1
|
Sharma R, Mittal A, Gupta V, Aggarwal NK. Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed. Braz J Microbiol 2024; 55:3097-3115. [PMID: 39162933 PMCID: PMC11711429 DOI: 10.1007/s42770-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Arpana Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Varun Gupta
- Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
2
|
Karssa TH, Kussaga JB, Semedo‐Lemsaddek T, Mugula JK. Insights on the microbiology of Ethiopian fermented milk products: A review. Food Sci Nutr 2024; 12:6990-7003. [PMID: 39479617 PMCID: PMC11521749 DOI: 10.1002/fsn3.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Fermented milk products play a vital role in the diets of Ethiopians. They are produced from either spontaneous fermentation or back-slopping methods at the household level, in which lactic acid bacteria (LAB) and yeasts predominate. As a result, the processing steps are not standardized and overall safety is still of public health relevance. Therefore, quality and safety improvement, standardization of traditional manufacturing practices, and commercialization of products to a wider market are important. Hence, this systematic review aimed to provide a comprehensive overview of the microbiology of traditional Ethiopian fermented milk products, including ergo (spontaneously fermented whole milk), dhanaan (fermented camel milk), ititu (concentrated sour milk or spontaneously fermented milk curd), ayib (traditional cottage cheese), qibe (traditional butter), arrera (defatted buttermilk), and hazo (spiced fermented buttermilk). We followed the Preferred Reporting Items for Systematic Reviews and searched relevant databases and search engines, including the Web of Science, Google Scholar, Scopus, PubMed, ScienceDirect, and ResearchGate. Furthermore, the pertinent literature was checked individually and identified. Dairy fermentation provides shelf-life extension and improves the organoleptic quality of products. Nonetheless, the aforementioned Ethiopian fermented foods may be contaminated with Escherichia coli 0157: H7, Listeria monocytogenes, Salmonella spp., or Staphylococcus aureus due to inadequate processing and handling practices. This systematic review also revealed that these traditional milk products lack consistent quality and safety due to poor hygienic preparation techniques, non-controlled fermentation, and limited knowledge or awareness of small-holder dairy farmers. Therefore, the use of suitable procedures including good hygienic practices and controlled fermentation is recommended.
Collapse
Affiliation(s)
| | - Jamal B. Kussaga
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| | - Teresa Semedo‐Lemsaddek
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary MedicineUniversity of LisbonLisbonPortugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)LisbonPortugal
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of LisbonLisbonPortugal
| | - Jovin K. Mugula
- Department of Food Science and Agro‐ProcessingSokoine University of AgricultureMorogoroTanzania
| |
Collapse
|
3
|
Houngbédji M, Jespersen JS, Wilfrid Padonou S, Jespersen L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38973125 DOI: 10.1080/10408398.2024.2365342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | | | - Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Valentino V, Magliulo R, Farsi D, Cotter PD, O'Sullivan O, Ercolini D, De Filippis F. Fermented foods, their microbiome and its potential in boosting human health. Microb Biotechnol 2024; 17:e14428. [PMID: 38393607 PMCID: PMC10886436 DOI: 10.1111/1751-7915.14428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fermented foods (FFs) are part of the cultural heritage of several populations, and their production dates back 8000 years. Over the last ~150 years, the microbial consortia of many of the most widespread FFs have been characterised, leading in some instances to the standardisation of their production. Nevertheless, limited knowledge exists about the microbial communities of local and traditional FFs and their possible effects on human health. Recent findings suggest they might be a valuable source of novel probiotic strains, enriched in nutrients and highly sustainable for the environment. Despite the increasing number of observational studies and randomised controlled trials, it still remains unclear whether and how regular FF consumption is linked with health outcomes and enrichment of the gut microbiome in health-associated species. This review aims to sum up the knowledge about traditional FFs and their associated microbiomes, outlining the role of fermentation with respect to boosting nutritional profiles and attempting to establish a link between FF consumption and health-beneficial outcomes.
