1
|
Acevedo KL, Eaton E, Leite J, Zhao S, Chacon-Vargas K, McCarthy CM, Choi D, O’Donnell S, Gluck-Thaler E, Yu JH, Gibbons JG. Population Genomics of Aspergillus sojae is Shaped by the Food Environment. Genome Biol Evol 2025; 17:evaf067. [PMID: 40195023 PMCID: PMC12014904 DOI: 10.1093/gbe/evaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Traditional fermented foods often contain specialized microorganisms adapted to their unique environments. For example, the filamentous mold Aspergillus oryzae, used in saké fermentation, has evolved to thrive in starch-rich conditions compared to its wild ancestor, Aspergillus flavus. Similarly, Aspergillus sojae, used in soybean-based fermentations like miso and shochu, is hypothesized to have been domesticated from Aspergillus parasiticus. Here, we examined the effects of long-term A. sojae use in soybean fermentation on population structure, genome variation, and phenotypic traits. We analyzed 17 A. sojae and 24 A. parasiticus genomes (23 of which were sequenced for this study), alongside phenotypic traits of 9 isolates. Aspergillus sojae formed a distinct, low-diversity population, suggesting a recent clonal expansion. Interestingly, a population of A. parasiticus was more closely related to A. sojae than other A. parasiticus populations. Genome comparisons revealed loss-of-function mutations in A. sojae, notably in biosynthetic gene clusters encoding secondary metabolites, including the aflatoxin cluster. Interestingly though, A. sojae harbored a partial duplication of a siderophore biosynthetic cluster. Phenotypic assays showed A. sojae lacked aflatoxin production, while it was variable in A. parasiticus isolates. Additionally, certain A. sojae strains exhibited larger colony diameters under miso-like salt conditions. These findings support the hypothesis that A. parasiticus is the progenitor of A. sojae and that domestication significantly reduced genetic diversity. Future research should explore how wild and food-associated strains influence sensory attributes and microbial community dynamics in fermented soy products.
Collapse
Affiliation(s)
- Kimberly L Acevedo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Eaton
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Julia Leite
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Katherine Chacon-Vargas
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Colin M McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dasol Choi
- Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel O’Donnell
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Caron T, Crequer E, Le Piver M, Le Prieur S, Brunel S, Snirc A, Cueff G, Roueyre D, Place M, Chassard C, Simon A, de la Vega RCR, Coton M, Coton E, Foulongne-Oriol M, Branca A, Giraud T. Identification of quantitative trait loci (QTLs) for key cheese making phenotypes in the blue-cheese mold Penicillium roqueforti. PLoS Genet 2025; 21:e1011669. [PMID: 40233118 PMCID: PMC12047768 DOI: 10.1371/journal.pgen.1011669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Elucidating the genomic architecture of quantitative traits is essential for our understanding of adaptation and for breeding in domesticated organisms. Penicillium roqueforti is the mold used worldwide for the blue cheese maturation, contributing to flavors through proteolytic and lipolytic activities. The two domesticated cheese populations display very little genetic diversity, but are differentiated and carry opposite mating types. We produced haploid F1 progenies from five crosses, using parents belonging to cheese and non-cheese populations. Analyses of high-quality genome assemblies of the parental strains revealed five large translocations, two having occurred via a circular intermediate, one with footprints of Starship giant mobile elements. Offspring genotyping with genotype-by-sequencing (GBS) revealed several genomic regions with segregation distortion, possibly linked to degeneration in cheese lineages. We found transgressions for several traits relevant for cheese making, with offspring having more extreme trait values than parental strains. We identified quantitative trait loci (QTLs) for colony color, lipolysis, proteolysis, extrolite production, including mycotoxins, but not for growth rates. Some genomic regions appeared rich in QTLs for both lipid and protein metabolism, and other regions for the production of multiple extrolites, indicating that QTLs have pleiotropic effects. Some QTLs corresponded to known biosynthetic gene clusters, e.g., for the production of melanin or extrolites. F1 hybrids constitute valuable strains for cheese producers, with new traits and new allelic combinations, and allowed identifying target genomic regions for traits important in cheese making, paving the way for strain improvement. The findings further contribute to our understanding of the genetic mechanisms underlying rapid adaptation, revealing convergent adaptation targeting major gene regulators.
