1
|
Wu S, Ji J, Sheng L, Ye Y, Zhang Y, Sun X. Lysine and valine weaken antibiotic resistance in Salmonella Typhimurium induced by disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135858. [PMID: 39305589 DOI: 10.1016/j.jhazmat.2024.135858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
Disinfectants are widely used in food production and environmental sanitation to prevent illness, but bacteria resistance to these disinfectants and co-resistance to antibiotics pose a threat to public health. This study investigated the impact of commonly used disinfectants on the resistance of Salmonella Typhimurium (ST) to disinfectants and antibiotics, and explored the metabolic mechanisms underlying the resistance changes. The results showed that subinhibitory concentrations of disinfectants had a minor impact on the resistance of ST to four disinfectants. However, chlorine-containing disinfectants stress enhanced bacteria resistance to ampicillin, while quaternary ammonium compounds stress increased resistance to tetracycline and gentamicin. Untargeted metabolomics analysis revealed significant changes in glutathione metabolism and lysine and valine degradation pathways after disinfectant exposure. Specifically, ST activated lysine decarboxylation, leading to a significant decrease in lysine levels after benzalkonium chloride exposure, while valine and leucine degradation pathways were activated by sodium hypochlorite stress. The addition of downregulated L-lysine and L-valine increased the sensitivity of ST to antibiotics, providing further evidence for the findings of metabolomics. This study provides guidance for the proper use of disinfectants in food processing and establishes a strategy based on metabolomics to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Lee SR, Jo S, Kim S, Oh Y, Kim DK. Synergistic efficacy of ultrasound and ammonium persulfate in inactivating Escherichia coli O157:H7 in buffered peptone water and orange juice. Int J Food Microbiol 2024; 419:110749. [PMID: 38788343 DOI: 10.1016/j.ijfoodmicro.2024.110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
This study investigated the synergistic effects of ammonium persulfate (PS) and ultrasound (US) on the inactivation of Escherichia coli O157:H7 in buffered peptone water (BPW) and orange juice products. A comprehensive assessment of PS concentrations ranging from 1 to 300 mM, considering not only the statistical significance but also the reliability and stability of the experimental outcomes, showed that 150 mM was the optimal PS concentration for the inactivation of E. coli O157:H7. Additionally, US output intensities varying from 30 % to 60 % of the maximum US intensity were evaluated, and 50 % US amplitude was found to be the optimal US condition. A 50 % amplitude setting on the sonicator corresponds to half of its maximum displacement, approximately 60 μm, based on a maximum amplitude of 120 μm. The inactivation level of E. coli O157:H7 was significantly enhanced by the combined treatment of PS and US, compared to each treatment of PS and US alone. In the BPW, a 10-min treatment with the combination of PS and US resulted in a significant synergistic inactivation, achieving up to a log reduction of 3.86 log CFU/mL. Similarly, in orange juice products, a 5-min treatment with the combination of PS and US yielded a significant synergistic inactivation, with a reduction reaching 5.90 log CFU/mL. Although the treatment caused a significant color change in the sample, the visual differences between the treated and non-treated groups were not pronounced. Furthermore, the combined treatment in orange juice demonstrated significantly enhanced antimicrobial efficacy relative to BPW. Despite identical 5-min treatment periods, the application in orange juice resulted in a substantially higher log reduction of E. coli O157:H7, achieving 7.16 log CFU/mL at a reduced PS concentration of 30 mM, whereas the same treatment in BPW yielded only a 2.89 log CFU/mL reduction at a PS concentration of 150 mM, thereby highlighting its significantly superior antimicrobial performance in orange juice. The mechanism underlying microbial inactivation, induced by the combined treatment of PS and US, was identified as significant cell membrane damage. This damage is mediated by sulfate radicals, generated through the sono-activation of persulfate. In addition, the low pH of orange juice, measured at 3.7, is likely to have further deteriorated the E. coli O157:H7 cells compared to BPW (pH 7.2), by disrupting their cell membranes, proton gradients, and energy metabolism. These findings underscore the effectiveness of PS and US integration as a promising approach for non-thermal pasteurization in the food industry. Further research is needed to optimize treatment parameters and fully explore the practical application of this technique in large-scale food processing operations. Sensory evaluation and nutritional assessment are also necessary to address the limitations of PS.
Collapse
Affiliation(s)
- Se-Rim Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sebin Jo
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeawon Oh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Nagy D, Zsom T, Taczman-Brückner A, Somogyi T, Zsom-Muha V, Felföldi J. Comparison of the Bactericidal Effect of Ultrasonic and Heat Combined with Ultrasonic Treatments on Egg Liquids and Additional Analysis of Their Effect by NIR Spectral Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:4547. [PMID: 39065944 PMCID: PMC11281172 DOI: 10.3390/s24144547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Eggs are a valuable source of nutrients, but they represent a food safety risk due to the presence of microbes. In this work, three types of egg liquids (albumen, yolk and whole egg) previously contaminated with E. coli were treated with ultrasound (US) and a combination of ultrasound and low (55 °C) temperature (US+H). The US treatment parameters were 20 and 40 kHz and 180 and 300 W power and a 30, 45 or 60 min treatment time. The ultrasonic treatment alone resulted in a reduction in the microbial count of less than 1 log CFU, while the US+H treatment resulted in a reduction in CFU counts to below detectable levels in all three egg liquids. Heat treatment and ultrasound treatment had a synergistic effect on E. coli reduction. For all measurements, except for the whole egg samples treated with US, the 20 kHz treated samples showed a significantly (>90% probability level) lower bactericidal effect than the 40 kHz treated samples. PCA and aquaphotometric analysis of NIR spectra showed significant differences between the heat-treated groups' (H and US+H) and the non-heat-treated groups' (US and control) NIR spectra. LDA results show that heat-treated groups are distinguishable from non-heat-treated groups (for albumen 91% and for egg yolk and whole egg 100%).