Collapse
Affiliation(s)
- Vincenzo Valentino
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Raffaele Magliulo
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
| | - Dominic Farsi
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
| | - Paul D. Cotter
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Orla O'Sullivan
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| | - Francesca De Filippis
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
5
|
García-Béjar B, Fernández-Pacheco P, Carreño-Domínguez J, Briones A, Arévalo-Villena M. Identification and biotechnological characterisation of yeast microbiota involved in spontaneous fermented wholegrain sourdoughs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7683-7693. [PMID: 37452647 DOI: 10.1002/jsfa.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/05/2023] [Accepted: 07/15/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND New strategies in the cereal-based industry has brought about the elaboration of new sourdoughs with better microbial stability and safety as well as nutritional value such as those based on wholegrain flours. This has led to an increasing interest in the selection of adapted yeasts for using them as new starters. Therefore, this study aimed to isolate, identify, and characterise diverse yeast strains from wholegrain spontaneous sourdoughs. RESULTS Three wholegrain sourdoughs (wheat, rye, and oat) were fermented and monitored for 96 h. Minimum pH values ranged from 3.1 to 3.5 while maximum yeast counts were reached at 72 h. A total of 76 yeast isolates were identified by polymerase chain reaction random amplification of polymorphic DNA (PCR-RAPD) and catalogued in six different species by sequencing the internal transcribed spacer (ITS) region. The major species were Candida glabrata, Saccharomyces cerevisiae, Kazachstania unispora, and Wickerhamomyces anomalus. The studied kinetic parameters of the growth curves (λ, G, ODmax , and μmax ) and the fermentation capacity allowed to ascertain that 12 and 5 strains, respectively, were better than baker's yeast control. The fibre assimilation ability (cellulose, xylose, and β-glucan) was observed in the 27% of the strains and only four strains showed phytase activity. CONCLUSIONS The yeast population in the three wholegrain sourdoughs were variable along the fermentation time. Genetic identification showed that strains and species presented a different trend for each sourdough although common species were determined (e.g., W. anomalus). Candida glabrata (4T1) and Saccharomyces cerevisiae (3A6) showed, respectively, better kinetics and impedance results than the positive control, while W. anomalus (C4) was notorious in fibre assimilation and phytase degradation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Pilar Fernández-Pacheco
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Toledo, Spain
| | | | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
6
|
Joudaki H, Aria N, Moravej R, Rezaei Yazdi M, Emami-Karvani Z, Hamblin MR. Microbial Phytases: Properties and Applications in the Food Industry. Curr Microbiol 2023; 80:374. [PMID: 37847302 PMCID: PMC10581959 DOI: 10.1007/s00284-023-03471-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Microbial phytases are enzymes that break down phytic acid, an anti-nutritional compound found in plant-based foods. These enzymes which are derived from bacteria and fungi have diverse properties and can function under different pH and temperature conditions. Their ability to convert phytic acid into inositol and inorganic phosphate makes them valuable in food processing. The application of microbial phytases in the food industry has several advantages. Firstly, adding them to animal feedstuff improves phosphorus availability, leading to improved nutrient utilization and growth in animals. This also reduces environmental pollution by phosphorus from animal waste. Secondly, microbial phytases enhance mineral bioavailability and nutrient assimilation in plant-based food products, counteracting the negative effects of phytic acid on human health. They can also improve the taste and functional properties of food and release bioactive compounds that have beneficial health effects. To effectively use microbial phytases in the food industry, factors like enzyme production, purification, and immobilization techniques are important. Genetic engineering and protein engineering have enabled the development of phytases with improved properties such as enhanced stability, substrate specificity, and resistance to degradation. This review provides an overview of the properties and function of phytases, the microbial strains that produce them, and their industrial applications, focusing on new approaches.
Collapse
Affiliation(s)
- Hanane Joudaki
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Negar Aria
- Department of Microbiology, School of Biology, Collect of Science, University of Tehran, Tehran, Iran
| | - Roya Moravej
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Mehlomakulu NN, Moyo SM, Kayitesi E. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhou D, Zhao Y, Li J, Ravichandran V, Wang L, Huang Q, Chen C, Ni H, Yin J. Effects of Phytic Acid-Degrading Bacteria on Mineral Element Content in Mice. Front Microbiol 2021; 12:753195. [PMID: 34880838 PMCID: PMC8645864 DOI: 10.3389/fmicb.2021.753195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Trace minerals are extremely important for balanced nutrition, growth, and development in animals and humans. Phytic acid chelation promotes the use of probiotics in nutrition. The phytic acid-degrading strain Lactococcus lactis psm16 was obtained from swine milk by enrichment culture and direct plate methods. In this study, we evaluated the effect of the strain psm16 on mineral element content in a mouse model. Mice were divided into four groups: basal diet, 1% phytic acid, 1% phytic acid + psm16, 1% phytic acid + 500 U/kg commercial phytase. Concentrations of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids were significantly increased in the strain psm16 group compared to the phytic acid group. The concentrations of copper (p = 0.021) and zinc (p = 0.017) in liver, calcium (p = 0.000), manganese (p = 0.000), and zinc (p = 0.000) in plasma and manganese (p = 0.010) and zinc (p = 0.022) in kidney were significantly increased in psm16 group, while copper (p = 0.007) and magnesium (p = 0.001) were significantly reduced. In conclusion, the addition of phytic acid-degrading bacteria psm16 into a diet including phytic acid can affect the content of trace elements in the liver, kidney, and plasma of mice, counteracting the harmful effects of phytic acid.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Leli Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Cang Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Radosa S, Sprague JL, Lau SH, Tóth R, Linde J, Krüger T, Sprenger M, Kasper L, Westermann M, Kniemeyer O, Hube B, Brakhage AA, Gácser A, Hillmann F. The fungivorous amoeba Protostelium aurantium targets redox homeostasis and cell wall integrity during intracellular killing of Candida parapsilosis. Cell Microbiol 2021; 23:e13389. [PMID: 34460149 DOI: 10.1111/cmi.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/08/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.
