1
|
Yoon JH, Kim D, Joung H, Lee SY. The habituation to different concentrations of salt may variably influence the ability of Cronobacter sakazakii, Salmonella enterica serovar Enteritidis, Bacillus cereus, and Staphylococcus aureus to resist acid, bile salt, and heat stresses. Food Microbiol 2025; 128:104723. [PMID: 39952747 DOI: 10.1016/j.fm.2025.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
This study was to examine the relationship between preexposure to salt and stress-responsive resistance to acid, bile salt, and heat in Cronobacter sakazakii, Salmonella enterica serovar Enteritidis, Bacillus cereus, and Staphylococcus aureus. Stationary phase-grown cultures of C. sakazakii, S. Enteritidis, B. cereus or St. aureus were subjected to elevated concentrations of salt (maximally 14.0%), and the cells of each bacterium were allowed to grow at 37 °C for consecutive 6 d. The 6-d habituated cells were then subjected to acid (pH 2.0), 10% bile salt, and heat (60 °C) stresses. C. sakazakii, S. Enteritidis, and St. aureus were more sensitive to acid after the habituation process than their stationary phase-grown counterparts. Although the 0.5% salt-habituated cells of B. cereus better survived at a subsequent acid challenge than did the nonhabituated cells of this bacterium, there were no significant (p< 0.05) differences in the Gompertz-derived growth kinetics between salt-habituated and nonhabituated cultures. Similarly, C. sakazakii and S. Enteritidis cells preexposed to salt was far more heat-sensitive, whereas the preexposure of B. cereus and St. aureus to 0.5 and 8.0% salt, respectively, resulted in their increased survival against heat as compared with their nonhabituated control. Nevertheless, the resultant growth parameters revealed that salt has no clear inducive effect on the acquisition of resistance responses to heterogeneous stresses. Overall, the habituation to different concentrations of salt may variably influence the ability of C. sakazakii, S. Enteritidis, B. cereus, and St. aureus to resist acid, bile salt, and heat stresses.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Danbi Kim
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Hyunwoo Joung
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero 4726, Anseong-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Oteiza JM, Prado-Silva LD, Caturla MYR, Barril PA, Giannuzzi L, Sant'Ana AS. Variability in the acid adaptation of ten different O157:H7 and non-O157 Escherichia coli strains in orange juice and the impact on UV radiation resistance. Food Microbiol 2024; 124:104610. [PMID: 39244362 DOI: 10.1016/j.fm.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to assess the impact of adaptation of ten strains of O157:H7 and non-O157 Escherichia coli to low pH (acid shock or slow acidification) and the effects of this exposure or not on the resistance of E. coli strains to UV radiation in orange juice (pH 3.5). The acid-shocked cells were obtained through culture in tryptic soy broth (TSB) with a final pH of 4.8, which was adjusted by hydrochloric, lactic, or citric acid and subsequently inoculated in orange juice at 4 °C for 30 days. No significant differences (p > 0.05) in survival in orange juice were observed between the serotypes O157:H7 and non-O157:H7 for acid-shocked experiments. After slow acidification, where the cells were cultured in TSB supplemented with glucose 1% (TSB + G), a significant increase (p < 0.05) in survival was observed for all strains evaluated. The D-values (radiation dose (J/cm2) necessary to decrease the microbial population by 90%) were determined as the inverse of the slopes of the regressions (k) obtained by plotting log (N/N0). The results show that among the strains tested, E. coli O157:H7 (303/00) and O26:H11 were the most resistant and sensitive strains, respectively. According to our results, the method of acid adaptation contributes to increasing the UV resistance for most of the strains tested.