Collapse
Affiliation(s)
- Thibault Caron
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Ewen Crequer
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | | | - Sammy Brunel
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| | - Gwennina Cueff
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Michel Place
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | | | | | | | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | - Antoine Branca
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Crequer E, Coton E, Cueff G, Cristiansen JV, Frisvad JC, Rodríguez de la Vega RC, Giraud T, Jany JL, Coton M. Different metabolite profiles across Penicillium roqueforti populations associated with ecological niche specialisation and domestication. IMA Fungus 2024; 15:38. [PMID: 39609866 PMCID: PMC11605963 DOI: 10.1186/s43008-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024] Open
Abstract
Fungi are known to produce many chemically diversified metabolites, yet their ecological roles are not always fully understood. The blue cheese fungus Penicillium roqueforti thrives in different ecological niches and is known to produce a wide range of metabolites, including mycotoxins. Three P. roqueforti populations have been domesticated for cheese production and two populations thrive in other anthropized environments, i.e., food, lumber and silage. In this study, we looked for differences in targeted and untargeted metabolite production profiles between populations using HPLC-HR-Q-TOF and UHPLC-Q-TOF-HR-MS/MS. The non-cheese populations produced several fatty acids and different terpenoids, lacking in cheese strains. The Termignon cheese population displayed intermediate metabolite profiles between cheese and non-cheese populations, as previously shown for other traits. The non-Roquefort cheese population with the strongest domestication syndrome, produced the lowest quantities of measured metabolites, including mycophenolic acid (MPA), andrastin A and PR toxin. Its inability to produce MPA was due to a deletion in the mpaC gene, while a premature stop codon in ORF 11 of the PR toxin gene cluster explained PR toxin absence and the accumulation of its intermediates, i.e., eremofortins A and B. In the Roquefort population, we detected no PR toxin nor eremofortins A or B, but found no indel or frameshift mutation, suggesting downregulation. The hypotoxigenic trait of domesticated cheese populations can be hypothesized to be linked to the loss of this ability through trait degeneration and/or the selection of low toxin producers. It may also be due to the fact that populations from other anthropized environments maintained high metabolite diversity as the bioactivities of these compounds are likely important in these ecological niches.
Collapse
Affiliation(s)
- E Crequer
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - E Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - G Cueff
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - J V Cristiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - R C Rodríguez de la Vega
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - T Giraud
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, AgroParisTech, Université Paris-Saclay, CNRS, Bâtiment 680, 12 Route RD 128, 91190, Gif-Sur-Yvette, France
| | - J-L Jany
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France
| | - M Coton
- Laboratoire Universitaire de Biodiversité Et Ecologie Microbienne, Univ. Brest, INRAE, 29280, Plouzane, France.
| |
Collapse
|
4
|
Lo Y, Bruxaux J, Rodríguez de la Vega RC, O'Donnell S, Snirc A, Coton M, Le Piver M, Le Prieur S, Roueyre D, Dupont J, Houbraken J, Debuchy R, Ropars J, Giraud T, Branca A. Domestication in dry-cured meat Penicillium fungi: Convergent specific phenotypes and horizontal gene transfers without strong genetic subdivision. Evol Appl 2023; 16:1637-1660. [PMID: 37752962 PMCID: PMC10519415 DOI: 10.1111/eva.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.
Collapse
Affiliation(s)
- Ying‐Chu Lo
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jade Bruxaux
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Samuel O'Donnell
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Alodie Snirc
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Stéphanie Le Prieur
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS‐MNHN, Muséum National d'Histoire NaturelleParis Cedex 05France
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
| | - Robert Debuchy
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tatiana Giraud
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Antoine Branca
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- IDEEV – Laboratoire Evolution, Génomes Comportement, EcologieCNRS Université Paris Saclay UMR 9191, IRD UMR 247Gif‐sur‐YvetteFrance
| |
Collapse
|
5
|
Crequer E, Ropars J, Jany J, Caron T, Coton M, Snirc A, Vernadet J, Branca A, Giraud T, Coton E. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. Evol Appl 2023; 16:1438-1457. [PMID: 37622099 PMCID: PMC10445096 DOI: 10.1111/eva.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.
