differences in legislative structures and approaches, regulatory harmonization, and current legislative limitations. Overall, the review provides important perspective and context in relation to current global fermented food regulatory practices with possible directions and recommendations for future legislative efforts.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Beatriz Gómez-Sala
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eibhlís M. O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - John G. Kenny
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
32
|
Functional characterization of α-Gal producing lactic acid bacteria with potential probiotic properties. Sci Rep 2022; 12:7484. [PMID: 35524154 PMCID: PMC9075922 DOI: 10.1038/s41598-022-11632-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.
Collapse
|
33
|
Gänzle M. The periodic table of fermented foods: limitations and opportunities. Appl Microbiol Biotechnol 2022; 106:2815-2826. [PMID: 35412130 DOI: 10.1007/s00253-022-11909-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
Abstract
Fermentation is one of the oldest methods of food processing and accounts for a substantial proportion of human foods, including not only staple foods such as bread, cereal porridges or fermented legumes but also fermented vegetables, meats, fish and dairy, alcoholic beverages as well as coffee, cocoa and condiments such as vinegar, soy sauce and fish sauces. Adding the regional varieties to these diverse product categories makes for an almost immeasurable diversity of fermented foods. The periodic table of fermented foods aims to map this diversity on the 118 entries of the periodic table of chemical elements. While the table fails to represent the diversity of fermented foods, it represents major fermentation substrates, product categories, fermentation processes and fermentation organisms. This communication not only addresses limitations of the graphical display on a "periodic table of fermented foods", but also identifies opportunities that relate to questions that are facilitated by this graphical presentation: on the origin and purpose of food fermentation, which fermented foods represent "indigenous" foods, differences and similarities in the assembly of microbial communities in different fermentations, differences in the global preferences for food fermentation, the link between microbial diversity, fermentation time and product properties, and opportunities of using traditional food fermentations as template for development of new products. KEY POINTS: • Fermented foods are produced in an almost immeasurable diversity. • Fermented foods were mapped on a periodic table of fermented foods. • This table facilitates identification of communalities and differences of products.
Collapse
Affiliation(s)
- Michael Gänzle
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
34
|
Dabiré Y, Somda NS, Somda MK, Mogmenga I, Traoré AK, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH. Molecular identification and safety assessment of Bacillus strains isolated from Burkinabe traditional condiment “soumbala”. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01664-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Alkaline-fermented foods (AFFs) play an essential role in the diet of millions of Africans particularly in the fight against hidden hunger. Among AFFs, soumbala is a very popular condiment in Burkina Faso, available and affordable, rich in macronutrients (proteins, lipids, carbohydrates, essential amino acids, and fatty acids), micronutriments (minerals, B group vitamins), and fibers. Bacillus spp. are known to be the predominant microbial species in AFFs and thus have elicited enhanced interest as starter cultures or probiotics. However, few data exist on identification and safety attributes of relevant Bacillus species from African AFFs, particularly from Burkinabe soumbala.
Methods
This study aimed to genotypically characterize 20 Bacillus strains previously isolated from soumbala, using PCR and sequencing of the 16S rRNA genes, and to evaluate their safety attributes.
Results
Phylogenetic analysis revealed that the strains were most closely related by decreasing numbers to B. cereus, B. subtilis, Bacillus sp., B. tropicus, B. toyonensis, B. nealsonii, B. amyloliquefaciens, Brevibacillus parabrevis, and B. altitudinis. Among the isolates, 10 were β-hemolytic and 6 were γ-hemolytic while 4 were of indeterminate hemolysis. The 6 γ-hemolytic (presumptively non-pathogenic) strains were susceptible to all tested antibiotics except bacitracin. Strains F20, and F21 were the most sensitive to imipenem (38.04 ± 1.73 mm and 38.80 ± 1.57 mm, respectively) while strain B54 showed the weakest sensitivity to bacitracin (11.00 ± 0.63 mm) with high significant differences (p < 0.0001).
Conclusion
The findings highlight identification and safety quality of Bacillus strains which could be further characterized as probiotic-starter cultures for high-quality soumbala production.
