1
|
Dogruyol H. Thermal survival patterns of Staphylococcus aureus in sous vide seabream treated with quince leaf extract. Int J Food Microbiol 2025; 429:111024. [PMID: 39689570 DOI: 10.1016/j.ijfoodmicro.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Staphylococcus aureus is a major cause of gastroenteritis, commonly associated with the consumption of food contaminated at any stage of the food supply chain. Sous vide seafood has the potential to be a vehicle for the spread of S. aureus and enterotoxins due to low temperature cooking. This study aimed to investigate the antimicrobial activity of quince leaf extracts and the impact on the survival of S. aureus during sous vide process at frequently utilized temperatures. The results of the disk diffusion assay demonstrated the antibacterial efficiencies of extracts obtained using ethanol and methanol, with inhibition zone diameters of 9.8 and 11.2 mm, respectively. In contrast, aqueous extract had no effect on the bacteria. Since methanolic extract was the most effective one, phenolic profile was analyzed. Quercetin-3-O-rutinoside was the major compound (43.0 %) followed by 3-O-caffeoylquinic acid (21.8 %). Quince leaf methanolic extract (QM) was added to seabream to examine the thermal inactivation kinetics of S. aureus. The D values of QM-treated group ranged from 9.80 and 0.39 min, while those of the untreated samples varied between 11.36 and 0.51 min at 56-62 °C. The addition of QM to sous vide seabream significantly reduced the time needed to inactivate S. aureus. The z values of S. aureus in QM and untreated groups were 4.19 and 4.32 °C, respectively. Beneficial results could be achieved by adding quince extracts thereby; reducing S. aureus in sous vide fish and enhancing food safety. Developing efficient thermal processing techniques and combining additional hurdles are promising strategies for accomplishing pathogen inhibition.
Collapse
Affiliation(s)
- Hande Dogruyol
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Division of Food Safety, Türkiye.
| |
Collapse
|
2
|
Kang SY, Cho ER, Kang DH. Inactivation of foodborne pathogens in ground pork tenderloin using 915 MHz microwave heating depending on power level. Food Res Int 2023; 173:113231. [PMID: 37803544 DOI: 10.1016/j.foodres.2023.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
The main purpose of this research was to investigate the effect of power level of 915 MHz microwave heating on the inactivation of foodborne pathogens in ground pork and its bactericidal mechanism. It was demonstrated that the heating rate was proportional to the power level. For instance, the heating rates observed at microwave heating powers of 2, 3, 4, and 5 kW were 1.70, 2.77, 3.35, and 4.03℃/s, respectively. The bactericidal effect of microwave heating also significantly (P < 0.05) increased with increasing power level. In particular, when ground pork was subjected to microwave heating at 5 kW, the reduction level of pathogens was>2 log units higher than at 2 kW. To determine the bactericidal mechanism of microwave heating depending on power level, changes in transmembrane potential and DNA damage were determined using fluorescence. The extent of depolarization in membrane potential of pathogens significantly (P < 0.05) increased as power level increased. There was no significant difference in degree of DNA damage at different power levels. However, the percentage of DNA damage was>86% at all power levels. The transmembrane potential assay indicates that the bacteria exhibited dramatic pore formation on the membrane at 5 kW. Through transmission electron microscopy, the electroporation effect was enhanced as power level increased. Moreover, the quality of ground pork subjected to microwave heating at 2-5 kW was determined by measuring the moisture content, cooking loss, and texture profile.
Collapse
Affiliation(s)
- Su-Yeon Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Eun-Rae Cho
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon do 25354, Republic of Korea.