Collapse
Affiliation(s)
- Juan M Oteiza
- Laboratorio de Microbiología de Los Alimentos, Centro de Investigación y Asistencia Técnica a La Industria (CIATI A.C.), Centenario, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leonardo do Prado-Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Magdevis Y R Caturla
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Patricia A Barril
- Laboratorio de Microbiología de Los Alimentos, Centro de Investigación y Asistencia Técnica a La Industria (CIATI A.C.), Centenario, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leda Giannuzzi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT-La Plata, Facultad Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Little A, Mendonca A, Dickson J, Fortes-Da-Silva P, Boylston T, Lewis B, Coleman S, Thomas-Popo E. Acid Adaptation Enhances Tolerance of Escherichia coli O157:H7 to High Voltage Atmospheric Cold Plasma in Raw Pineapple Juice. Microorganisms 2024; 12:1131. [PMID: 38930513 PMCID: PMC11205674 DOI: 10.3390/microorganisms12061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1-7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.
Collapse
Affiliation(s)
- Allison Little
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| | - James Dickson
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Paulo Fortes-Da-Silva
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Terri Boylston
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Braden Lewis
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shannon Coleman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Emalie Thomas-Popo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
4
|
The role of PhoP/PhoQ system in regulating stress adaptation response in Escherichia coli O157:H7. Food Microbiol 2023; 112:104244. [PMID: 36906298 DOI: 10.1016/j.fm.2023.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The development of acid tolerance response (ATR) as a result of low pH in Escherichia coli O157:H7 (E. coli O157:H7) contaminating beef during processing is considered a major food safety concern. Thus, in order to explore the formation and molecular mechanisms of the tolerance response of E. coli O157:H7 in a simulated beef processing environment, the resistance of a wild-type (WT) strain and its corresponding ΔphoP mutant to acid, heat, and osmotic pressure was evaluated. Strains were pre-adapted under different conditions of pH (5.4 and 7.0), temperature (37 °C and 10 °C), and culture medium (meat extract and Luria-Bertani broth media). In addition, the expression of genes related to stress response and virulence was also investigated among WT and ΔphoP strains under the tested conditions. Pre-acid adaptation increased the resistance of E. coli O157:H7 to acid and heat treatment while resistance to osmotic pressure decreased. Moreover, acid adaptation in meat extract medium simulating slaughter environment increased ATR, whereas pre-adaptation at 10 °C reduced the ATR. Furthermore, it was shown that mildly acidic conditions (pH = 5.4) and the PhoP/PhoQ two-component system (TCS) acted synergistically to enhance acid and heat tolerance in E. coli O157:H7. Additionally, the expression of genes related to arginine and lysine metabolism, heat shock, and invasiveness was up-regulated, which revealed that the mechanism of acid resistance and cross-protection under mildly acidic conditions was mediated by the PhoP/PhoQ TCS. Both acid adaptation and phoP gene knockout reduced the relative expression of stx1 and stx2 genes which were considered as critical pathogenic factors. Collectively, the current findings indicated that ATR could occur in E. coli O157:H7 during beef processing. Thus, there is an increased food safety risk due to the persistence of tolerance response in the following processing conditions. The present study provides a more comprehensive basis for the effective application of hurdle technology in beef processing.
Collapse
|
5
|
He S, Fong K, Shi C, Shi X. Proteomic and mutagenic analyses for cross-protective mechanisms on ethanol adaptation to freezing stress in Salmonella Enteritidis. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhao N, Xu J, Jiao L, Liu M, Zhang T, Li J, Wei X, Fan M. Acid adaptive response of Alicyclobacillus acidoterrestris: A strategy to survive lethal heat and acid stresses. Food Res Int 2022; 157:111364. [DOI: 10.1016/j.foodres.2022.111364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
7
|
Liu Y, Zhang Y, Zhu L, Niu L, Luo X, Dong P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol 2022; 104:103977. [DOI: 10.1016/j.fm.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
|
8
|
Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiol 2022; 103:103948. [DOI: 10.1016/j.fm.2021.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
|
9
|
Kim DW, Hong H, Kim JK. Systematic inference identifies a major source of heterogeneity in cell signaling dynamics: The rate-limiting step number. SCIENCE ADVANCES 2022; 8:eabl4598. [PMID: 35302852 PMCID: PMC8932658 DOI: 10.1126/sciadv.abl4598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Identifying the sources of cell-to-cell variability in signaling dynamics is essential to understand drug response variability and develop effective therapeutics. However, it is challenging because not all signaling intermediate reactions can be experimentally measured simultaneously. This can be overcome by replacing them with a single random time delay, but the resulting process is non-Markovian, making it difficult to infer cell-to-cell heterogeneity in reaction rates and time delays. To address this, we developed an efficient and scalable moment-based Bayesian inference method (MBI) with a user-friendly computational package that infers cell-to-cell heterogeneity in the non-Markovian signaling process. We applied MBI to single-cell expression profiles from promoters responding to antibiotics and discovered a major source of cell-to-cell variability in antibiotic stress response: the number of rate-limiting steps in signaling cascades. This knowledge can help identify effective therapies that destroy all pathogenic or cancer cells, and the approach can be applied to precision medicine.