Collapse
|
35
|
Baldeh E, Bah SA, Camara S, Fye BL, Nakamura T. Bacterial diversity of Gambian traditional fermented milk, "Kosam". Anim Sci J 2022; 93:e13699. [PMID: 35247008 DOI: 10.1111/asj.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 11/26/2022]
Abstract
We have clarified the microbiological characterization of Gambian traditional fermented milk (FM), "Kosam." Two samples of FM were collected at two regions in The Gambia in 2019. The microbiota of these samples was analyzed by culture-dependent methods and Illumina sequencing. The number of lactic acid bacteria (LAB) in FM from Central River Region (CRR) and Lower River Region (LRR) was 8.27 ± 0.08 log CFU/ml and 7.21 ± 0.09 log CFU/ml, respectively. While no coliforms and Escherichia coli were detected in CRR-FM, LRR-FM contained 5.73 ± 0.17 log CFU/ml of coliforms and 4.82 ± 0.13 log CFU/ml of E. coli. The dominant viable LAB in FM from CRR was Lactobacillus delbrueckii, followed by Streptococcus lutetiensis, while that from LRR was Lactococcus lactis. The metagenomic analysis also revealed that these species were dominant in these Gambian traditional FM. Furthermore, it also revealed the possibility of the presence of pathogens such as Klebsiella spp. This study enhanced the knowledge of Gambian FM and contributed to the elucidation of microbial communities.
Collapse
Affiliation(s)
- Edrissa Baldeh
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Saidal Ali Bah
- Central Veterinary Laboratory, Department of Livestock Services, Abuko, The Gambia
| | - Saibana Camara
- Central Veterinary Laboratory, Department of Livestock Services, Abuko, The Gambia
| | - Biram Laity Fye
- Central Veterinary Laboratory, Department of Livestock Services, Abuko, The Gambia
| | - Tadashi Nakamura
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
36
|
Traditional fermented foods and beverages: Indigenous practices of food processing in Benin Republic. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
38
|
Benefits of Fermented Papaya in Human Health. Foods 2022; 11:foods11040563. [PMID: 35206040 PMCID: PMC8870802 DOI: 10.3390/foods11040563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Fermented foods have been used for several years all over the world, due to their unique nutritional characteristics and because fermentation promotes conservation and food security. Moreover, fermented foods and beverages have a strong impact on human gut microbiota. Papaya is the fruit of the Carica papaya plant, traditionally used as a medicinal fruit, but there are also references to the use of the fermented form of this fruit. The main purpose of this review is to provide an improved understanding of fermented papaya nutritional and health applications. A literature search was conducted in the PubMed and Google Scholar databases. Both in vitro and in vivo studies were included. According to the retrieved studies, fermented papaya has proven to be an excellent antioxidant and an excellent nutraceutical adjuvant in combined therapies against several diseases, such as Alzheimer’s disease, allergic reactions, anticancer activity, and anemias. Therefore, it is concluded that fermented papaya has many benefits for human health and can be used as prevention or aid in the treatment of various diseases.
Collapse
|
39
|
Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020063] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fermented food products, especially those derived from cereals and legumes are important contributors to diet diversity globally. These food items are vital to food security and significantly contribute to nutrition. Fermentation is a process that desirably modifies food constituents by increasing the palatability, organoleptic properties, bioavailability and alters nutritional constituents. This review focuses on deciphering possible mechanisms involved in the modification of nutritional constituents as well as nutrient bioavailability during the fermentation of cereals and legumes, especially those commonly consumed in developing countries. Although modifications in these constituents are dependent on inherent and available nutrients in the starting raw material, it was generally observed that fermentation increased these nutritive qualities (protein, amino acids, vitamins, fats, fatty acids, etc.) in cereals and legumes, while in a few instances, a reduction in these constituents was noted. A general reduction trend in antinutritional factors was also observed with a corresponding increase in the nutrient bioavailability and bioaccessibility. Notable mechanisms of modification include transamination or the synthesis of new compounds during the fermentation process, use of nutrients as energy sources, as well as the metabolic activity of microorganisms leading to a degradation or increase in the level of some constituents. A number of fermented products are yet to be studied and fully understood. Further research into these food products using both conventional and modern techniques are still required to provide insights into these important food groups, as well as for an overall improved food quality, enhanced nutrition and health, as well as other associated socioeconomic benefits.