Collapse
Affiliation(s)
- Ewen Crequer
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Luc Jany
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Thibault Caron
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Monika Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Alodie Snirc
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Philippe Vernadet
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Antoine Branca
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Tatiana Giraud
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Emmanuel Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| |
Collapse
|
6
|
Savary O, Coton E, Maillard MB, Gaucheron F, Le Meur C, Frisvad J, Thierry A, Jany JL, Coton M. Functional diversity of Bisifusarium domesticum and the newly described Nectriaceae cheese-associated species. Food Res Int 2023; 168:112691. [PMID: 37120186 DOI: 10.1016/j.foodres.2023.112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Bisifusarium domesticum is among the main molds used during cheese-making for its "anticollanti" property that prevents the sticky smear defect of some cheeses. Previously, numerous cheese rinds were sampled to create a working collection and not only did we isolate B. domesticum but we observed a completely unexpected diversity of "Fusarium-like" fungi belonging to the Nectriaceae family. Four novel cheese-associated species belonging to two genera were described: Bisifusarium allantoides, Bisifusarium penicilloides, Longinectria lagenoides, and Longinectria verticilliformis. In this study, we thus aimed at determining their potential functional impact during cheese-making by evaluating their lipolytic and proteolytic activities as well as their capacity to produce volatile (HS-Trap GC-MS) and non-volatile secondary metabolites (HPLC & LC-Q-TOF). While all isolates were proteolytic and lipolytic, higher activities were observed at 12 °C for several B. domesticum, B. penicilloides and L. lagenoides isolates, which is in agreement with typical cheese ripening conditions. Using volatilomics, we identified multiple cheese-related compounds, especially ketones and alcohols. B. domesticum and B. penicilloides isolates showed higher aromatic potential although compounds of interest were also produced by B. allantoides and L. lagenoides. These species were also lipid producers. Finally, an untargeted extrolite analysis suggested a safety status of these strains as no known mycotoxins were produced and revealed the production of potential novel secondary metabolites. Biopreservation tests performed with B. domesticum suggested that it may be an interesting candidate for biopreservation applications in the cheese industry in the future.
Collapse
|
7
|
Ropars J, Giraud T. Convergence in domesticated fungi used for cheese and dry-cured meat maturation: beneficial traits, genomic mechanisms, and degeneration. Curr Opin Microbiol 2022; 70:102236. [PMID: 36368125 DOI: 10.1016/j.mib.2022.102236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Humans have domesticated genetically distant fungi for similar uses, the fermentation of lipid-rich and sugar-rich food to generate attractive aspects, odor and aroma, and to improve shelf life and product safety. Multiple independent domestication events also occurred within species. We review recent evidence of phenotypic convergence during the domestication of fungi for making cheese (Saccharomyces cerevisiae, Penicillium roqueforti, P. camemberti, and Geotrichum candidum) and for dry-cured meat making (P. nalgiovense and P. salamii). Convergence following adaptation to similar ecological niches involved colony aspect (fluffiness and color), lipolysis, proteolysis, volatile compound production, and competitive ability against food spoilers. We review evidence for convergence in genetic diversity loss in domesticated populations and in the degeneration of unused traits, such as toxin production and sexual reproduction. Phenotypic convergence sometimes occurred by similar mechanisms of genomic adaptation, in particular horizontal gene transfers and loss of genes.