Collapse
Affiliation(s)
- Dae Wook Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyukpyo Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
10
|
Oteiza JM, Caturla MY, Prado-Silva LD, Câmara AA, Barril PA, Sant’Ana AS, Giannuzzi L, Zaritzky N. Adaptation of O157:H7 and non-O157 Escherichia coli strains in orange juice and subsequent resistance to UV-C radiation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Lactic Acid Bacteria Antagonism of Acid-tolerant and Antibiotic-resistant Non-staphylococcal Pathogenic Species Isolated from a Fermented Cereal Beverage using Baird-Parker Agar. NUTRITION AND FOOD SCIENCES RESEARCH 2022. [DOI: 10.52547/nfsr.9.1.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Wang X, Tian S, Wu Y, Li H, Bai LI, Liu H, Zhang X, Dong Q. Strain Variability in Growth and Thermal Inactivation Characteristics of Listeria monocytogenes Strains after Acid Adaptation. J Food Prot 2021; 84:2229-2236. [PMID: 34197590 DOI: 10.4315/jfp-20-387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Given the importance of strain variability to predictive microbiology and risk assessment, this study aimed to quantify the magnitude of strain variability in growth and thermal inactivation kinetics behaviors after acid adaptation. Thirty-three Listeria monocytogenes strains were exposed to acid-adapted tryptic soy broth supplemented with yeast extract (TSBYE; pH 5.5) and non-acid-adapted TSBYE (pH 7.0) for 20 h. Next, the growth parameters of these adapted and nonadapted strains that grew in nonbuffered TSBYE at 25°C were estimated. The tested strains were inactivated at 60°C in nonbuffered broth to obtain the heat resistance parameters. The results revealed that strain variability was present in the growth and thermal inactivation characteristics. The maximum specific growth rate ranged from 0.21 to 0.44 h-1 and from 0.20 to 0.45 h-1 after acid and nonacid adaptation, respectively. The lag times were from 0.69 to 2.56 h and from 0.24 to 3.36 h for acid-adapted and non-acid-adapted cells, respectively. The apparent D-values at 60°C of the pathogen ranged between 0.56 and 3.93 min and between 0.52 and 3.63 min for the presence and absence of acid adaptation condition, respectively. Acid adaptation significantly (P < 0.05) increased the magnitude of strain variability in the thermal inactivation characteristics of L. monocytogenes, with the coefficient of variation increasing to 0.17, whereas acid adaptation did not significantly (P ≥ 0.05) influence the variabilities in the growth parameters of the tested strains. Furthermore, the subsequent growth behaviors of all strains did not exhibit significant (P > 0.05) changes after exposure to acidic broth. However, the thermal resistance of most (25 of 33) of the tested strains increased (P < 0.05) after growing in acid-adapted broth. The relevant data generated in the present study can be used to describe the strain variability in predictive microbiology and to deeply understand the behavioral responses of different strains to acid adaptation. HIGHLIGHTS
Collapse
Affiliation(s)
- Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Shihong Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yufan Wu
- Technology Center of Zhangjiagang Customs, Jiangsu 310012, People's Republic of China
| | - Hongmei Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - L I Bai
- China National Center for Food Safety Risk Assessment, Beijing 100021, People's Republic of China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, People's Republic of China
| | - Xibin Zhang
- New Hope Liuhe Co., Ltd., Beijing 100102, People's Republic of China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
13
|