| |
Collapse
|
3
|
Hassan H, Iskandar CF, Hamzeh R, Malek NJ, El Khoury A, Abiad MG. Heat resistance of Staphylococcus aureus, Salmonella sp., and Escherichia coli isolated from frequently consumed foods in the Lebanese market. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hussein Hassan
- Nutrition Program, Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Christelle F. Iskandar
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Reem Hamzeh
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Nathalie J. Malek
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Andre El Khoury
- Centre d’Analyses Et de Recherche (CAR), Unité de Recherche Technologies Et Valorisation agro-Alimentaire (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Zhou D, Yang G, Tian Y, Kang J, Wang S. Different effects of radio frequency and heat block treatments on multi-scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Han A, Paek J, Lee SY. Thermal resistance of Escherichia coli O157:H7 in laboratory media, milk, and beef extracts during non-isothermal processing at various heating rates. Food Microbiol 2022; 110:104187. [DOI: 10.1016/j.fm.2022.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
6
|
Wang H, Shen J, Ma K, Zhu C, Fang M, Hou X, Zhang S, Wang W, Xue T. Transcriptome analysis revealed the role of capsular polysaccharides in desiccation tolerance of foodborne Staphylococcus aureus. Food Res Int 2022; 159:111602. [DOI: 10.1016/j.foodres.2022.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
7
|
Decontamination Efficiency of Thermal, Photothermal, Microwave, and Steam Treatments for Biocontaminated Household Textiles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123667. [PMID: 35744790 PMCID: PMC9228198 DOI: 10.3390/molecules27123667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
With the outbreak of the COVID-19 pandemic, textile laundering hygiene has proved to be a fundamental measure in preventing the spread of infections. The first part of our study evaluated the decontamination efficiency of various treatments (thermal, photothermal, and microwave) for bio contaminated textiles. The effects on textile decontamination of adding saturated steam into the drum of a household textile laundering machine were investigated and evaluated in the second part of our study. The results show that the thermal treatment, conducted in a convection heating chamber, provided a slight reduction in efficiency and did not ensure the complete inactivation of Staphylococcus aureus on cotton swatches. The photothermal treatment showed higher reduction efficiency on contaminated textile samples, while the microwave treatment (at 460 W for a period of 60 s) of bio contaminated cotton swatches containing higher moisture content provided satisfactory bacterial reduction efficiency (more than 7 log steps). Additionally, the treatment of textiles in the household washing machine with the injection of saturated steam into the washing drum and a mild agitation rhythm provided at least a 7 log step reduction in S. aureus. The photothermal treatment of bio contaminated cotton textiles showed promising reduction efficiency, while the microwave treatment and the treatment with saturated steam proved to be the most effective.
Collapse
|
8
|
Gao Y, Guan X, Wan A, Cui Y, Kou X, Li R, Wang S. Thermal Inactivation Kinetics and Radio Frequency Control of Aspergillus in Almond Kernels. Foods 2022; 11:foods11111603. [PMID: 35681353 PMCID: PMC9180863 DOI: 10.3390/foods11111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Mold infections in almonds are a safety issue during post-harvest, storage and consumption, leading to health problems for consumers and causing economic losses. The aim of this study was to isolate mold from infected almond kernels and identify it by whole genome sequence (WGS). Then, the more heat resistant mold was selected and the thermal inactivation kinetics of this mold influenced by temperature and water activity (aw) was developed. Hot air-assisted radio frequency (RF) heating was used to validate pasteurization efficacy based on the thermal inactivation kinetics of this target mold. The results showed that the two types of molds were Penicillium and Aspergillus identified by WGS. The selected Aspergillus had higher heat resistance than the Penicillium in the almond kernels. Inactivation data for the target Aspergillus fitted the Weibull model better than the first-order kinetic model. The population changes of the target Aspergillus under the given conditions could be predicted from Mafart’s modified Bigelow model. The RF treatment was effectively used for inactivating Aspergillus in almond kernels based on Mafart’s modified Bigelow model and the cumulative lethal time model.
Collapse
Affiliation(s)
- Yu Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Ailin Wan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Yuan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| |
Collapse
|
9
|
Recent development in low-moisture foods: Microbial safety and thermal process. Food Res Int 2022; 155:111072. [DOI: 10.1016/j.foodres.2022.111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
|
10
|
Lin B, Guan X, Huang Z, Wang P, Jiang H, Xu R, Jiao Q, Li R, Wang S. Improvement of radio frequency heating uniformity in wheat kernels with aluminum foil sheets covered on rectangular container walls. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Guan X, Lin B, Xu Y, Yang G, Xu J, Zhang S, Li R, Wang S. Recent developments in pasteurising seeds and their products using radio frequency heating: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiangyu Guan
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Biying Lin
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shuang Zhang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| | - Rui Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| |
Collapse
|
12
|
Xu J, Yang G, Li R, Xu Y, Lin B, Wang S. Effects of radio frequency heating on microbial populations and physicochemical properties of buckwheat. Int J Food Microbiol 2021; 363:109500. [PMID: 34952411 DOI: 10.1016/j.ijfoodmicro.2021.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Microbial contamination is a persistent problem for grain industry. Many studies have shown that radio frequency (RF) heating can effectively reduce pathogens populations in low moisture foods, but there is a lack on the efficacy to decontaminate natural microbiome. The main objectives of this study were to investigate the effects of different RF heating conditions on natural microbial populations and physicochemical properties of buckwheat. In this study, 30 buckwheat samples collected from 10 different Provinces in China were analyzed for their microbial loads, and the samples with the highest microbial populations were used for further study to select the suitable RF heating conditions. The results showed that microbial loads in tested buckwheat kernels were in the range of 3.4-6.2 log CFU/g. Samples from Shanxi (SX-3) had significantly higher microbial counts than other samples. The selected four temperature-time combinations: 75 °C-20 min, 80 °C-10 min, 85 °C-5 min, and 90 °C-0 min of RF heating could reduce microbial counts to <3.0 log CFU/g in buckwheat kernels at 16.5% w.b. moisture content. Furthermore, the reduction populations of the inoculated pathogens (Salmonella Typhimurium, Escherichia coli, Cronobacter sakazakii, and Bacillus cereus) reached 4.0 log CFU/g under the above conditions, and almost 5.0 log CFU/g especially at high temperature-short holding time combinations (85 °C-5 min and 90 °C-0 min). Besides, physicochemical properties evaluation also showed the insignificant color changes and nutrients loss after RF treatment at 90 °C-0 min. Therefore, the RF heating at 90 °C-0 min holds greater potential than the other lower temperature-longer holding time combinations for applications in buckwheat pasteurization.