Collapse
|
40
|
Tettevi EJ, Maina M, Simpong DL, Osei-Atweneboana MY, Ocloo A. A Review of African Medicinal Plants and Functional Foods for the Management of Alzheimer's Disease-related Phenotypes, Treatment of HSV-1 Infection and/or Improvement of Gut Microbiota. J Evid Based Integr Med 2022; 27:2515690X221114657. [PMID: 35866220 PMCID: PMC9310297 DOI: 10.1177/2515690x221114657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD), which is a progressive neurodegenerative disorder is the most common form of dementia globally. Several studies have suggested alteration in the gut microbiota and HSV-1 infection as contributing factors to the development of the disease. As at now, there are no AD attenuating agents and AD pharmacotherapy is focused on managing symptoms while plants used in ethnomedicine remain potential sources of drugs for the treatment of the condition. Here, we reviewed published databases for African ethnomedicinal plants and functional foods of African origin that are used in the management of AD-related phenotypes, treatment of herpes simplex virus −1 (HSV-1) and/or improvement of gut microbiota. A total of 101 unique plant species and 24 different types of traditionally prepared African functional foodstuff were identified. Of the 101 identified plant species, 50 species serve as functional foodstuffs. Twenty-three (23) of the ethnomedicinal plant families were successfully identified for the treatment and management of AD-related phenotypes and age-related dementia. Eighteen (18) African plant species from 15 families were also identified as potent remedies for HSV-1; while many African wild fruits (3 species), roots and tubers (7 species), leafy vegetables (14 species), and seaweeds (26 species) were functional foods for modifying AD-related phenotypes. It was concluded that African medicinal plants are potential sources of both AD attenuating agents and phytocompounds that may be used against HSV-1 infection and alteration of gut microbiota. Additionally, a number of African functional foods are important sources of prebiotics and probiotics.
Collapse
Affiliation(s)
- Edward Jenner Tettevi
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, School of Biological Science, University of Ghana, Legon, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research—Water Research Institute, Accra, Ghana
| | - Mahmoud Maina
- Serpell Laboratory, Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, UK
- Biomedical Science Research and Training Centre, College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - David Larbi Simpong
- Department of Medical Laboratory Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mike Y. Osei-Atweneboana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research—Water Research Institute, Accra, Ghana
- CSIR-College of Science and Technology, 2nd CSIR Close, Airport Residential Area, Behind Golden Tulip Hotel, Accra, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Ghana
- Augustine Ocloo, Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Volta Road, Legon LG54, Ghana.
| |
Collapse
|
41
|
Potential Role of African Fermented Indigenous Vegetables in Maternal and Child Nutrition in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:3400329. [PMID: 34957295 PMCID: PMC8695012 DOI: 10.1155/2021/3400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Hunger and malnutrition continue to affect Africa especially the vulnerable children and women in reproductive age. However, Africa has indigenous foods and associated traditional technologies that can contribute to alleviation of hunger, malnutrition, and communicable and noncommunicable diseases. The importance of African indigenous vegetables is undeniable, only that they are season-linked and considered as "food for poor" despite their high nutritional contents. The utilization of African indigenous vegetables (AIVs) is hindered by postharvest losses and antinutrients affecting the bioavailability of nutrients. In Africa, fermentation is among the oldest food processing technologies with long history of safe use. Apart from extending shelf life and improving food organoleptic properties, fermentation of African indigenous vegetables (AIVs) is known to improve food nutritional values such as proteins, minerals, vitamins, and other beneficial phytochemicals. It can also increase bioavailability of various vitamins, minerals, and phytochemicals and increase synthesis of vital blood pressure regulators thus protecting against cardiovascular diseases and cancer and further helping fight certain malnutrition deficiencies. Some lactic acid bacteria (LAB) involved in food fermentation are known to produce exopolysaccharides with cholesterol-lowering, immunomodulator, antioxidant, and anticancer properties. Fermented foods (vegetables) are superior in quality and safety since most microorganisms involved in fermentation are good starter cultures that can inhibit the growth of foodborne pathogens and detoxify harmful compounds in foods. Thus, fermented foods can boost growth and well-being in children and women due to their higher nutritional contents. Therefore, fermentation of AIVs can contribute to the attainment of food and nutrition security especially among women and children who rely on these vegetables as a staple source of micronutrients and income. These benefits have a positive impact on the implementation of the second sustainable development goals and African Union agenda 2063. This review is aimed at shedding light on the potential of African fermented indigenous vegetables in combating maternal and child malnutrition in Sub-Sahara Africa.