Clemente-Carazo M, Leal JJ, Huertas JP, Garre A, Palop A, Periago PM. The Different Response to an Acid Shock of Two Salmonella Strains Marks Their Resistance to Thermal Treatments. Front Microbiol 2021; 12:691248. [PMID: 34616373 PMCID: PMC8488367 DOI: 10.3389/fmicb.2021.691248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial cells respond to sub-lethal stresses with several physiological changes to increase their chance of survival. These changes are of high relevance when combined treatments (hurdle technology) are applied during food production, as the cells surviving the first hurdle may have greater resistance to subsequent treatments than untreated cells. In this study, we analyzed if Salmonella develops increased resistance to thermal treatments after the application of an acid shock. We compared the heat resistance of acid-shocked (pH 4.5 achieved with citric acid) Salmonella cells with that of cells maintained at pH 7 (control cells). Thermal treatments were performed between 57.5 and 65°C. We observed a differential response between the two strains studied. Acid-shocked cells of Salmonella Senftenberg exhibited reduced heat resistance, e.g., for a treatment at 60.0°C and pH 7.0 the time required to reduce the population by 3 log cycles was lowered from 10.75 to 1.98min with respect to control cells. Salmonella Enteritidis showed a different response, with acid-shocked cells having similar resistance than untreated cells (the time required to reduce 3 log cycles at 60.0°C and pH 7.0 was 0.30min for control and 0.31min for acid-shock cells). Based on results by differential plating (with or without adding the maximum non-inhibitory concentration of NaCl to the recovery medium), we hypothesize that the differential response between strains can be associated to sub-lethal damage to the cell membrane of S. Senftenberg caused by the acid shock. These results provide evidence that different strains of the same species can respond differently to an acid shock and highlight the relevance of cross-resistances for microbial risk assessment.
Collapse
Affiliation(s)
- Marta Clemente-Carazo
- Departamento Ingeniería Agronómica, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Instituto de Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - José-Juan Leal
- Departamento Ingeniería Agronómica, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Instituto de Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan-Pablo Huertas
- Departamento Ingeniería Agronómica, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Instituto de Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Alberto Garre
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfredo Palop
- Departamento Ingeniería Agronómica, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Instituto de Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Paula M Periago
- Departamento Ingeniería Agronómica, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Instituto de Biotecnología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
14
|
Cao Y, Li L, Zhang Y, Liu F, Xiao X, Li X, Yu Y. SdiA plays a crucial role in stress tolerance of C. sakazakii CICC 21544. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Wu RA, Yuk HG, Liu D, Ding T. Recent advances in understanding the effect of acid-adaptation on the cross-protection to food-related stress of common foodborne pathogens. Crit Rev Food Sci Nutr 2021; 62:7336-7353. [PMID: 33905268 DOI: 10.1080/10408398.2021.1913570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acid stress is one of the most common stresses that foodborne pathogens encounter. It could occur naturally in foods as a by-product of anaerobic respiration (fermentation), or with the addition of acids. However, foodborne pathogens have managed to survive to acid conditions and consequently develop cross-protection to subsequent stresses, challenging the efficacy of hurdle technologies. Here, we cover the studies describing the cross-protection response following acid-adaptation, and the possible molecular mechanisms for cross-protection. The current and future prospective of this research topic with the knowledge gaps in the literature are also discussed. Exposure to acid conditions (pH 3.5 - 5.5) could induce cross-protection for foodborne pathogens against subsequent stress or multiple stresses such as heat, cold, osmosis, antibiotic, disinfectant, and non-thermal technology. So far, the known molecular mechanisms that might be involved in cross-protection include sigma factors, glutamate decarboxylase (GAD) system, protection or repair of molecules, and alteration of cell membrane. Cross-protection could pose a serious threat to food safety, as many hurdle technologies are believed to be effective in controlling foodborne pathogens. Thus, the exact mechanisms underlying cross-protection in a diversity of bacterial species, stress conditions, and food matrixes should be further studied to reduce potential food safety risks. HighlightsFoodborne pathogens have managed to survive to acid stress, which may provide protection to subsequent stresses, known as cross-protection.Acid-stress may induce cross-protection to many stresses such as heat, cold, osmotic, antibiotic, disinfectant, and non-thermal technology stress.At the molecular level, foodborne pathogens use different cross-protection mechanisms, which may correlate with each other.