Collapse
Affiliation(s)
- Silvia Radosa
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Jakob L Sprague
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Siu-Hin Lau
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | | | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.,Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
11
|
Capusoni C, Serra I, Donzella S, Compagno C. Screening For Yeast Phytase Leads to the Identification of a New Cell-Bound and Secreted Activity in Cyberlindnera jadinii CJ2. Front Bioeng Biotechnol 2021; 9:662598. [PMID: 34109165 PMCID: PMC8181137 DOI: 10.3389/fbioe.2021.662598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phytic acid is an anti-nutritional compound able to chelate proteins and ions. For this reason, the food industry is looking for a convenient method which allows its degradation. Phytases are a class of enzymes that catalyze the degradation of phytic acid and are used as additives in feed-related industrial processes. Due to their industrial importance, our goal was to identify new activities that exhibit best performances in terms of tolerance to high temperature and acidic pH. As a result of an initial screening on 21 yeast species, we focused our attention on phytases found in Cyberlindnera jadinii, Kluyveromyces marxianus, and Torulaspora delbrueckeii. In particular, C. jadinii showed the highest secreted and cell-bound activity, with optimum of temperature and pH at 50°C and 4.5, respectively. These characteristics suggest that this enzyme could be successfully used for feed as well as for food-related industrial applications.
Collapse
Affiliation(s)
- Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Houngbédji M, Padonou SW, Parkouda C, Johansen PG, Hounsou M, Agbobatinkpo BP, Sawadogo-Lingani H, Jespersen L, Hounhouigan DJ. Multifunctional properties and safety evaluation of lactic acid bacteria and yeasts associated with fermented cereal doughs. World J Microbiol Biotechnol 2021; 37:34. [PMID: 33475896 DOI: 10.1007/s11274-021-02994-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Spontaneous cereal fermentations involve diverse lactic acid bacteria (LAB) and yeasts which may include multifunctional and safe or unsafe strains. This study assessed acidification ability, safety, antifungal activity and free amino acids release ability of LAB and yeasts previously isolated from spontaneously fermented cereal doughs in Benin. Fourteen LAB and thirteen yeast strains were studied in liquid media and/or in a model cereal dough prepared in laboratory conditions. Antifungal activity was assessed against Candida glabrata in liquid medium. Amino acids were determined by pre-column derivatization and separation with reversed-phase HPLC. Antimicrobial susceptibility was analysed by minimum inhibitory concentration determination. The acidification ability was higher for LAB compared to yeast strains. All LAB strains retarded the growth of C. glabrata Cg1 with the highest inhibition recorded for Weissella confusa Wc1 and Wc2. The highest free amino acid content was found in the doughs fermented with Pichia kudriavzevii Pk2 and Pk3. All the LAB strains were susceptible to ampicillin, chloramphenicol, erythromycin, but displayed phenotypic resistance to kanamycin, streptomycin and tetracycline. Positive PCR amplicon of resistance genes were detected in the following cases: 2 LAB strains were positive for kanamycin (aph(3)III), 5 strains were positive for streptomycin (aadA and/or strA and/or strB) and 3 strains were positive for tetracycline (tet (L) and/or tet (M)). For yeasts, most of the P. kudriavzevii strains were resistant to amphotericin B, fluconazole and itraconazole opposite to K. marxianus and Saccharomyces cerevisiae strains which were susceptible. The results obtained are valuable for selecting safe and multifunctional strains for cereal fermentation in West Africa.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.