Collapse
Affiliation(s)
- Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Biying Lin
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA.
| |
Collapse
|
13
|
Challenges of dry hazelnut shell surface for radio frequency pasteurization of inshell hazelnuts. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Cheng T, Tang J, Yang R, Xie Y, Chen L, Wang S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Lau SK, Wei X, Kirezi N, Panth R, See A, Subbiah J. A Comparison of Three Methods for Determining Thermal Inactivation Kinetics: A Case Study on Salmonella enterica in Whole Milk Powder. J Food Prot 2021; 84:521-530. [PMID: 33159446 DOI: 10.4315/jfp-20-232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Different methods for determining the thermal inactivation kinetics of microorganisms can result in discrepancies in thermal resistance values. In this study, thermal resistance of Salmonella in whole milk powder was determined with three methods: thermal death time (TDT) disk in water bath, pouches in water bath, and the TDT Sandwich system. Samples from three production lots of whole milk powder were inoculated with a five-strain Salmonella cocktail and equilibrated to a water activity of 0.20. The samples were then subjected to three isothermal treatments at 75, 80, or 85°C. Samples were removed at six time points and cultures were enumerated for survivors. The inactivation data were fitted to two consolidated models: two primary models (log linear and Weibull) and one secondary model (Bigelow). Normality testing indicated that all the model parameters were normally distributed. None of the model parameters for both consolidated models were significantly different (α = 0.05). The amount of inactivation during the come-up time was also not significantly different among the methods (α = 0.05). However, the TDT Sandwich resulted in less inactivation during the come-up time and overall less variation in model parameters. The survivor data from all three methods were combined and fitted to both consolidated models. The Weibull had a lower root mean square error and a better fit, according to the corrected Akaike's information criterion. The three thermal treatment methods produced results that were not significantly different; thus, the methods are interchangeable, at least for Salmonella in whole milk powder. Comparisons with more methods, other microorganisms, and larger varieties of food products using the same framework presented in this study could provide guidance for standardizing thermal inactivation kinetics studies for microorganisms in foods. HIGHLIGHTS
Collapse
Affiliation(s)
- Soon Kiat Lau
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.]).,Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Xinyao Wei
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.])
| | - Nina Kirezi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.])
| | - Rajendra Panth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.])
| | - Arena See
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.])
| | - Jeyamkondan Subbiah
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (ORCID: https://orcid.org/0000-0001-8264-7761 [S.K.L.]; https://orcid.org/0000-0002-1746-2653 [X.W.]; https://orcid.org/0000-0002-8512-0735 [J.S.]).,Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68583.,Department of Food Science, University of Arkansas, System Division of Agriculture, Fayetteville, Arkansas 72704, USA
| |
Collapse
|
17
|
Lin B, Zhu Y, Zhang L, Xu R, Guan X, Kou X, Wang S. Effect of Physical Structures of Food Matrices on Heat Resistance of Enterococcus faecium NRRL-2356 in Wheat Kernels, Flour and Dough. Foods 2020; 9:foods9121890. [PMID: 33352900 PMCID: PMC7765854 DOI: 10.3390/foods9121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonpathogenic surrogate microorganisms, with a similar or slightly higher thermal resistance of the target pathogens, are usually recommended for validating practical pasteurization processes. The aim of this study was to explore a surrogate microorganism in wheat products by comparing the thermal resistance of three common bacteria in wheat kernels and flour. The most heat-resistant Enterococcus faecium NRRL-2356 rather than Salmonella cocktail and Escherichia coli ATCC 25922 was determined when heating at different temperature-time combinations at a fixed heating rate of 5 °C/min in a heating block system. The most heat-resistant pathogen was selected to investigate the influences of physical structures of food matrices. The results indicated that the heat resistance of E. faecium was influenced by physical structures of food matrices and reduced at wheat kernel structural conditions. The inactivation of E. faecium was better fitted in the Weibull distribution model for wheat dough structural conditions while in first-order kinetics for wheat kernel and flour structural conditions due to the changes of physical structures during heating. A better pasteurization effect could be achieved in wheat kernel structure in this study, which may provide technical support for thermal inactivation of pathogens in wheat-based food processing.