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Yang H, Zhang L, Li J, Jin Y, Zou J, Huang J, Zhou R, Huang M, Wu C. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res Int 2021; 140:110005. [PMID: 33648238 DOI: 10.1016/j.foodres.2020.110005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
Cross protection is a widely existed phenomenon in microorganisms which subjected to a mild stress develop tolerance to other stresses, yet the underlying mechanisms for this protection have not been fully elucidated. Here, we report that heat preadaptation induced cross protection against acid stress in Tetragenococcus halophilus, and the cross protective mechanisms were revealed based on cell surface characterizations and transcriptomic analysis. The results showed that heat preadaptation of T. halophilus at 45 °C for 1.5 h improved the acid tolerance of cells at pH 2.5, and the preadapted cells exhibited higher pHi compared with the un-preadapted cells during acid stress. Analysis of the cell surface properties suggested that the heat-treated cells displayed smoother surface, lower roughness and higher integrity than those of untreated cells. Meanwhile, the distributions of membrane fatty acids also changed in response to acid stress, and the treated cells reveled lower ratio of unsaturated to saturated fatty acids. RNA-Sequencing was employed to further elucidate the cross protective mechanism induced by heat preadaptation, and the results showed that the differentially expressed genes (DGEs) were mainly involved in cellular metabolism and membrane transport during heat preadaptation. A detailed analysis of gene expression profile of cells between heat treated and untreated revealed that genes associated with energy metabolism, amino acid metabolism and genetic information processing were induced upon heat stress. Results presented in this study may broaden our understanding on cross protection and provide a potential strategy to enhance the performance of cells during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liang Zhang
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Jinsong Li
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
High-pressure and thermal-assisted pasteurization of habituated, wild-type, and pressure-stressed Listeria monocytogenes, Listeria innocua, and Staphylococcus aureus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol 2020; 94:103657. [PMID: 33279082 DOI: 10.1016/j.fm.2020.103657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
Alicyclobacillus acidoterrestris has unique thermo-acidophilic properties and is the main cause of fruit juice deterioration. Given the acidic environment and thermal treatment during juice processing, the effects of acid adaptation (pH 3.5, 3.2, and 3.0) on the resistance of A. acidoterrestris to heat (65 °C, 5 min) and acid (pH = 2.2, 1 h) stresses were investigated for the first time. The results showed that acid adaptation induced cross-protection against heat stress of A. acidoterrestris and acid tolerance response, and the extent of induced tolerance was increased with the decrease of adaptive pH values. Acid adaptation treatments did not disrupt the membrane potential stability and intracellular pH homeostasis, but reduced intracellular ATP concentration, increased cyclic fatty acids content, and changed the acquired Fourier transform infrared spectra. Transcription levels of stress-inducible (dnaK, grpE, clpP, ctsR) genes and genes related to spore formation (spo0A, ctoX) were up-regulated after acid adaptation, and spore formation was observed by scanning electron microscopy. This study revealed that the intracellular microenvironment homeostasis, expression of chaperones and proteases, and spore formation played a coordinated role in acid stress adaptive responses, with implications for applications in fruit juice processing.