| | - S Wilfrid Padonou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,ESTCTPA, Université Nationale d'Agriculture, 01, BP 55, Porto-Novo, Benin
| | - Charles Parkouda
- Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Pernille Greve Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - Mathias Hounsou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - B Pélagie Agbobatinkpo
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - Hagretou Sawadogo-Lingani
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - D Joseph Hounhouigan
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| |
Collapse
|
13
|
Chinma CE, Azeez SO, Sulayman HT, Alhassan K, Alozie SN, Gbadamosi HD, Danbaba N, Oboh HA, Anuonye JC, Adebo OA. Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. J Food Sci 2020; 85:4281-4289. [PMID: 33216358 DOI: 10.1111/1750-3841.15527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023]
Abstract
The composition (proximate, amino acids, in vitro protein digestibility [IVPD]), antinutritional factors (ANFs), functional properties, and antioxidant activity of fermented African yam bean flour (FAYBF) were determined in this study, and the effect of substituting FAYBF on the properties (nutritional, physical, and functional) of bread was investigated. Fermentation significantly (P ≤ 0.05) increased the levels of nutrients, IVPD, total phenolic content (TPC), and antioxidant activity in the flour, with significant (P ≤ 0.05) reduction in ANFs. The water absorption capacity (WAC) and oil absorption capacity (OAC), and swelling capacity of the flour increased after fermentation, while bulk density decreased. Substitution of wheat flour with FAYBF increased WAC and OAC, while peak viscosity decreased. Composite breads had higher nutritional, IVPD, TPC, and antioxidant activity than 100% wheat bread. The study demonstrates that FAYBF could be explored for the preparation of wheat-based bread, with reduced gluten levels. PRACTICAL APPLICATION: Bread is a staple food and this study can assist in increasing the utilization of neglected leguminous crops as well as addressing the challenge of malnutrition, prevalent in developing countries.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria.,Africa Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Shakirah Omotoke Azeez
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | - Hudah Tahirah Sulayman
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | - Khadizat Alhassan
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | - Sharon Nelson Alozie
- Africa Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Hammed Dada Gbadamosi
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | - Nahemiah Danbaba
- Food Technology and Value Addition Research Program, National Cereals Research Institute, Badeggi, Nigeria
| | - Henrietta Ayodele Oboh
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
14
|
Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Sci Rep 2020; 10:12856. [PMID: 32732890 PMCID: PMC7393511 DOI: 10.1038/s41598-020-69774-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker’s yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.
Collapse
|
15
|
Ogunremi OR, Agrawal R, Sanni A. Production and characterization of volatile compounds and phytase from potentially probiotic yeasts isolated from traditional fermented cereal foods in Nigeria. J Genet Eng Biotechnol 2020; 18:16. [PMID: 32507932 PMCID: PMC7276461 DOI: 10.1186/s43141-020-00031-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Probiotic strains are incorporated into food substrates to contribute to fermentation process. The technological suitability of such strains to improve the flavor and nutritional value of fermented food is strain-specific. Potentially probiotic yeasts isolated from Nigerian traditional fermented foods were assessed for production of volatile compounds by gas chromatography-mass spectrophotometry. Phytases were characterized for activity and stability at different pH (3-8) and temperatures (25-50 °C). RESULTS A total of 45 volatiles compounds were identified from intracellular cell-free extracts of Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, P. kudriavzevii OG32, P. kudriavzevii ROM11, and Candida tropicalis BOM21. They include alcohols (14), carbonyls (13), esters (10), and organic acids (8). Phenylethyl alcohol was the highest higher-alcohol in Issatchenkia orientalis OSL11 (27.51 %). The largest proportion of esters was detected in P. kudriavzevii OG32 (17.38 %). Pichia kudriavzevii OG32 and C. tropicalis BOM21 showed vigorous gowth in minimal medium supplemented with sodium phytate (2 g L-1). Extracellular phytases from P. kudriavzevii OG32 and Candida tropicalis BOM2 showed optimal activiy at pH 4.6 (104.28 U) and pH 3.6 (81.43 U) respectively. CONCLUSIONS Results obtained revealed species- and strain-specific potentials of the yeast strains to improve flavor and mineral bioavailability of fermented food products. Therefore, the application of these yeasts as starter cultures during food fermentation process is a very promising method to enhance the flavor profile and enhance mineral bioavailability in indigenous cereal-based fermented food products.