Collapse
Affiliation(s)
- Jeanne Ropars
- Ecologie Systématique Evolution, IDEEV, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Cardin M, Cardazzo B, Mounier J, Novelli E, Coton M, Coton E. Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods. Foods 2022; 11:3379. [PMID: 36359992 PMCID: PMC9653732 DOI: 10.3390/foods11213379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Food fraud, corresponding to any intentional action to deceive purchasers and gain an undue economical advantage, is estimated to result in a 10 to 65 billion US dollars/year economical cost worldwide. Dairy products, such as cheese, in particular cheeses with protected land- and tradition-related labels, have been listed as among the most impacted as consumers are ready to pay a premium price for traditional and typical products. In this context, efficient food authentication methods are needed to counteract current and emerging frauds. This review reports the available authentication methods, either chemical, physical, or DNA-based methods, currently used for origin authentication, highlighting their principle, reported application to cheese geographical origin authentication, performance, and respective advantages and limits. Isotope and elemental fingerprinting showed consistent accuracy in origin authentication. Other chemical and physical methods, such as near-infrared spectroscopy and nuclear magnetic resonance, require more studies and larger sampling to assess their discriminative power. Emerging DNA-based methods, such as metabarcoding, showed good potential for origin authentication. However, metagenomics, providing a more in-depth view of the cheese microbiota (up to the strain level), but also the combination of methods relying on different targets, can be of interest for this field.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
9
|
Punt M, Seekles SJ, van Dam JL, de Adelhart Toorop C, Martina RR, Houbraken J, Ram AFJ, Wösten HAB, Ohm RA. High sorbic acid resistance of Penicillium roqueforti is mediated by the SORBUS gene cluster. PLoS Genet 2022; 18:e1010086. [PMID: 35704633 PMCID: PMC9200314 DOI: 10.1371/journal.pgen.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Penicillium roqueforti is a major food-spoilage fungus known for its high resistance to the food preservative sorbic acid. Here, we demonstrate that the minimum inhibitory concentration of undissociated sorbic acid (MICu) ranges between 4.2 and 21.2 mM when 34 P. roqueforti strains were grown on malt extract broth. A genome-wide association study revealed that the six most resistant strains contained the 180 kbp gene cluster SORBUS, which was absent in the other 28 strains. In addition, a SNP analysis revealed five genes outside the SORBUS cluster that may be linked to sorbic acid resistance. A partial SORBUS knock-out (>100 of 180 kbp) in a resistant strain reduced sorbic acid resistance to similar levels as observed in the sensitive strains. Whole genome transcriptome analysis revealed a small set of genes present in both resistant and sensitive P. roqueforti strains that were differentially expressed in the presence of the weak acid. These genes could explain why P. roqueforti is more resistant to sorbic acid when compared to other fungi, even in the absence of the SORBUS cluster. Together, the MICu of 21.2 mM makes P. roqueforti among the most sorbic acid-resistant fungi, if not the most resistant fungus, which is mediated by the SORBUS gene cluster. Chemical preservatives, such as sorbic acid, are often used in food to prevent spoilage by fungi, yet some fungi are particularly well-suited to deal with these preservatives. First, we investigated the resistance of 34 Penicillium roqueforti strains to various food preservatives. This revealed that some strains were highly resistant to sorbic acid, while others are more sensitive. Next, we used DNA sequencing to compare the genetic variation between these strains and discovered a specific genetic region (SORBUS) that is unique to the resistant strains. Through comparative analysis with other fungal species the SORBUS region was studied in more detail and with the use of genetic engineering tools we removed this unique region. Finally, the mutant lacking the SORBUS region was confirmed to have lost its sorbic acid resistance. This finding is of particular interest as it suggests that only some, not all, P. roqueforti strains are potent spoilers and that specific genetic markers could help in the identification of resistant strains.