Collapse
|
19
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
20
|
Resistance of biofilm formation and formed-biofilm of Escherichia coli O157:H7 exposed to acid stress. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Byakika S, Mukisa IM, Mugabi R, Muyanja C. Antimicrobial Activity of Lactic Acid Bacteria Starters against Acid Tolerant, Antibiotic Resistant, and Potentially Virulent E. coli Isolated from a Fermented Sorghum-Millet Beverage. Int J Microbiol 2019; 2019:2013539. [PMID: 31933646 PMCID: PMC6942839 DOI: 10.1155/2019/2013539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial contamination of fermented foods is a serious global food safety challenge that requires effective control strategies. This study characterized presumptive E. coli isolated from Obushera, a traditional fermented cereal beverage from Uganda. Thereafter, the antimicrobial effect of lactic acid bacteria (LAB) previously isolated from Obushera, against the E. coli, was examined. The presumptive E. coli was incubated in brain heart infusion broth (pH = 3.6) at 25°C for 48 h. The most acid-stable strains were clustered using (GTG)5 rep-PCR fingerprinting and identified using 16S rRNA sequencing. E. coli was screened for Shiga toxins (Stx 1 and Stx 2) and Intimin (eae) virulence genes as well as antibiotic resistance. The spot-on-the-lawn method was used to evaluate antimicrobial activity. Eighteen isolates were acid stable and are identified as E. coli, Shigella, and Lysinibacillus. The Stx 2 gene and antibiotic resistance were detected in some E. coli isolates. The LAB were antagonistic against the E. coli. Lactic acid bacteria from traditional fermented foods can be applied in food processing to inhibit pathogens. Obushera lactic acid bacteria could be used to improve the safety of fermented foods.
Collapse
Affiliation(s)
- Stellah Byakika
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Ivan Muzira Mukisa
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robert Mugabi
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Charles Muyanja
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
22
|
Evaluation of adaptive response in E. coli O157:H7 to UV light and gallic acid based antimicrobial treatments. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Topalcengiz Z. Assessment of recommended thermal inactivation parameters for fruit juices. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Harrand AS, Kovac J, Carroll LM, Guariglia-Oropeza V, Kent DJ, Wiedmann M. Assembly and Characterization of a Pathogen Strain Collection for Produce Safety Applications: Pre-growth Conditions Have a Larger Effect on Peroxyacetic Acid Tolerance Than Strain Diversity. Front Microbiol 2019; 10:1223. [PMID: 31231329 PMCID: PMC6558390 DOI: 10.3389/fmicb.2019.01223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Effective control of foodborne pathogens on produce requires science-based validation of interventions and control strategies, which typically involves challenge studies with a set of bacterial strains representing the target pathogens or appropriate surrogates. In order to facilitate these types of studies, a produce-relevant strain collection was assembled to represent strains from produce outbreaks or pre-harvest environments, including Listeria monocytogenes (n = 11), Salmonella enterica (n = 23), shiga-toxin producing Escherichia coli (STEC) (n = 13), and possible surrogate organisms (n = 8); all strains were characterized by whole genome sequencing (WGS). Strain diversity was assured by including the 10 most common S. enterica serotypes, L. monocytogenes lineages I-IV, and E. coli O157 as well as selected "non-O157" STEC serotypes. As it has previously been shown that strains and genetic lineages of a pathogen may differ in their ability to survive different stress conditions, a subset of representative strains for each "pathogen group" (e.g., Salmonella, STEC) was selected and assessed for survival of exposure to peroxyacetic acid (PAA) using strains pre-grown under different conditions including (i) low pH, (ii) high salt, (iii) reduced water activity, (iv) different growth phases, (v) minimal medium, and (vi) different temperatures (21°C, 37°C). The results showed that across the three pathogen groups pre-growth conditions had a larger effect on bacterial reduction after PAA exposure as compared to strain diversity. Interestingly, bacteria exposed to salt stress (4.5% NaCl) consistently showed the least reduction after exposure to PAA; however, for STEC, strains pre-grown at 21°C were as tolerant to PAA exposure as strains pre-grown under salt stress. Overall, our data suggests that challenge studies conducted with multi-strain cocktails (pre-grown under a single specific condition) may not necessarily reflect the relevant phenotypic range needed to appropriately assess different intervention strategies.