Collapse
|
42
|
Anyogu A, Olukorede A, Anumudu C, Onyeaka H, Areo E, Adewale O, Odimba JN, Nwaiwu O. Microorganisms and food safety risks associated with indigenous fermented foods from Africa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Alekseeva AY, Groenenboom AE, Smid EJ, Schoustra SE. Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910093. [PMID: 34639397 PMCID: PMC8508538 DOI: 10.3390/ijerph181910093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
Eco-evolutionary forces are the key drivers of ecosystem biodiversity dynamics. This resulted in a large body of theory, which has partially been experimentally tested by mimicking evolutionary processes in the laboratory. In the first part of this perspective, we outline what model systems are used for experimental testing of eco-evolutionary processes, ranging from simple microbial combinations and, more recently, to complex natural communities. Microbial communities of spontaneous fermented foods are a promising model system to study eco-evolutionary dynamics. They combine the complexity of a natural community with extensive knowledge about community members and the ease of manipulating the system in a laboratory setup. Due to rapidly developing sequencing techniques and meta-omics approaches incorporating data in building ecosystem models, the diversity in these communities can be analysed with relative ease while hypotheses developed in simple systems can be tested. Here, we highlight several eco-evolutionary questions that are addressed using microbial communities from fermented foods. These questions relate to analysing species frequencies in space and time, the diversity-stability relationship, niche space and community coalescence. We provide several hypotheses of the influence of these factors on community evolution specifying the experimental setup of studies where microbial communities of spontaneous fermented food are used.
Collapse
Affiliation(s)
- Anna Y. Alekseeva
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Correspondence:
| | - Anneloes E. Groenenboom
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands;
| | - Sijmen E. Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands; (A.E.G.); (S.E.S.)
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
44
|
Dzikunoo J, Letsyo E, Adams Z, Asante-Donyinah D, Dzah CS. Ghana's indigenous food technology: A review of the processing, safety, packaging techniques and advances in food science and technology. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Akinsola OT, Alamu EO, Otegbayo BO, Menkir A, Maziya-Dixon B. Nutritional Properties of Ogi Powder and Sensory Perception of Ogi Porridge Made From Synthetic Provitamin: A Maize Genotype. Front Nutr 2021; 8:685004. [PMID: 34249994 PMCID: PMC8267175 DOI: 10.3389/fnut.2021.685004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Provitamin-A maize (PVA) with increased carotenoid content obtained through conventional breeding techniques has been largely successful in sub-Saharan Africa. This resulted in a need to evaluate their susceptibility, retention, and nutritional content during processing into local foods. This study evaluated the chemical, carotenoid composition, and retention of PVA, the phytic acid content in ogi powder, and the sensory perception of ogi porridge produced traditionally from the three novel PVA maize genotypes (PVA SYN HGAC0 Maize 1; PVA SYN HGBC0 Maize 2; and PVA SYN HGBC1 Maize 3) and one yellow maize variety (control). Chemical composition analyses showed significant differences (p < 0.05) in all parameters. The PVA ranged from 5.96 to 8.43 μg/g in Maize 2 and 3 before processing while the true percentage retention after processing into ogi powder ranged from 20.25 to 37.54% in Maize 1 and 2, respectively. In addition, there was a reduction in the phytate content of ogi powder, and Maize 2 contained the lowest (2.78 mg/g from 4.09 mg/g). Maize 2 genotype had the highest vitamin A contribution; it can meet 18.3% of the vitamin A requirements in children while in adult males and females (>19 years), 6.2 and 7.7%, respectively. Sensory evaluation showed that the ogi 3 porridge (Maize 3) was the most acceptable, followed by Maize 2. In conclusion, Maize 2 had the highest PVA, true retention of carotenoid, vitamin A contributions, and the second most acceptable ogi porridge with the lowest phytate content.