Collapse
Affiliation(s)
- Biying Lin
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Ruzhen Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: ; Tel.: +86-29-87092391; Fax: +86-29-87091737
| |
Collapse
|
18
|
Lau SK, Subbiah J. TDT Sandwich: An open source dry heat system for characterizing the thermal resistance of microorganisms. HARDWAREX 2020; 8:e00114. [PMID: 35498246 PMCID: PMC9041244 DOI: 10.1016/j.ohx.2020.e00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 06/04/2020] [Indexed: 06/14/2023]
Abstract
The determination of the thermal death kinetics of microorganisms has traditionally been performed with liquid baths which have some disadvantages such as liquid spillage and liquid infiltration into samples. The TDT Sandwich was developed as a free, open source alternative that utilizes dry heat. The system is capable of heating samples up to 140 °C and maintaining it within 0.2 °C of the target temperature. Other features of the TDT Sandwich include adjustable heating rates up to approximately 100 °C/min, real-time display and recording of temperature readings at a nominal rate of 5 Hz, an optional thermocouple for acquiring temperature of samples, built-in heating timer, and customizable operating parameters. The modular nature of the TDT Sandwich allows multiple units to be connected to a computer or laptop. Operation of the TDT Sandwich is done through a computer program which, along with the build instructions and microcontroller program, are open source and are available for free to the public at https://doi.org/10.17605/OSF.IO/5Q3Y7.
Collapse
Affiliation(s)
- Soon Kiat Lau
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeyamkondan Subbiah
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
19
|
Zhang L, Lan R, Zhang B, Erdogdu F, Wang S. A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Crit Rev Food Sci Nutr 2020; 61:380-394. [PMID: 32156148 DOI: 10.1080/10408398.2020.1733929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent pathogen incidents have forced food industry to seek for alternative processes in postharvest pasteurization of agricultural commodities. Radio frequency (RF) heating has been used as one alternative treatment to replace chemical fumigation and other conventional thermal methods since it is relatively easy to apply and leaves no chemical residues. RF technology transfers electromagnetic energy into large bulk volume of the products to provide a fast and volumetric heating. There are two types of RF technology commonly applied in lab and industry to generate the heat energy: free running oscillator and 50-Ω systems. Several reviews have been published to introduce the application of RF heating in food processing. However, few reviews have a comprehensive summary of RF treatment for pasteurizing agricultural products. The objective of this review was to introduce the developments in the RF pasteurization of agricultural commodities and to present future directions of the RF heating applications. While the recent developments in the RF pasteurization were presented, thermal death kinetics of targeted pathogens as influenced by water activity, pathogen species and heating rates, non-thermal effects of RF heating, combining RF heating with other technologies for pasteurization, RF heating uniformity improvements using computer simulation and development of practical RF pasteurization processes were also focused. This review is expected to provide a comprehensive understanding of RF pasteurization for agricultural products and promote the industrial-scale applications of RF technology with possible process protocol optimization purposes.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ruange Lan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Beihua Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Golbası-Ankara, Turkey
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China.,Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Xu J, Shah DH, Song J, Tang J. Changes in cellular structure of heat-treated Salmonella in low-moisture environments. J Appl Microbiol 2020; 129:434-442. [PMID: 32052556 DOI: 10.1111/jam.14614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 02/08/2020] [Indexed: 11/28/2022]
Abstract
AIMS Salmonella cells desiccated in an environment with low-water activity (aw ) show longer survival times and enhanced resistance to heat. However, little is known about the cellular ultrastructure of Salmonella in low-aw environment in relation to the survival and persistence during desiccation. MATERIALS AND RESULTS In this study, Salmonella Enteritidis strain PT30 was dehydrated by exposure to air or by mixing with wheat flour (aw 0·30 at room temperature) for 7 days followed by heat treatment at 80°C for 10, 20, 60 min respectively. Transmission electron microscopy (TEM) was employed to examine and compare the ultrastructure of heat-treated S. Enteritidis cells after desiccation with the cells suspended in trypticase soy broth (TSB). Cells suspended in TSB broth showed disrupted ribosomes, congregated proteins and denatured DNA. However, no