Collapse
Affiliation(s)
- Dávid Nagy
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Tamás Zsom
- Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45., H-1118 Budapest, Hungary
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Tamás Somogyi
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Viktória Zsom-Muha
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - József Felföldi
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| |
Collapse
|
4
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Zhang C, Hou W, Zhao W, Zhao S, Wang P, Zhao X, Wang D. Effect of Ultrasound Combinated with Sodium Hypochlorite Treatment on Microbial Inhibition and Quality of Fresh-Cut Cucumber. Foods 2023; 12:foods12040754. [PMID: 36832829 PMCID: PMC9955655 DOI: 10.3390/foods12040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The influence of ultrasound combined with sodium hypochlorite (US-NaClO) treatment on microorganisms and quality of fresh-cut cucumber during storage were investigated. Ultrasound (400 W, 40 kHz, US: 5, 10 and 15 min) and sodium hypochlorite (NaClO: 50, 75, 100 ppm) were used to treat fresh-cut cucumber in a single or combined treatment and stored at 4 °C for 8 days and analyzed for texture, color and flavor. The results showed that US-NaClO treatment had a synergistic effect on the inhibition of microorganisms during storage. It could significantly reduce (p < 0.05) the number of microorganisms by 1.73 to 2.17 log CFU/g. In addition, US-NaClO treatment reduced the accumulation of malondialdehyde (MDA) during storage (4.42 nmol/g) and water mobility, and maintained the integrity of the cell membrane, delayed the increase of weight loss (3.21%), reduced water loss, thus slowing down the decline of firmness (9.20%) of fresh-cut cucumber during storage. The degradation of chlorophyll (6.41%) was reduced to maintain the color of freshly cut cucumbers. At the same time, US-NaClO could maintain the content of aldehydes, the main aromatic substance of cucumber, and reduced the content of alcohols and ketones during storage. Combined with the electronic nose results, it could maintain the cucumber flavor at the end of the storage period and reduce the odor produced by microorganisms. Overall, US-NaClO was helpful to inhibit the growth of microorganisms during storage, improve the quality of fresh-cut cucumber.
Collapse
Affiliation(s)
- Chunhong Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanfu Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenting Zhao
- Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuang Zhao
- Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Pan Wang
- Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Zhao
- Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dan Wang
- Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: ; Tel.: +86-10-51503657; Fax: +86-10-51503657
| |
Collapse
|
6
|
Yang H, Song L, Sun P, Su R, Wang S, Cheng S, Zhan X, Lü X, Xia X, Shi C. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale. ULTRASONICS SONOCHEMISTRY 2023; 92:106269. [PMID: 36571884 PMCID: PMC9800203 DOI: 10.1016/j.ultsonch.2022.106269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwen Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Ultrasound, Acetic Acid, and Peracetic Acid as Alternatives Sanitizers to Chlorine Compounds for Fresh-Cut Kale Decontamination. Molecules 2022; 27:molecules27207019. [DOI: 10.3390/molecules27207019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorinated compounds are usually applied in vegetable sanitization, but there are concerns about their application. Thus, this study aimed to evaluate ultrasound (50 kHz), acetic acid (1000; 2000 mg/L), and peracetic acid (20 mg/L) and their combination as alternative treatments to 200 mg/L sodium dichloroisocyanurate. The overall microbial, physicochemical, and nutritional quality of kale stored at 7 °C were assessed. The impact on Salmonella enterica Typhimurium was verified by plate-counting and scanning electron microscopy. Ultrasound combined with peracetic acid exhibited higher reductions in aerobic mesophiles, molds and yeasts, and coliforms at 35 °C (2.6; 2.4; 2.6 log CFU/g, respectively). Microbial counts remained stable during storage. The highest reduction in Salmonella occurred with the combination of ultrasound and acetic acid at 1000 mg/L and acetic acid at 2000 mg/L (2.8; 3.8 log CFU/g, respectively). No synergistic effect was observed with the combination of treatments. The cellular morphology of the pathogen altered after combinations of ultrasound and acetic acid at 2000 mg/L and peracetic acid. No changes in titratable total acidity, mass loss, vitamin C, or total phenolic compounds occurred. Alternative treatments presented equal to or greater efficacies than chlorinated compounds, so they could potentially be used for the decontamination of kale.