Collapse
Affiliation(s)
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | - David J. Kent
- Department of Statistical Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Kabir MN, Aras S, Allison A, Adhikari J, Chowdhury S, Fouladkhah A. Interactions of Carvacrol, Caprylic Acid, Habituation, and Mild Heat for Pressure-Based Inactivation of O157 and Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Acidic Environment. Microorganisms 2019; 7:microorganisms7050145. [PMID: 31126074 PMCID: PMC6560415 DOI: 10.3390/microorganisms7050145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
The current study investigated synergism of elevated hydrostatic pressure, habituation, mild heat, and antimicrobials for inactivation of O157 and non-O157 serogroups of Shiga toxin-producing Escherichia coli. Various times at a pressure intensity level of 450 MPa were investigated at 4 and 45 °C with and without carvacrol, and caprylic acid before and after three-day aerobic habituation in blueberry juice. Experiments were conducted in three biologically independent repetitions each consist of two replications and were statistically analyzed as a randomized complete block design study using ANOVA followed by Tukey- and Dunnett’s-adjusted mean separations. Under the condition of this experiment, habituation of the microbial pathogen played an influential (p < 0.05) role on inactivation rate of the pathogen. As an example, O157 and non-O157 serogroups were reduced (p < 0.05) by 1.4 and 1.6 Log CFU/mL after a 450 MPa treatment at 4 °C for seven min, respectively, before habituation. The corresponding log reductions (p < 0.05) after three-day aerobic habituation were: 2.6, and 3.3, respectively at 4 °C. Carvacrol and caprylic acid addition both augmented the pressure-based decontamination efficacy. As an example, Escherichia coli O157 were reduced (p < 0.05) by 2.6 and 4.2 log CFU/mL after a seven-min treatment at 450 MPa without, and with presence of 0.5% carvacrol, respectively, at 4 °C.
Collapse
Affiliation(s)
- Md Niamul Kabir
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Sadiye Aras
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Abimbola Allison
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Jayashan Adhikari
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
| | - Aliyar Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA.
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
26
|
Pesciaroli M, Chardon JE, Evers EG. Modelling of inactivation through heating for quantitative microbiological risk assessment (QMRA). EFSA J 2018; 16:e16089. [PMID: 32626060 PMCID: PMC7015491 DOI: 10.2903/j.efsa.2018.e16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
EFSA regards the household as a stage in the food chain that is important for the final number of food‐borne infections. The fate of a pathogen in the private kitchen largely depends on consumer hygiene during preparation of food and on its proper cooking, especially in the case of meat. Unfortunately, detailed information on the microbiological survival in meat products after heating in the consumer kitchen is lacking. The aim of the study was to improve the estimation of the inactivating effect on pathogens by heating meat or a meat product by the consumer in the kitchen. On that account, artificially contaminated meat and meat products were cooked according to several degrees of doneness and simulating real world conditions, and bacterial survival was measured. Heat camera pictures and button temperature loggers inserted into the food matrix served to record time and the temperature of heating. Temperature, time and the microbial survival ratio observed served to inform a mathematical model able to explain the thermal inactivation of meat or a meat product in home settings. The results of the study would help to improve microbiological comparative exposure assessments of pathogens in food, as an attribution tool and as a supportive tool for risk‐based sampling in monitoring and surveillance.
Collapse
|
27
|
Horn N, Bhunia AK. Food-Associated Stress Primes Foodborne Pathogens for the Gastrointestinal Phase of Infection. Front Microbiol 2018; 9:1962. [PMID: 30190712 PMCID: PMC6115488 DOI: 10.3389/fmicb.2018.01962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of foodborne outbreaks and product recalls is on the rise. The ability of the pathogen to adapt and survive under stressful environments of food processing and the host gastrointestinal tract may contribute to increasing foodborne illnesses. In the host, multiple factors such as bacteriolytic enzymes, acidic pH, bile, resident microflora, antimicrobial peptides, and innate and adaptive immune responses are essential in eliminating pathogens. Likewise, food processing and preservation techniques are employed to eliminate or reduce human pathogens load in food. However, sub-lethal processing or preservation treatments may evoke bacterial coping mechanisms that alter gene expression, specifically and broadly, resulting in resistance to the bactericidal insults. Furthermore, environmentally cued changes in gene expression can lead to changes in bacterial adhesion, colonization, invasion, and toxin production that contribute to pathogen virulence. The shared microenvironment between the food preservation techniques and the host gastrointestinal tract drives microbes to adapt to the stressful environment, resulting in enhanced virulence and infectivity during a foodborne illness episode.
Collapse
Affiliation(s)
- Nathan Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Towards transparent and consistent exchange of knowledge for improved microbiological food safety. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|