significant alterations were observed in the ultrastructure of the desiccated cells after heat treatment. The number of desiccated S. Enteritidis cells decreased by <1·5 log CFU per gram after 80°C treatment for 60 min, however, cells suspended in TSB declined more than 5 log10 CFU per mL at 80°C within 5 min. CONCLUSIONS A drastic difference in the number of survivors and cellular ultrastructure was observed between vegetative and air or food-dried S. Enteritidis cells after subjecting to heat treatment at 80°C. No significant ultrastructure changes were observed in desiccated cells after heat treatment except for roughening and corrugating surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a direct comparison to illustrate how desiccation influences the cell ultrastructure before/after heat treatment, which will aid in better understanding of the fundamental mechanism underlying the increased thermal resistance of Salmonella cells in low-aw environment.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - D H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - J Song
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - J Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Wei X, Lau SK, Reddy BS, Subbiah J. A microbial challenge study for validating continuous radio-frequency assisted thermal processing pasteurization of egg white powder. Food Microbiol 2020; 85:103306. [DOI: 10.1016/j.fm.2019.103306] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
23
|
Zhang H, Zhao Y, Gong C, Jiao S. Effect of radio frequency heating stress on sublethal injury of Salmonella Typhimurium in red pepper powder. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Effects of water activity, temperature and particle size on thermal inactivation of Escherichia coli ATCC 25922 in red pepper powder. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Jiao S, Zhang H, Hu S, Zhao Y. Radio frequency inactivation kinetics of Bacillus cereus spores in red pepper powder with different initial water activity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Chen L, Wei X, Irmak S, Chaves BD, Subbiah J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wang Y, Li X, Lu Y, Wang J, Suo B. Synergistic effect of cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. FOOD SCI TECHNOL INT 2019; 26:28-37. [PMID: 31399018 DOI: 10.1177/1082013219867190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to statistically evaluate the effect of a naturally food-derived cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. This study combined four concentrations of cinnamaldehyde (0, 0.1, 0.5, and 1.0% vol/wt) and four temperatures (55, 60, 65, and 70 ℃) to predict the thermal inactivation curves of L. monocytogenes. The Weibull model successfully described the primary thermal inactivation using the Integrated Pathogen Modeling Program. These results statistically proposed that the cinnamaldehyde supplementation in ground pork attenuates the thermo-tolerance of L. monocytogenes. The time for achieving a 5-log10 reduction of L. monocytogenes declined from 28.14 to 17.35 min at 55 ℃ when the ground pork sample was supplemented by 1% cinnamaldehyde, while the time declined from 1.95 to 0.34 min at 70 ℃. Thereafter, based on the 5.0-log10 lethality, secondary models were fitted by a selected polynomial model. The transmission electron microscopy revealed that cinnamaldehyde causes serious damage to membrane integrity and increases the occurrence of cell membrane rupture and leakage of cytoplasmic content under thermal treatment. Our model represents a mathematical tool that will help meat-product manufacturers to improve the efficacy of thermal processing ground pork supplemented with cinnamaldehyde.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yangliu Lu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Zhang L, Lyng JG, Xu R, Zhang S, Zhou X, Wang S. Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Kou X, Li R, Zhang L, Ramaswamy H, Wang S. Effect of heating rates on thermal destruction kinetics of Escherichia coli ATCC25922 in mashed potato and the associated changes in product color. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Yoon JH, Han A, Paek J, Lee SY. Evaluation of non-isothermal inactivation on survivals of pathogenic bacteria by predictive models. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Jiang H, Gu Y, Gou M, Xia T, Wang S. Radio frequency pasteurization and disinfestation techniques applied on low-moisture foods. Crit Rev Food Sci Nutr 2019; 60:1417-1430. [DOI: 10.1080/10408398.2019.1573415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hao Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxiang Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianyu Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
32
|
Zhang S, Zhang L, Lan R, Zhou X, Kou X, Wang S. Thermal inactivation of Aspergillus flavus in peanut kernels as influenced by temperature, water activity and heating rate. Food Microbiol 2018; 76:237-244. [DOI: 10.1016/j.fm.2018.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|