Collapse
|
8
|
Luo W, Wang J, Chen Y, Wang Y, Li R, Tang J, Geng F. Quantitative proteomic analysis provides insight into the survival mechanism of Salmonella typhimurium under high-intensity ultrasound treatment. Curr Res Food Sci 2022; 5:1740-1749. [PMID: 36268134 PMCID: PMC9576580 DOI: 10.1016/j.crfs.2022.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
The survival mechanism of Salmonella treated with high-intensity ultrasound (HIU) should be explored to further enhance the bactericidal efficacy of HIU. In this study, culturable Salmonella was reduced by applying HIU. Electron microscope imaging revealed that HIU caused the disintegration of cell structure and leakage of intracellular substances. For the Salmonella after the HIU treatment, key enzymes of the tricarboxylic acid [TCA] cycle were significantly downregulated, which led to a reduced ATP content (45.25%-75.00%), although ATPase activity was augmented by 33.82%-60.64% in the Salmonella. Accordingly, surviving Salmonella could have tolerated the stress of HIU by upregulating their environmental sensing (two-component system), chemotaxis (bacterial chemotaxis), substance uptake (ABC transporter), and ATP production (oxidative phosphorylation). Therefore, synergistically blocking the ATP production, signal transduction, or substance intake of Salmonella offer promising potential strategies to improve the bactericidal effect of HIU in industrial food processing.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yan Chen
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Yixu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plants, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| |
Collapse
|
9
|
Siddique Z, Malik AU. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): A comparative review. J Food Saf 2022. [DOI: 10.1111/jfs.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences University of Agriculture Faisalabad Pakistan
| |
Collapse
|
10
|
Takundwa BA, Bhagwat P, Ruzengwe FM, Pillai S, Ijabadeniyi OA. Optimisation of the combined treatment of nisin, oregano and ultrasound in decontaminating Listeria monocytogenes and Escherichia coli O157:H7 on cabbage. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
NASCIMENTO RC, SÃO JOSÉ JFBD. Green tea extract: a proposal for fresh vegetable sanitization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zhang X, Zhou D, Cao Y, Zhang Y, Xiao X, Liu F, Yu Y. Synergistic inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by gallic acid and thymol and its potential application on fresh-cut tomatoes. Food Microbiol 2021; 102:103925. [PMID: 34809951 DOI: 10.1016/j.fm.2021.103925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 Liuting Street, Haishu District, Ningbo City, Zhejiang province, 315012, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| |
Collapse
|
13
|
Khaire RA, Thorat BN, Gogate PR. Applications of ultrasound for food preservation and disinfection: A critical review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajeshree A. Khaire
- Chemical Engineering Department Institute of Chemical Technology Mumbai India
| | - Bhaskar N. Thorat
- Chemical Engineering Department Institute of Chemical Technology Mumbai India
| | - Parag R. Gogate
- Chemical Engineering Department Institute of Chemical Technology Mumbai India
| |
Collapse
|
14
|
Roy PK, Mizan MFR, Hossain MI, Han N, Nahar S, Ashrafudoulla M, Toushik SH, Shim WB, Kim YM, Ha SD. Elimination of Vibrio parahaemolyticus biofilms on crab and shrimp surfaces using ultraviolet C irradiation coupled with sodium hypochlorite and slightly acidic electrolyzed water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Zhang J, Wang D, Sun J, Sun Z, Liu F, Du L, Wang D. Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis. Foods 2021; 10:foods10092171. [PMID: 34574281 PMCID: PMC8466041 DOI: 10.3390/foods10092171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the effect of the combination of ultrasound and phenyllactic acid (PLA) on inactivating Staphylococcus aureus and Salmonella enteritidis biofilm cells and determined the possible antibiofilm mechanism. S. aureus and S. enteritidis biofilm cells were separately treated with ultrasound (US, 270 W), phenyllactic acid (PLA, 0.5% and 1%), and their combination (US + 0.5% PLA, and US + 1% PLA) for 5, 10, 20, 30, and 60 min. Biofilm inactivation, polysaccharide, and respiratory chain dehydrogenase assays were conducted. US and PLA had a synergistic effect on inactivating bacterial cells in S. aureus and S. enteritidis biofilms. The combination of US and PLA significantly decreased the contents of soluble and insoluble polysaccharides and the activity of respiratory chain dehydrogenase in the biofilm cells compared to the single treatment. Confocal laser scanning microscopy, scanning electron microscopy, and intracellular adenosine-triphosphate (ATP) analyses indicated that the combination of US and PLA seriously destroyed the cell membrane integrity of the S. aureus and S. enteritidis biofilms and caused the leakage of intracellular ATP. These findings demonstrated the synergistic antibiofilm effect of US combined with PLA and offered a research basis for its application in the food industry.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Debao Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Jinyue Sun
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Zhilan Sun
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Fang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
- Correspondence: (F.L.); (L.D.)
| | - Lihui Du
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Correspondence: (F.L.); (L.D.)
| | - Daoying Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| |
Collapse
|
16
|
Hong SJ, Park NI, Park Y, Kim BS, Eum HL. Effect of disinfecting harvesting knives with sodium hypochlorite on soft rot infection of Kimchi cabbage. Food Sci Biotechnol 2021; 30:1139-1150. [PMID: 34471567 DOI: 10.1007/s10068-021-00946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the effect of sterilizing harvesting knives with sodium hypochlorite (NaOCl) on soft rot in Kimchi cabbage. Knives were infected with Pectobacterium carotovorum subsp. carotovorum (Pcc), sterilized with NaOCl (100, 200, and 300 mg/L), and used to cut Kimchi cabbage slices, which were incubated for 70 h in a 28 °C incubator. In Kimchi cabbage slices cut with a Pcc-inoculated knife without NaOCl sterilization, symptoms began to appear after 20 h, and approximately 60% of the cabbage slices were infected after 70 h of incubation. In contrast, in cabbage cut with a sterilized knife, soft rot symptoms were delayed, and they began to appear after 40 h of incubation in the 200 mg/L-treated. The expression levels of PG10, PG12-1, PG12-3, WRKY 33, MPK3, ACO1, and ACO2 were increased in infected plants, and NaOCl treatment decreased these expression levels. Transmission of soft rot can be minimized by disinfecting harvesting knives with 200 mg/L NaOCl.