Collapse
Affiliation(s)
- Omotade Richard Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Nigeria
- Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| | - Renu Agrawal
- Food Microbiology Department, Central Food Technological Research Institute, Mysore, India
| | - Abiodun Sanni
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Nath BJ, Verma E, Sarma HK, Mishra AK, Tanti B, Jha DK. Evaluation of Basic Fermentation Parameters and Effective Combinations of Predominant Yeasts from Traditional Starter Materials of Indigenous Communities from Northeast India. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1739601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bhaskar Jyoti Nath
- Microbial Communication and Fungal Biology Group, Department of Biotechnology, Gauhati University, Guwahati, India
| | - Ekta Verma
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Hridip Kumar Sarma
- Microbial Communication and Fungal Biology Group, Department of Biotechnology, Gauhati University, Guwahati, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Guwahati, India
| | | |
Collapse
|
17
|
Fekri A, Torbati M, Yari Khosrowshahi A, Bagherpour Shamloo H, Azadmard-Damirchi S. Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chem 2019; 306:125620. [PMID: 31606627 DOI: 10.1016/j.foodchem.2019.125620] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022]
Abstract
The lactic acid bacteria (LAB) and yeast strains with phytate degrading ability were isolated from Iranian traditional sourdough, and based on the acid and bile tolerance, three LAB and three yeast strains were selected and molecularly identified. In this study, baker's yeast (Saccharomyces cerevisiae) was considered as a positive control strain to investigate the nutritional and technological properties of the isolated strains. All of the identified microorganisms were characterized based on additional probiotic properties and were evaluated for nutritional and technological characteristics. The functional features are associated with degradation of phytate, antioxidant capacity, exopolysaccharides, phenolic compound content and in vitro starch digestion. Among all the tested strains the highest amount of phytase production capacity (1.64 Unit/ml) and lowest phytate content (17.49 mg/5 g) belonged to Kluyveromyces marxianus. According to the results, the bread prepared by using Kluyveromyces aestuarii possessed the highest porosity percentage (70.43%), and the lowest hardness (508.71 g).
Collapse
Affiliation(s)
- Arezoo Fekri
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Yari Khosrowshahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Food and Drug Safety Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Johansen PG, Owusu-Kwarteng J, Parkouda C, Padonou SW, Jespersen L. Occurrence and Importance of Yeasts in Indigenous Fermented Food and Beverages Produced in Sub-Saharan Africa. Front Microbiol 2019; 10:1789. [PMID: 31447811 PMCID: PMC6691171 DOI: 10.3389/fmicb.2019.01789] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Indigenous fermented food and beverages represent a valuable cultural heritage in sub-Saharan Africa, having one of the richest selections of fermented food products in the world. In many of these indigenous spontaneously fermented food and beverages, yeasts are of significant importance. Several factors including raw materials, processing methods, hygienic conditions as well as the interactions between yeasts and other commensal microorganisms have been shown to influence yeast species diversity and successions. Both at species and strain levels, successions take place due to the continuous change in intrinsic and extrinsic growth factors. The selection pressure from the microbial stress factors leads to niche adaptation and both yeast species and strains with traits deviating from those generally acknowledged in current taxonomic keys, have been isolated from indigenous sub-Saharan African fermented food products. Yeasts are important for flavor development, impact shelf life, and nutritional value and do, in some cases, even provide host-beneficial effects. In order to sustain and upgrade these traditional fermented products, it is quite important to obtain detailed knowledge on the microorganisms involved in the fermentations, their growth requirements and interactions. While other publications have reported on the occurrence of prokaryotes in spontaneously fermented sub-Saharan food and beverages, the present review focuses on yeasts considering their current taxonomic position, relative occurrence and successions, interactions with other commensal microorganisms as well as beneficial effects and importance in human diet. Additionally, the risk of opportunistic yeasts is discussed.