Collapse
Affiliation(s)
| | - Emmanuel Oladeji Alamu
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Southern Africa Hub, Lusaka, Zambia
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Abebe Menkir
- Maize Breeding Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Busie Maziya-Dixon
- Food and Nutrition Sciences Laboratory, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
46
|
Misci C, Taskin E, Dall'Asta M, Fontanella MC, Bandini F, Imathiu S, Sila D, Bertuzzi T, Cocconcelli PS, Puglisi E. Fermentation as a tool for increasing food security and nutritional quality of indigenous African leafy vegetables: the case of Cucurbita sp. Food Microbiol 2021; 99:103820. [PMID: 34119105 DOI: 10.1016/j.fm.2021.103820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
Sub-Saharan region is often characterized by food and nutrition insecurity especially "hidden hunger" which results from inadequate micronutrients in diets. African indigenous leafy vegetables (AILVs) can represent a valid food source of micronutrients, but they often go to waste resulting in post-harvest losses. In an attempt to prolong AILVs shelf-life while enhancing their nutritional quality, fermentation was studied from a microbiological and nutritional point of view. Pumpkin leaves (Cucurbita sp.) were spontaneously fermented using the submerged method with 3% NaCl and 3% sucrose. Controls were set up, consisting of leaves with no additions. During fermentation, samples of both treatments were taken at 0, 24, 48, 72 and 168 h to monitor pH and characterize the microbial population through culture-based and molecular-based analyses. Variations between fresh and treated leaves in B-group vitamins, carotenoids, polyphenols, and phytic acid were evaluated. Data revealed that the treatment with addition of NaCl and sucrose hindered the growth of undesired microorganisms; in controls, unwanted microorganisms dominated the bacterial community until 168 h, while in treated samples Lactobacillaceae predominated. Furthermore, the content in folate, β-carotene and lutein increased in treated leaves compared to the fresh ones, while phytic acid diminished indicating an amelioration in the nutritional value of the final product. Thus, fermentation could help in preserving Cucurbita sp. leaves, avoiding contamination of spoilage microorganisms and enhancing the nutritional values.
Collapse
Affiliation(s)
- Chiara Misci
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Eren Taskin
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences (DiANA), Via E. Parmense 84, 29122, Piacenza, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Samuel Imathiu
- Jomo Kenyatta University of Agriculture and Technology, Department of Food Science and Technology, Juja, Kenya
| | - Daniel Sila
- Jomo Kenyatta University of Agriculture and Technology, Department of Food Science and Technology, Juja, Kenya
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences (DiANA), Via E. Parmense 84, 29122, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Edoardo Puglisi
- Department for Sustainable Process, Faculty of Agriculture, Food and Environmental Science (DiSTAS), Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
47
|
Offor SJ, Orish CN, Frazzoli C, Orisakwe OE. Augmenting Clinical Interventions in Psychiatric Disorders: Systematic Review and Update on Nutrition. Front Psychiatry 2021; 12:565583. [PMID: 34025465 PMCID: PMC8131505 DOI: 10.3389/fpsyt.2021.565583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
There is a strong relationship between a healthy diet and mental well-being. Several foods and food compounds are known to modulate biomarkers and molecular mechanisms involved in the aetiogenesis of several mental disorders, and this can be useful in containing the disease progression, including its prophylaxis. This is an updated systematic review of the literature to justify the inclusion and recognition of nutrition in the management of psychiatric illnesses. Such foods and their compounds include dietary flavanols from fruits and vegetables, notable antioxidant and anti-inflammatory agents, probiotics (fermented foods) known to protect good gut bacteria, foods rich in polyunsaturated fatty acids (e.g., Omega-3), and avoiding diets high in saturated fats and refined sugars among others. While the exact mechanism(s) of mitigation of many nutritional interventions are yet to be fully understood, the evidence-based approach warrants the inclusion and co-recognition of nutrition in the management of psychiatric illnesses. For the greater public health benefit, there is a need for policy advocacy aimed at bridging the knowledge gap and encouraging the integration of nutritional intervention with contemporary therapies in clinical settings, as deficiencies of certain nutrients make therapy difficult even with appropriate medication.