Collapse
Affiliation(s)
- Sae Jin Hong
- Department of Plant Science, Gangneung-Wonju National University, Gangneung-si, 25457 Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung-si, 25457 Republic of Korea
| | - Yeri Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung-si, 25457 Republic of Korea
| | - Byung-Sup Kim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung-si, 25457 Republic of Korea
| | - Hyang Lan Eum
- Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365 Republic of Korea
| |
Collapse
|
17
|
Laranja DC, da Silva Malheiros P, Cacciatore FA, de Oliveira Elias S, Milnitsky BP, Tondo EC. Salmonella inactivation and changes on texture and color of chicken skin treated with antimicrobials and ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Aykın‐Dinçer E, Ergin F, Küçükçetin A. Reduction of
Salmonella enterica
in Turkey breast slices kept under aerobic and vacuum conditions by application of lactic acid, a bacteriophage, and ultrasound. J Food Saf 2021. [DOI: 10.1111/jfs.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elif Aykın‐Dinçer
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| | - Firuze Ergin
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| | - Ahmet Küçükçetin
- Department of Food Engineering, Engineering Faculty Akdeniz University Antalya Turkey
| |
Collapse
|
19
|
Pelissari EMR, Covre KV, do Rosario DKA, de São José JFB. Application of chemometrics to assess the influence of ultrasound and chemical sanitizers on vegetables: Impact on natural microbiota, Salmonella Enteritidis and physicochemical nutritional quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Dong Y, Gu M, Yuan H, Zhu N. Insights into the enhancement of waste activated sludge dewaterability using sodium dichloroisocyanurate and dodecyl dimethyl ammonium chloride: Performance, mechanism, and implication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146302. [PMID: 34030389 DOI: 10.1016/j.scitotenv.2021.146302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Sludge dewatering is essential for reduction of sludge volume to cut the cost of transportation and disposal. Combined application of sodium dichloroisocyanurate (DCCNa) and dodecyl dimethyl ammonium chloride (DDAC) was attempted to promote sludge dewatering performance and physicochemical properties for the first time in this work. The results showed that capillary suction time (CST) and moisture content of dewatered sludge cake (Mc) decreased to 15.9 s and 61.54% compared to 144.5 s and 90.39% of raw sludge, respectively, with the addition of optimal dosage of 150 mg DCCNa/g DS and 125 mg DDAC/g DS. The conditioning mechanism of combined treatment was elucidated by investigating the variations of extracellular polymeric substances (EPS) composition, flocs morphological structure, rheological behavior, moisture distribution and Fourier transform infrared (FTIR) of sludge. It could be found that sludge floc cells were decomposed and bound water was released after DCCNa treatment. The bound water content was further decreased with the presence of DDAC. In addition, DDAC not only increased the zeta potential and flowability of sludge, but also reduced the surface tension and interact with oxygen-containing functional groups in sludge. As a result, the sludge dewaterability was significantly improved. Moreover, the calorific value analysis of dewatered sludge cake indicated that combined conditioning of DCCNa and DDAC presented the advantage of incineration disposal.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minxue Gu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Jin B, Niu J, Wang L, Zhao J, Li Y, Pang L, Zhang M. Effect of sodium dichloroisocyanurate treatment on enhancing the biodegradability of waste-activated sludge anaerobic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112353. [PMID: 33735677 DOI: 10.1016/j.jenvman.2021.112353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/14/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a novel oxidant (sodium dichloroisocyanurate, NaCl2(NCO)3; SDIC) combined with microorganisms was employed to achieve a higher performance of waste-activated sludge (WAS) anaerobic fermentation. Four concentrations of SDIC (0, 0.3, 0.6, and 1.0 mg SDIC/mg SS) were studied in WAS fermentation systems. The results showed that the release of proteins and polysaccharides was enhanced by the addition of SDIC with values of 1002.25 mg COD/L and 680.25 mg COD/L, respectively, and these values increased 14.46-18.07 times (proteins) and 3.74-7.40 times (polysaccharides) compared with that of the blank test. Additionally, the short-chain fatty acids also increased 2.24 times. The rate of extraction of organic substances from the sludge increased from 3.03% to 33.33%. Furthermore, the fermented sludge with the SDIC treatment had higher hydrolytic acidification efficiencies for bovine serum albumin and glucose, increasing from 4.558% to 9.91% and 2.976%-6.764%, respectively. However, SDIC treatment of the conventional fermented sludge resulted in lower hydrolytic acidification efficiencies with values of 4.978%-1.781% and 3.334%-0.582%, respectively. Biological enzyme analysis also showed that SDIC enhanced α-glucosidase and protease activity but inhibited dehydrogenase, alkaline phosphatase, and acid phosphatase activity. Proteobacteria and Comamonas were the main microbial communities observed in the WAS anaerobic fermentation.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Jintao Niu
- Henan Hengan Environmental Protection Technology Co., Ltd, Zhengzhou, 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Long Pang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Miao Zhang
- Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
23
|
Li X, Xing Y, Shui Y, Cao X, Xu R, Xu Q, Bi X, Liu X. Quality of bamboo shoots during storage as affected by high hydrostatic pressure processing. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1914084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xuanlin Li
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Yage Xing
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| | - Yuru Shui
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiaotong Cao
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| | - Ruohan Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| | - Qinglian Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| | - Xiufang Bi
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| | - Xiaocui Liu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu China
| |
Collapse
|
24
|
Dong Y, Shen Y, Ge D, Bian C, Yuan H, Zhu N. A sodium dichloroisocyanurate-based conditioning process for the improvement of sludge dewaterability and mechanism studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112020. [PMID: 33508699 DOI: 10.1016/j.jenvman.2021.112020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Sludge dewatering is necessary to reduce the volume of sludge for cost-effective transport and ultimate disposal. In this study, a novel combined chemical conditioning process was proposed to improve sludge dewatering performance in which sludge flocs were destructed by sodium dichloroisocyanurate (DCCNa) and re-flocculated by Al2(SO4)3 and the mechanism was elucidated. The results showed that sludge capillary suction time (CST) dropped to 15.4 s and moisture content of dewatered sludge cake (Mc) deceased to 71.01% respectively, after the application of combined conditioning with the optimal dosage of 200 mg DCCNa/g dry solids (DS) and 80 mg Al2(SO4)3/g DS. With chemical conditioning, sludge physicochemical properties were greatly changed. With the DCCNa application, the percentage of low-molecular-weight substances in soluble extracellular polymeric substances (S-EPS) increased. Also, the sludge zeta potential dropped from -16.85 mV to -25.45 mV and the median particle size (D50) decreased from 54.1 μm to 51.6 μm. However, the subsequent conditioning by Al2(SO4)3 dosing not only led to an increment of 18% in the portion of macromolecules in S-EPS, but also increased the zeta potential and D50 to -10.74 mV and 53.2 μm, respectively. The bound water content in sludge declined from 2.92 g/g DS to 1.98 g/g DS after combined conditioning. We concluded that DCCNa disintegrated the sludge flocs and microbial cells leading to the release of bound water, fine particles and organic substances with negative charge, and the fine colloidal particles can be flocculated into large dense aggregations with the dosing of Al2(SO4)3. In summary, the proposed combined conditioning provided a highly effective and environmental friendly approach to improve the sludge dewatering performance.