Collapse
Affiliation(s)
- Maarten Punt
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd J. Seekles
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jisca L. van Dam
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Raithel R. Martina
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jos Houbraken
- TiFN, Wageningen, The Netherlands
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Arthur F. J. Ram
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A. B. Wösten
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Robin A. Ohm
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Doğan M, Tekiner İH. Evaluating starter culture potential of wild Penicillium roqueforti strains from moldy cheeses of artisanal origin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Nguyen Van Long N, Rigalma K, Jany JL, Mounier J, Vasseur V. Intraspecific variability in cardinal growth temperatures and water activities within a large diversity of Penicillium roqueforti strains. Food Res Int 2021; 148:110610. [PMID: 34507754 DOI: 10.1016/j.foodres.2021.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Different strains of a given fungal species may display heterogeneous growth behavior in response to environmental factors. In predictive mycology, the consideration of such variability during data collection could improve the robustness of predictive models. Among food-borne fungi, Penicillium roqueforti is a major food spoiler species which is also used as a ripening culture for blue cheese manufacturing. In the present study, we investigated the intraspecific variability of cardinal temperatures and water activities (aw), namely, minimal (Tmin and awmin), optimal (Topt and awopt) and maximal (Tmax) temperatures and/or aw estimated with the cardinal model for radial growth, of 29 Penicillium roqueforti strains belonging to 3 genetically distinct populations. The mean values of cardinal temperatures and aw for radial growth varied significantly across the tested strains, except for Tmax which was constant. In addition, the relationship between the intraspecific variability of the biological response to temperature and aw and putative genetic populations (based on microsatellite markers) within the selected P. roqueforti strains was investigated. Even though no clear relationship was identified between growth parameters and ecological characteristics, PCA confirmed that certain strains had marginal growth response to temperature or aw. Overall, the present data support the idea that a better knowledge of the response to abiotic factors such as temperature and aw at an intraspecific level would be useful to model fungal growth in predictive mycology approaches.
Collapse
Affiliation(s)
- Nicolas Nguyen Van Long
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Mounier
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Valérie Vasseur
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
12
|
Franciosa I, Coton M, Ferrocino I, Corvaglia MR, Poirier E, Jany JL, Rantsiou K, Cocolin L, Mounier J. Mycobiota dynamics and mycotoxin detection in PGI Salame Piemonte. J Appl Microbiol 2021; 131:2336-2350. [PMID: 33893697 DOI: 10.1111/jam.15114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
AIMS The complex mycobiota that colonizes traditional fermented sausages plays an important role in the organoleptic properties of such products. The aim of the present study was to investigate fungal diversity and mycotoxin production during maturation of PGI Salame Piemonte. METHODS AND RESULTS Casing and meat samples were collected at five sampling times from three different batches produced in the same factory and analysed using culture-dependent and independent approaches. Penicillium nalgiovense, which was deliberately inoculated, and Debaryomyces hansenii were the most dominant taxa in casings. Several other fungi mainly belonging to Penicillium crustosum, Penicillium glabrum, Penicillium nordicum, Cladosporium spp., Candida sake, Candida zeylanoides and Yarrowia divulgata were also identified. The casing mycobiota was compared to that of the meat using a metataxonomic approach and a higher fungal diversity was observed in meat as compared to casings. Mycotoxins and penicillin G were monitored using QTOF LC-MS and only trace amounts of roquefortine C were detected in two batches. CONCLUSIONS The present study highlighted the diversity of Salame Piemonte mycobiota and the important contribution of autochthonous fungi to its diversity. The absence of mycotoxins and penicillin G confirmed the high hygienic quality of the studied product regarding fungal and mycotoxin contamination. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time, this study provides insights about Salame Piemonte mycobiota, which together with the bacterial microbiota and Salame Piemonte process specifications, are responsible for the product organoleptic properties.