Collapse
Affiliation(s)
- Samuel J. Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
| | - Chinna N. Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E. Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
48
|
Bamgbose T, Anvikar AR, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Cabezas-Cruz A, de la Fuente J. Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics Antimicrob Proteins 2021; 13:1254-1266. [PMID: 33791994 PMCID: PMC8012070 DOI: 10.1007/s12602-021-09780-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fermented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for malaria control.
Collapse
Affiliation(s)
- Timothy Bamgbose
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Anupkumar R Anvikar
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isa O Abdullahi
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Helen I Inabo
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Mohammed Bello
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire D'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
49
|
Reid G, Sybesma W, Matovu W, Onyango A, Westerik N, Kort R. Empowering women through probiotic fermented food in East Africa. J Glob Health 2021; 10:010330. [PMID: 32509283 PMCID: PMC7242885 DOI: 10.7189/jogh.10.010330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute, London, Ontario, Canada.,Departments of Microbiology & Immunology and Surgery, Western University, London, Ontario, Canada
| | | | | | - Arnold Onyango
- Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Nieke Westerik
- Yoba for Life Foundation, Amsterdam, the Netherlands.,VU University Amsterdam, the Netherlands
| | - Remco Kort
- Yoba for Life Foundation, Amsterdam, the Netherlands.,VU University Amsterdam, the Netherlands.,ARTIS-Micropia, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Stoll DA, Wafula EN, Mathara JM, Trierweiler B, Kulling SE, Huch M. Fermentation of African nightshade leaves with lactic acid bacterial starter cultures. Int J Food Microbiol 2021; 342:109056. [PMID: 33540190 DOI: 10.1016/j.ijfoodmicro.2021.109056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023]
Abstract
The interest in the consumption of African indigenous leafy vegetables increased in African countries, e.g. Kenya, within the last years. One example of African indigenous leafy vegetables is African nightshade (Solanum scabrum) which is nutritious, rich in proteins and micronutrients and therefore could contribute to a healthy diet. African nightshade has several agricultural advantages. However, the most important disadvantage is the fast perishability which leads to enormous post-harvest losses. In this study, we investigated the fermentation of African nightshade as a post-harvest processing method to reduce post-harvest losses. The two lactic acid bacterial starter strains Lactiplantibacillus plantarum BFE 5092 and Limosilactobacillus fermentum BFE 6620 were used to inoculate fermentations of African nightshade leaves with initial counts of 106-107 cfu/ml. Uninoculated controls were conducted for each fermentation trial. Fermentations were performed both in Kenya and in Germany. The success of the inoculated starter cultures was proven by the measurement of pH values and determination of lactic acid concentration. Lactobacilli strains dominated the microbiota of the starter inoculated samples in contrast to the non-inoculated controls. This was supported by classical culture-dependent plating on different microbiological media as well as by the culture-independent molecular biological methods denaturing gradient gel electrophoresis and 16S rRNA gene high-throughput amplicon sequencing. We could demonstrate that the use of the selected starter cultures for fermentation of African nightshade leaves led to controlled and reliable fermentations with quick acidification. Thus, controlled fermentation with appropriate starter cultures is a promising method for post-harvest treatment of African nightshade leaves.
Collapse
Affiliation(s)
- Dominic A Stoll
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Eliud N Wafula
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany; Jomo Kenyatta University of Agriculture and Technology, Department of Food Science and Technology, P.O. Box 62000, 00200 Nairobi, Kenya
| | - Julius M Mathara
- Jomo Kenyatta University of Agriculture and Technology, Department of Food Science and Technology, P.O. Box 62000, 00200 Nairobi, Kenya
| | - Bernhard Trierweiler
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - Melanie Huch
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany.
| |
Collapse
|