Collapse
Affiliation(s)
- Yanting Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongdong Ge
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Bian
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
25
|
Alves de Aguiar Bernardo Y, Kaic AlvesdDo Rosario D, Adam Conte-Junior C. Ultrasound on Milk Decontamination: Potential and Limitations Against Foodborne Pathogens and Spoilage Bacteria. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yago Alves de Aguiar Bernardo
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Denes Kaic AlvesdDo Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Rio De Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables. Foods 2021; 10:foods10030655. [PMID: 33808683 PMCID: PMC8003346 DOI: 10.3390/foods10030655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
We investigated the combined effect of using slightly acidic electrolyzed water (SAEW), ultrasounds (US), and ultraviolet-C light-emitting diodes (UV-C LED; 275 nm) for decreasing pathogenic Escherichia coli and Staphylococcus aureus (SEA) in fresh-cut vegetables, including carrots, celery, paprika, and cabbage. Survival of pathogenic E. coli and SEA and quality properties of fresh-cut vegetables at 5 and 15 °C for 7 days were also investigated. When combined treatment (SAEW + US + UV-C LED) was applied to fresh-cut vegetables for 3 min, its microbial reduction effect was significantly higher (0.97~2.17 log CFU/g) than a single treatment (p < 0.05). Overall, the reduction effect was more significant for SEA than for pathogenic E. coli. At 5 °C, SAEW + US and SAEW + US + UV-C LED treatments reduced populations of pathogenic E. coli and SEA in all vegetables. At 15 °C, SAEW + US + UV-C LED treatment inhibited the growth of both pathogens in carrot and celery and extended the shelf life of fresh-cut vegetables by preventing color changes in all vegetables. Although the effects of treatments varied depending on the characteristics of the vegetables and pathogens, UV-C LED can be suggested as a new hurdle technology in fresh-cut vegetable industry.
Collapse
|
27
|
Jiang Q, Zhang M, Xu B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. ULTRASONICS SONOCHEMISTRY 2020; 69:105261. [PMID: 32702635 DOI: 10.1016/j.ultsonch.2020.105261] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 05/09/2023]
Abstract
It has been an important research topic and a serious applicable issue to extend storage time of fruits and vegetables using advanced scientific and effective technology. Among various approaches, ultrasound has been regarded as one of the most pollution-free and effective technical means to significantly improve the preservation of fruits and vegetables. This paper summarizes the application of ultrasonic technology in fruits and vegetables storage in recent years, including removal of pesticide residues and cleaning, sterilization, enzyme inactivation, effect on physico-chemical indexes. Additionally, we also discussed limitations and negative effects of ultrasonic treatment on fruits and vegetables such as damages to tissues and cells. Furthermore, a proper application of ultrasonic technology has been proven to effectively extend the storage period of postharvest fruits and vegetables and maintain the quality. Moreover, the combination of ultrasound and other conventional preservation technologies can further improve the preservation in a coordinate manner and even have a broader application prospect.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, Jiangsu, China
| |
Collapse
|
28
|
He Q, Guo M, Jin TZ, Arabi SA, Liu D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int J Food Microbiol 2020; 337:108936. [PMID: 33161345 DOI: 10.1016/j.ijfoodmicro.2020.108936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Development of novel and effective decontamination technologies to ensure the microbiological safety of fresh produce has gained considerable attention, mainly driven by numerous outbreaks. This work presented the first approach regarding to the application of the previously reported hurdle technologies on the sanitization of artificially contaminated cherry tomatoes. Thyme (Thymus daenensis) essential oil nanoemulsion (TEON, 8.28 nm in diameter with a narrow size distribution) was formulated via ultrasonic nanoemulsification, showing remarkably improved antimicrobial activity against Escherichia coli (E. coli) O157:H7, compared to the coarse emulsion. The antimicrobial effect of ultrasound (US), thyme essential oil nanoemulsion (TEON) and the combination of both treatments was assessed against E. coli O157:H7. The remarkable synergistic effects of the combined treatments were achieved, which decontaminated the E. coli populations by 4.49-6.72 log CFU/g on the surface of cherry tomatoes, and led to a reduction of 4.48-6.94 log CFU/sample of the total inactivation. TEON combined with US were effective in reducing the presence of bacteria in wastewater, which averted the potential detrimental effect of cross-contamination resulted from washing wastewater in fresh produce industry. Moreover, the treatments did not noticeably alter the surface color and firmness of cherry tomatoes. Therefore, ultrasound combined with TEON is a promising and feasible alternative for the reduction of microbiological contaminants, as well as retaining the quality characteristics of cherry tomatoes.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
29
|