Collapse
Affiliation(s)
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Charles Parkouda
- Département Technologie Alimentaire, IRSAT/CNRST, Ouagadougou, Burkina Faso
| | | | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Van Ende M, Wijnants S, Van Dijck P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol 2019; 10:99. [PMID: 30761119 PMCID: PMC6363656 DOI: 10.3389/fmicb.2019.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Candida species, such as Candida albicans and Candida glabrata, cause infections at different host sites because they adapt their metabolism depending on the available nutrients. They are able to proliferate under both nutrient-rich and nutrient-poor conditions. This adaptation is what makes these fungi successful pathogens. For both species, sugars are very important nutrients and as the sugar level differs depending on the host niche, different sugar sensing systems must be present. Saccharomyces cerevisiae has been used as a model for the identification of these sugar sensing systems. One of the main carbon sources for yeast is glucose, for which three different pathways have been described. First, two transporter-like proteins, ScSnf3 and ScRgt2, sense glucose levels resulting in the induction of different hexose transporter genes. This situation is comparable in C. albicans and C. glabrata, where sensing of glucose by CaHgt4 and CgSnf3, respectively, also results in hexose transporter gene induction. The second glucose sensing mechanism in S. cerevisiae is via the G-protein coupled receptor ScGpr1, which causes the activation of the cAMP/PKA pathway, resulting in rapid adaptation to the presence of glucose. The main components of this glucose sensing system are also conserved in C. albicans and C. glabrata. However, it seems that the ligand(s) for CaGpr1 are not sugars but lactate and methionine. In C. glabrata, this pathway has not yet been investigated. Finally, the glucose repression pathway ensures repression of respiration and repression of the use of alternative carbon sources. This pathway is not well characterized in Candida species. It is important to note that, apart from glucose, other sugars and sugar-analogs, such as N-acetylglucosamine in the case of C. albicans, are also important carbon sources. In these fungal pathogens, sensing sugars is important for a number of virulence attributes, including adhesion, oxidative stress resistance, biofilm formation, morphogenesis, invasion, and antifungal drug tolerance. In this review, the sugar sensing and signaling mechanisms in these Candida species are compared to S. cerevisiae.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
20
|
Gessler NN, Serdyuk EG, Isakova EP, Deryabina YI. Phytases and the Prospects for Their Application (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Evaluation of Candida tropicalis (NCIM 3321) extracellular phytase having plant growth promoting potential and process development. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 2017; 101:2677-2689. [PMID: 28233043 DOI: 10.1007/s00253-017-8195-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance.
Collapse
|
24
|
Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 2016; 239:26-34. [DOI: 10.1016/j.ijfoodmicro.2016.07.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
|
25
|
Greppi A, Saubade F, Botta C, Humblot C, Guyot JP, Cocolin L. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiol 2016; 62:169-177. [PMID: 27889145 DOI: 10.1016/j.fm.2016.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022]
Abstract
With the aim of selecting starter cultures with interesting probiotic potential and with the ability to produce folate in a food matrix, yeast strains isolated from fermented cereal-based African foods were investigated. A total of 93 yeast strains were screened for their tolerance to pH 2 and 0.3% of bile salts. Pichia kudriavzevii isolates gave the best results. Selected P. kudriavzevii strains were tested for survival to the simulated human digestion and for adhesion to Caco-2 cells. Moreover, presence of folate biosynthesis genes was verified and production of extra and intra-cellular folate determined during growth in culture medium. 31% of yeast strains could tolerate pH 2, while 99% bile salts. Survival rate after simulated digestion ranged between 11 and 45%, while adhesion rate between 12 and 40%. Folate production was mainly intracellular, maximum after 24 h of growth. To be closer to traditional cereal-based fermentations, a P. kudriavzevii strain with good probiotic potential was co-inoculated with Lactobacillus fermentum strains in a pearl millet gruel. This resulted in in situ folate production that peaked after 4 h. The use of strains with both probiotic and nutritional enrichment properties may have a greater impact for the consumers.
Collapse
Affiliation(s)
- Anna Greppi
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy.
| | - Fabien Saubade
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| | - Christèle Humblot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Jean-Pierre Guyot
- Institute of Research for Development (IRD), UMR 204 Nutripass, IRD/University of Montpellier/SupAgro, Montpellier, France
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco, Italy
| |
Collapse
|
26
|
Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly Gabaza
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Maud Muchuweti
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
27
|
Tam P, Gee K, Piechocinski M, Macreadie I. Candida glabrata, Friend and Foe. J Fungi (Basel) 2015; 1:277-292. [PMID: 29376912 PMCID: PMC5753114 DOI: 10.3390/jof1020277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/16/2022] Open
Abstract
Candida glabrata is mostly good, but, at times, it is an opportunistic pathogen. Previously known as Torulopsis glabrata, it enjoyed a good reputation and was even present in starter cultures. Its haploid genome and lack of mating made it an attractive challenge for yeast genetics studies. However, more recently it has become better known due to its character as an emerging cause of candidiasis, and for its resistance to multidrugs that are employed for candidiasis treatment. While now classified as Candida glabrata, it is still not a good fit and tends to stand alone as a very unique yeast. In terms of sequence, it is dissimilar to other Candida yeast and most similar to Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Phyllix Tam
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Kirsten Gee
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Miryam Piechocinski
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Ian Macreadie
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|