Collapse
Affiliation(s)
- I Franciosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Torino, Italy.,Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, Plouzané, France
| | - M Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, Plouzané, France
| | - I Ferrocino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Torino, Italy
| | - M R Corvaglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Torino, Italy
| | - E Poirier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, Plouzané, France
| | - J-L Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, Plouzané, France
| | - K Rantsiou
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Torino, Italy
| | - L Cocolin
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Torino, Italy
| | - J Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, Plouzané, France
| |
Collapse
|
13
|
Caron T, Piver ML, Péron AC, Lieben P, Lavigne R, Brunel S, Roueyre D, Place M, Bonnarme P, Giraud T, Branca A, Landaud S, Chassard C. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int J Food Microbiol 2021; 354:109174. [PMID: 34103155 DOI: 10.1016/j.ijfoodmicro.2021.109174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023]
Abstract
Studies of food microorganism domestication can provide important insight into adaptation mechanisms and lead to commercial applications. Penicillium roqueforti is a fungus with four genetically differentiated populations, two of which were independently domesticated for blue cheese-making, with the other two populations thriving in other environments. Most blue cheeses are made with strains from a single P. roqueforti population, whereas Roquefort cheeses are inoculated with strains from a second population. We made blue cheeses in accordance with the production specifications for Roquefort-type cheeses, inoculating each cheese with a single P. roqueforti strain, using a total of three strains from each of the four populations. We investigated differences between the cheeses made with the strains from the four P. roqueforti populations, in terms of the induced flora, the proportion of blue color, water activity and the identity and abundance of aqueous and organic metabolites as proxies for proteolysis and lipolysis as well as volatile compounds responsible for flavor and aroma. We found that the population-of-origin of the P. roqueforti strains used for inoculation had a minor impact on bacterial diversity and no effect on the abundance of the main microorganism. The cheeses produced with P. roqueforti strains from cheese populations had a higher percentage of blue area and a higher abundance of the volatile compounds typical of blue cheeses, such as methyl ketones and secondary alcohols. In particular, the Roquefort strains produced higher amounts of these aromatic compounds, partly due to more efficient proteolysis and lipolysis. The Roquefort strains also led to cheeses with a lower water availability, an important feature for preventing spoilage in blue cheeses, which is subject to controls for the sale of Roquefort cheese. The typical appearance and flavors of blue cheeses thus result from human selection on P. roqueforti, leading to the acquisition of specific features by the two cheese populations. These findings have important implications for our understanding of adaptation and domestication, and for cheese improvement.
Collapse
Affiliation(s)
- Thibault Caron
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France; Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France.
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Anne-Claire Péron
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Pascale Lieben
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - René Lavigne
- Université Clermont Auvergne, INRAE, Vetagro Sup, UMRF, 20 Côte de Reyne, 15000 Aurillac, France
| | - Sammy Brunel
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Michel Place
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - Antoine Branca
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Christophe Chassard
- Université Clermont Auvergne, INRAE, Vetagro Sup, UMRF, 20 Côte de Reyne, 15000 Aurillac, France
| |
Collapse
|
14
|
Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Curr Biol 2020; 30:4441-4453.e4. [PMID: 32976806 DOI: 10.1016/j.cub.2020.08.082] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Domestication involves recent adaptation under strong human selection and rapid diversification and therefore constitutes a good model for studies of these processes. We studied the domestication of the emblematic white mold Penicillium camemberti, used for the maturation of soft cheeses, such as Camembert and Brie, about which surprisingly little was known, despite its economic and cultural importance. Whole-genome-based analyses of genetic relationships and diversity revealed that an ancient domestication event led to the emergence of the gray-green P. biforme mold used in cheese making, by divergence from the blue-green wild P. fuscoglaucum fungus. Another much more recent domestication event led to the generation of the P. camemberti clonal lineage as a sister group to P. biforme. Penicillium biforme displayed signs of phenotypic adaptation to cheese making relative to P. fuscoglaucum, in terms of whiter color, faster growth on cheese medium under cave conditions, lower amounts of toxin production, and greater ability to prevent the growth of other fungi. The P. camemberti lineage displayed even stronger signs of domestication for all these phenotypic features. We also identified two differentiated P. camemberti varieties, apparently associated with different kinds of cheeses and with contrasted phenotypic features in terms of color, growth, toxin production, and competitive ability. We have thus identified footprints of domestication in these fungi, with genetic differentiation between cheese and wild populations, bottlenecks, and specific phenotypic traits beneficial for cheese making. This study has not only fundamental implications for our understanding of domestication but can also have important effects on cheese making.