Castro VS, Mutz YDS, Rosario DKA, Cunha-Neto A, Figueiredo EEDS, Conte-Junior CA. Inactivation of Multi-Drug Resistant Non-Typhoidal Salmonella and Wild-Type Escherichia coli STEC Using Organic Acids: A Potential Alternative to the Food Industry. Pathogens 2020; 9:E849. [PMID: 33081230 PMCID: PMC7602699 DOI: 10.3390/pathogens9100849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Salmonella and Escherichia coli are the main bacterial species involved in food outbreaks worldwide. Recent reports showed that chemical sanitizers commonly used to control these pathogens could induce antibiotic resistance. Therefore, this study aimed to describe the efficiency of chemical sanitizers and organic acids when inactivating wild and clinical strains of Salmonella and E. coli, targeting a 4-log reduction. To achieve this goal, three methods were applied. (i) Disk-diffusion challenge for organic acids. (ii) Determination of MIC for two acids (acetic and lactic), as well as two sanitizers (quaternary compound and sodium hypochlorite). (iii) The development of inactivation models from the previously defined concentrations. In disk-diffusion, the results indicated that wild strains have higher resistance potential when compared to clinical strains. Regarding the models, quaternary ammonium and lactic acid showed a linear pattern of inactivation, while sodium hypochlorite had a linear pattern with tail dispersion, and acetic acid has Weibull dispersion to E. coli. The concentration to 4-log reduction differed from Salmonella and E. coli in acetic acid and sodium hypochlorite. The use of organic acids is an alternative method for antimicrobial control. Our study indicates the levels of organic acids and sanitizers to be used in the inactivation of emerging foodborne pathogens.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Yhan da Silva Mutz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Denes Kaic Alves Rosario
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Adelino Cunha-Neto
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
| | - Eduardo Eustáquio de Souza Figueiredo
- Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
| | - Carlos Adam Conte-Junior
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
30
|
de São José JFB, Ramos AM, Vanetti MCD, de Andrade NJ. Inactivation of Salmonella Enteritidis on cherry tomatoes by ultrasound, lactic acid, detergent, and silver nanoparticles. Can J Microbiol 2020; 67:259-270. [PMID: 32956591 DOI: 10.1139/cjm-2020-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ultrasound (US) combined with chemical agents could represent an effective method for decontaminating fruits and vegetables. This study aimed to evaluate the use of US (40 kHz for 5 min) alone or with 1% lactic acid (LA), 1% commercial detergent (DET), or 6 mg/L silver nanoparticles (AgNP, average diameter 100 nm) as an alternative treatment to 200 mg/L sodium dichloroisocyanurate for inactivating Salmonella enterica serovar Enteritidis present on cherry tomatoes. The interfacial tension between sanitizing solutions and bacterial adhesion was investigated. Sanitizers in solutions with DET and AgNP had lower surface tension. All treatments, except that with DET, reduced Salmonella Enteritidis by more than one logarithmic cycle. There was no significant difference between the mean values of log colony-forming units (CFU)/g reduction in all treatments. Transmission electron microscopy revealed the loss of the Salmonella Enteritidis capsule following treatment with US and with US + LA. Salmonella Enteritidis counts (2.29 log CFU/g) in cherry tomatoes were markedly reduced to safe levels by treatment with the combination of AgNP and US + LA (2.37 log CFU/g).
Collapse
Affiliation(s)
| | - Afonso Mota Ramos
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Cristina Dantas Vanetti
- Food Microbiology Laboratory, Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Nélio José de Andrade
- Department of Food Technology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
31
|
Traore MB, Sun A, Gan Z, Long WY, Senou H, Zhu Y, Togo J, Fofana KH, Sidibe AM. Assessing the impact of the combined application of ultrasound and ozone on microbial quality and bioactive compounds with antioxidant attributes of cabbage (
Brassica Oleracea L. Var. Capitata
). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mamadou Bado Traore
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Aidong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Zhilin Gan
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Wei Yu Long
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Hamidou Senou
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Yue Zhu
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Jacques Togo
- Department of Biology University of Bamako Bamako Mali
| | - Kankou Hadia Fofana
- College of Management and Economics Beijing Institutes of Technology Beijing China
| | | |
Collapse
|
32
|
da Costa Lima M, de Souza EL. A systematic quantitative analysis of the published literature on the efficacy of essential oils as sanitizers in fresh leafy vegetables. Crit Rev Food Sci Nutr 2020; 61:2326-2339. [PMID: 32519881 DOI: 10.1080/10408398.2020.1776676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study carried out a systematic quantitative analysis of published literature on the efficacy of essential oils (EOs) as sanitizers in fresh leafy vegetables (FLVs). Efficacy of EO was measured by determining if their application could cause a reduction of microbial population in FLV, as well as by identifying experimental factors that might affect the achieved reduction levels. Data on efficacy of EO to reduce the microbial population and experimental conditions were collected from selected studies and compiled for a distribution and relational analysis. Reduction of an artificial inoculum and/or natural microbiota of FLV caused by 14 different EO were measured in 404 (73.8%) and 143 (26.2%) experiments, respectively. Results of quantitative analysis showed that EO are consistently effective to reduce microbial population in FLV either when the target microorganisms are forming an artificial inoculum or the natural microbiota, being overall similarly effective to or more effective than substances used ordinarily as sanitizers. EO were more effective to reduce the population of microorganisms forming an artificial inoculum than the natural microbiota. EO concentration and inoculum size had no significant effect on achieved reductions. Duration of sanitization treatment with EO had significant effect on achieved reductions and highest reductions were found when the sanitization time was >3 min. Although with the inherent variability in experimental designs found in available literature, the results of this quantitative analysis provide strong evidence that EO are promising candidates for use in strategies to sanitize FLV.
Collapse
Affiliation(s)
- Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
33
|
Efficacy of dual-frequency ultrasound and sanitizers washing treatments on quality retention of cherry tomato. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102348] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Rosario DKA, Rodrigues BL, Bernardes PC, Conte-Junior CA. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit Rev Food Sci Nutr 2020; 61:1163-1183. [PMID: 32319303 DOI: 10.1080/10408398.2020.1754755] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods of food preservation have demonstrated several disadvantages and limitations in the efficiency of the microbial load reduction and maintain food quality. Hence, non-thermal preservation technologies (NTPT) and alternative chemical compounds (ACC) have been considered a high promissory replacer to decontamination, increasing the shelf life and promoting low levels of physicochemical, nutritional and sensorial alterations of meat and fish products. The combination of these methods can be a potential alternative to the food industry. This review deals with the most critical aspects of the mechanisms of action under microbial, physicochemical, nutritional and sensorial parameters and the efficiency of the different NTPT (ultrasound, high pressure processing, gamma irradiation and UV-C radiation) and ACC (peracetic acid, bacteriocins, nanoparticles and essential oils) applied in meat and fish products. The NTPT and ACC present a high capacity of microorganisms inactivation, ensuring low alterations level in the matrix and high reduction of environmental impact. However, the application conditions of the different methods as exposition time, energy intensity and concentration thresholds of chemical compounds need to be specifically established and continuously improved for each matrix type to reduce to the maximum the physicochemical, nutritional and sensorial changes. In addition, the combination of the methods (hurdle concept) may be an alternative to enhance the matrix decontamination. In this way, undesirable changes in meat and fish products can be further reduced without a decrease in the efficiency of the decontamination.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Bruna L Rodrigues
- Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil.,National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Basumatary R, Vatankhah H, Dwivedi M, John D, Ramaswamy HS. Ultrasound‐steam combination process for microbial decontamination and heat transfer enhancement. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Dalia John
- Department of Food ScienceMcGill University Quebec Canada
| | | |
Collapse
|
36
|
Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Traore MB, Sun A, Gan Z, Senou H, Togo J, Fofana KH. Antimicrobial capacity of ultrasound and ozone for enhancing bacterial safety on inoculated shredded green cabbage (Brassica oleracea var. capitata). Can J Microbiol 2020; 66:125-137. [DOI: 10.1139/cjm-2019-0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high frequency and incidence of foodborne outbreaks related to fresh vegetables consumption is a major public health concern and an economic burden worldwide. This study evaluated the effect of individual and combined application of ultrasound (40 kHz, 100 W) and ozone on the inactivation of foodborne Escherichia coli and Salmonella, as well as their impact on cabbage color and vitamin C content. Plate count, scanning electron microscopy (SEM), and flow cytometry (FCM) following single or double staining with carboxyfluorescein diacetate and (or) propidium iodide were used to determine bacterial inactivation parameters, such as cell culturability, membrane integrity, intracellular enzyme activity, and injured and dead cells. The results of FCM and SEM showed that ultrasound treatment affected bacteria mainly by acting on the cell membrane and inactivating intracellular esterase, which resulted in bacterial death. Furthermore, when combined with ozone at 1.5 mg/L, the maximum reduction of bacterial populations was observed at 8 min with no damage on the surface of treated leaves. Therefore, fresh products sanitization using a combination of ultrasound and ozone has the potential to be an alternative for maintaining the color and vitamin C content of green cabbage.
Collapse
Affiliation(s)
- Mamadou Bado Traore
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Aidong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhilin Gan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hamidou Senou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, P.R. China
| | | |
Collapse
|
38
|
Li H, Li X, Wang R, Xing Y, Xu Q, Shui Y, Guo X, Li W, Yang H, Bi X, Che Z. Quality of fresh-cut purple cabbage stored at modified atmosphere packaging and cold-chain transportation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1716795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- He Li
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xuanlin Li
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Ranran Wang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yage Xing
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qinglian Xu
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yuru Shui
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xunlian Guo
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Wenxiu Li
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Hua Yang
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiufang Bi
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Zhenming Che
- Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
39
|
Zhang L, Wang P, Sun X, Chen F, Lai S, Yang H. Calcium permeation property and firmness change of cherry tomatoes under ultrasound combined with calcium lactate treatment. ULTRASONICS SONOCHEMISTRY 2020; 60:104784. [PMID: 31539723 DOI: 10.1016/j.ultsonch.2019.104784] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 05/11/2023]
Abstract
This study aimed to investigate the effect of ultrasound combined with calcium lactate (2%, w/v) treatment (U + Ca) on calcium permeation and firmness of cherry tomatoes. Calcium distribution and fruit pectin nanostructure were also analysed by transmission electron microscope (TEM) and atomic force microscopy (AFM), respectively. The firmness (31.45 N) was maintained when ultrasound energy density was 20 W/L for 15 min at 15 °C. The Ca content increased in U + Ca treated fruit. Meanwhile, the Peleg's model could be used to express the change of solid gain in cherry tomatoes under ultrasound treatment at 15, 20, and 25 °C. According to the AFM results, the width (≥40 nm) and length (≥2 μm) of chelate-soluble pectin (CSP) and sodium carbonate-soluble pectin (SSP) chains with large frequency was observed in U + Ca treated fruit. Under desirable conditions (15 °C, 15 min, 20 W/L), ultrasound combined with calcium lactate could maintain the quality of cherry tomatoes.
Collapse
Affiliation(s)
- Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Pei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyang Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Shaojuan Lai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
40
|
Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108666] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Guo L, Sun Y, Zhu Y, Wang B, Xu L, Huang M, Li Y, Sun J. The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli. Food Res Int 2019; 129:108887. [PMID: 32036906 DOI: 10.1016/j.foodres.2019.108887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
In the present study, the action mechanism of ultrasound (US) combined with sodium hypochlorite (SH) against Escherichia coli was illustrated by different analysis, including reduction, particle size distribution, scanning electron microscopy (SEM), transmission electron microscopy (TEM), K+ leakage, confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy of Escherichia coli. The results showed that ultrasound improved the antimicrobial effect of SH in control of E. coli. No significant difference was obtained in reduction of E. coli, CLSM analysis and K+ leakage between US + SH30 (US + 30 ppm SH) and SH50 (50 ppm SH) treatment. Smaller particle size was recorded in US and US + SH30 treatment. The changes of morphology and intracellular organization of E. coli cells as a result of these treatments were confirmed by SEM and TEM analyses. Fluorescence spectroscopy results indicated SH30, US + SH30 and SH50 treatment caused the burial of tyrosine residues and tryptophan residues as well as increase of hydrophobicity. Therefore, the mechanism of US + SH30 treatment against E. coli involved decreased particle size, damaged membrane and changes of intracellular organization and protein conformation.