Collapse
|
15
|
Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Impact of maturation and growth temperature on cell-size distribution, heat-resistance, compatible solute composition and transcription profiles of Penicillium roqueforti conidia. Food Res Int 2020; 136:109287. [PMID: 32846509 DOI: 10.1016/j.foodres.2020.109287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023]
Abstract
Penicillium roqueforti is a major cause of fungal food spoilage. Its conidia are the main dispersal structures of this fungus and therefore the main cause of food contamination. These stress resistant asexual spores can be killed by preservation methods such as heat treatment. Here, the effects of cultivation time and temperature on thermal resistance of P. roqueforti conidia were studied. To this end, cultures were grown for 3, 5, 7 and 10 days at 25 °C or for 7 days at 15, 25 and 30 °C. Conidia of 3- and 10-day-old cultures that had been grown at 25 °C had D56-values of 1.99 ± 0.15 min and 5.31 ± 1.04 min, respectively. The effect of cultivation temperature was most pronounced between P. roqueforti conidia cultured for 7 days at 15 °C and 30 °C, where D56-values of 1.12 ± 0.05 min and 4.19 ± 0.11 min were found, respectively. Notably, D56-values were not higher when increasing both cultivation time and temperature by growing for 10 days at 30 °C. A correlation was found between heat resistance of conidia and levels of trehalose and arabitol, while this was not found for glycerol, mannitol and erythritol. RNA-sequencing showed that the expression profiles of conidia of 3- to 10-day-old cultures that had been grown at 25 °C were distinct from conidia that had been formed at 15 °C and 30 °C for 7 days. Only 33 genes were upregulated at both prolonged incubation time and increased growth temperature. Their encoded proteins as well as trehalose and arabitol may form the core of heat resistance of P. roqueforti conidia.
Collapse
|
17
|
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, Thierry A, Coton E, Le Piver M, Roueyre D, Ropars J, Branca A, Giraud T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol 2020; 29:2639-2660. [PMID: 31960565 PMCID: PMC7497015 DOI: 10.1111/mec.15359] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre‐industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation. see also the Perspective by Brigida Gallone, Jan Steensels and Kevin J. Verstrepen.
Collapse
Affiliation(s)
- Emilie Dumas
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, The Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent, Belgium
| | - Alice Feurtey
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Anne Thierry
- Science et Technologie du Lait et de l'Œuf (STLO), UMR1253, Agrocampus Ouest, INRAE, Rennes, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Jeanne Ropars
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
18
|
Coton M, Bregier T, Poirier E, Debaets S, Arnich N, Coton E, Dantigny P. Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage. Int J Food Microbiol 2020; 313:108377. [DOI: 10.1016/j.ijfoodmicro.2019.108377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022]
|
19
|
Coton M, Auffret A, Poirier E, Debaets S, Coton E, Dantigny P. Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol 2019; 82:551-559. [DOI: 10.1016/j.fm.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
|
20
|
Hammerl R, Frank O, Dietz M, Hirschmann J, Hofmann T. Tyrosine Induced Metabolome Alterations of Penicillium roqueforti and Quantitation of Secondary Key Metabolites in Blue-Mold Cheese. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8500-8509. [PMID: 31298534 DOI: 10.1021/acs.jafc.9b03237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To map qualitative and quantitative metabolome alterations when Penicillium roqueforti is grown in an environment where l-tyrosine levels are perturbed, the recently established differential off-line LC-NMR (DOLC-NMR) approach was successfully applied in connection with an absolute metabolite quantitation using a quantitative 1H NMR protocol following the ERETIC 2 (Electronic REference To access In vivo Concentrations) methodology. Among the 23 influenced metabolites, amino acid degradation products like 2-(4-hydroxyphenyl)acetic acid and 2-(3,4-dihydroxyphenyl)acetic acid underwent a tremendous upregulation in the amino acid perturbed approach. Moreover, the output of secondary metabolites like andrastin A, eremofortin B, and the tetrapeptide d-Phe-l-Val-d-Val-l-Tyr was affected in the case of the presence or absence of the added aromatic amino acid. Furthermore, the isolated secondary metabolites of P. roqueforti have been quantified for the first time in five divergent Penicillium isolates by means of a validated LC-ECHO-MS/MS method. This technique is used to compensate the effect of co-extracted matrix compounds during the analysis and to utilize quasi-internal standards to quantify all metabolites of interest accurately. This screening outlined the great variety between the different fungi of the same species. The metabolite spectra of wild-type fungi included more toxic intermediates compared to a selected fungi used as a starter culture for blue-mold cheese production. In addition, these secondary metabolites were quantified in commercially available white- and blue-mold cheese samples. The main differences between the analyte profiles of white and blue cheeses were linked to the impact of the used starter culture. Specific metabolites detected from P. roqueforti like andrastin A and B or roquefortine C could not be detected in white cheese. Among the blue cheese samples, different metabolite pattern could be observed regarding various P. roqueforti starter cultures.
Collapse
Affiliation(s)
- Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Maximilian Dietz
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Julia Hirschmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich , Lise-Meitner-Strasse 34 , D-85354 Freising-Weihenstephan , Germany
| |
Collapse
|
21
|
Orban A, Fraatz MA, Rühl M. Aroma Profile Analyses of Filamentous Fungi Cultivated on Solid Substrates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 169:85-107. [PMID: 30828753 DOI: 10.1007/10_2019_87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filamentous fungi have been used since centuries in the production of food by means of solid substrate fermentation (SSF). The most applied SSF involving fungi is the cultivation of mushrooms, e.g., on tree stumps or sawdust, for human consumption. However, filamentous fungi are also key players during manufacturing of several processed foods, like mold cheese, tempeh, soy sauce, and sake. In addition to their nutritive values, these foods are widely consumed due to their pleasant flavors. Based on the potentials of filamentous fungi to grow on solid substrates and to produce valuable aroma compounds, in recent decades, several studies concentrated on the production of aroma compounds with SSF, turning cheap agricultural wastes into valuable flavors. In this review, we focus on the presentation of common analytical methods for volatile substances and highlight various applications of SSF of filamentous fungi dealing with the production of aroma compounds. Graphical Abstract.
Collapse
Affiliation(s)
- Axel Orban
- Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Giessen, Germany
| | - Marco A Fraatz
- Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Giessen, Germany
| | - Martin Rühl
- Justus Liebig University Giessen, Institute of Food Chemistry and Food Biotechnology, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group "Bioresources", Giessen, Germany.
| |
Collapse
|
22
|
Robert-Hazotte A, Schoumacker R, Semon E, Briand L, Guichard E, Le Quéré JL, Faure P, Heydel JM. Ex vivo real-time monitoring of volatile metabolites resulting from nasal odorant metabolism. Sci Rep 2019; 9:2492. [PMID: 30792537 PMCID: PMC6385289 DOI: 10.1038/s41598-019-39404-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/22/2019] [Indexed: 12/02/2022] Open
Abstract
Odorant-metabolizing enzymes are critically involved in the clearance of odorant molecules from the environment of the nasal neuro-olfactory tissue to maintain the sensitivity of olfactory detection. Odorant metabolism may also generate metabolites in situ, the characterization and function of which in olfaction remain largely unknown. Here, we engineered and validated an ex vivo method to measure odorant metabolism in real-time. Glassware containing an explant of rat olfactory mucosa was continuously flushed with an odorant flow and was coupled to a proton transfer reaction-mass spectrometer for volatile compound analysis. Focusing on carboxylic esters and diketone odorants, we recorded the metabolic uptake of odorants by the mucosa, concomitantly with the release of volatile odorant metabolites in the headspace. These results significantly change the picture of real-time in situ odorant metabolism and represent a new step forward in the investigation of the function of odorant metabolites in the peripheral olfactory process. Our method allows the systematic identification of odorant metabolites using a validated animal model and permits the screening of olfactory endogenously produced chemosensory molecules.
Collapse
Affiliation(s)
- Aline Robert-Hazotte
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Rachel Schoumacker
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Etienne Semon
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Elisabeth Guichard
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, 9 boulevard Jeanne d'Arc, F-21000, Dijon, France.
| |
Collapse
|
23
|
Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges. Front Pharmacol 2018; 9:288. [PMID: 29651243 PMCID: PMC5885497 DOI: 10.3389/fphar.2018.00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics, toxicological aspects, control and prevention strategies, and other management aspects of PR toxin with paying special attention on economic impacts with intended legislations for avoiding PR toxin contamination with respect to food security and other biosafety purposes.
Collapse
Affiliation(s)
- Manish K. Dubey
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Aamir
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish S. Kaushik
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saumya Khare
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mukesh Meena
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, Faculty of Science, Hamdard University, New Delhi, India
| | - Surendra Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
24
|
Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol 2018; 49:172-178. [DOI: 10.1016/j.copbio.2017.09.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
|