Collapse
Affiliation(s)
- Liping Guo
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yongcai Sun
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yinglian Zhu
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Baowei Wang
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Lin Xu
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Ming Huang
- Nanjing Innovation Center of Meat Products Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Yufeng Li
- Poultry Institute of Shandong Academy of Agricultural Science, Jinan 250023, Shandong, People's Republic of China
| | - Jingxin Sun
- College of Food Science and Engineering, and Shandong Reseach Center for Meat Food Quality Control, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China.
| |
Collapse
|
42
|
Ultrasound pretreatment enhances the inhibitory effects of nisin/carvacrol against germination, outgrowth and vegetative growth of spores of Bacillus subtilis ATCC6633 in laboratory medium and milk: Population and single-cell analysis. Int J Food Microbiol 2019; 311:108329. [DOI: 10.1016/j.ijfoodmicro.2019.108329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022]
|
43
|
Alenyorege EA, Ma H, Ayim I, Lu F, Zhou C. Efficacy of sweep ultrasound on natural microbiota reduction and quality preservation of Chinese cabbage during storage. ULTRASONICS SONOCHEMISTRY 2019; 59:104712. [PMID: 31421620 DOI: 10.1016/j.ultsonch.2019.104712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of sweep frequency ultrasound (SFUS), sodium hypochlorite (NaOCl) and their combinations (SFUS + NaOCl) in reducing and inhibiting natural microbiota as well as preserving quality of fresh-cut Chinese cabbage during storage (4 °C and 25 °C) for up to 7 days was investigated. In effect, 40 kHz sweep frequency ultrasound in combination with 100 mg/L sodium hypochlorite resulted in maximum reduction and inhibition of mesophilic counts, yeast and molds and minimum chlorophyll depletion, weight loss and electrolyte leakage. However, colour and textural characteristics deteriorated. The combined treatment suppressed the activities of polyphenol oxidase and peroxidase and manifested its preservative effect after Fourier Transform near-infrared spectroscopy analysis. Synergistic reductions were recorded in most of the combined treatments though largely <1.0 log CFU/g. Specifically, the combined treatment significantly (P < 0.05) reduced mesophilic counts by an added 2.7 log CFU/g, yeasts and molds by an added 2.0 log CFU/g when compared to the individual treatments. During storage at 4 and 25 °C, washing with SFUS + NaOCl produced Chinese cabbage with lower microbial counts, in comparison with the individual treatments. However, post-treatment storage could not entirely inhibit microbial survival as populations increased during storage even at refrigeration temperature of 4 °C. The results demonstrate that ultrasound and sodium hypochlorite are promising hurdle alternatives for the reduction and inhibition of microorganisms, as well as prolonging the shelf life and retaining the quality characteristics of Chinese cabbage.
Collapse
Affiliation(s)
- Evans Adingba Alenyorege
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| | - Ishmael Ayim
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Applied Science, Kumasi Technical University, Kumasi, Ghana
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
44
|
Fan L, Ismail BB, Hou F, Muhammad AI, Zou M, Ding T, Liu D. Thermosonication damages the inner membrane of Bacillus subtilis spores and impels their inactivation. Food Res Int 2019; 125:108514. [DOI: 10.1016/j.foodres.2019.108514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
45
|
Marques CS, Grillo RP, Bravim DG, Pereira PV, Oliveira Villanova JC, Pinheiro PF, Souza Carneiro JC, Bernardes PC. Preservation of ready-to-eat salad: A study with combination of sanitizers, ultrasound, and essential oil-containing β-cyclodextrin inclusion complex. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Modelling inactivation of Staphylococcus spp. on sliced Brazilian dry-cured loin with thermosonication and peracetic acid combined treatment. Int J Food Microbiol 2019; 309:108328. [PMID: 31518953 DOI: 10.1016/j.ijfoodmicro.2019.108328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/25/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
Abstract
Ultrasound (US) has a high capacity to increase food safety. Although high and/or moderate temperature in combination with US has been studied, the knowledge about cooling/low temperatures as well as its combined effect with chemical preservation methods is scarce. Therefore, the aim of this study was to describe the inactivation of Staphylococcus spp. (SA) present in the natural microbiota of sliced Brazilian dry-cured loin (Socol, BDL) using US (40 kHz and 5.40 W/g) at 1.6-17.9 kJ/g, temperature (T) between 6.4 and 73.6 °C and peracetic acid (PA) between 5.5 and 274.5 mg/L employing the Central Composite Rotatable Design. The model fully describes how the combination of US, T, and PA affects SA inactivation. In BDL, an increase in US acoustic energy density (kJ/g) allows the reduction of T necessary to inactivate SA because of the occurrence of synergistic effect. However, US applied at low T was inefficient. On the other hand, PA was more efficient at low T, since high T degraded this compound at different rates according to the holding T. Therefore, the data indicates a relation between the technologies used in the combined decontamination of sliced BDL improving dry-cured meat safety.
Collapse
|
47
|
Bhilwadikar T, Pounraj S, Manivannan S, Rastogi NK, Negi PS. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr Rev Food Sci Food Saf 2019; 18:1003-1038. [DOI: 10.1111/1541-4337.12453] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Tanmayee Bhilwadikar
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - Saranya Pounraj
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - S. Manivannan
- Dept. of Food Protectant and Infestation ControlCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - N. K. Rastogi
- Dept. of Food EngineeringCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - P. S. Negi
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| |
Collapse
|
48
|
Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Ultrasound Improves Antimicrobial Effect of Sodium Hypochlorite and Instrumental Texture on Fresh-Cut Yellow Melon. J FOOD QUALITY 2018. [DOI: 10.1155/2018/2936589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrasound combined with sanitizers is efficient for the reduction of microbiological contaminants in fruits and vegetables. However, the physicochemical changes remain to be elucidated. Therefore, the isolated and combined effect of ultrasound (40 kHz, 500 W) and sodium hypochlorite (NaOCl) (100 mg/L) for 5 min in the bacterial microbiota and physicochemical changes on yellow melon (Cucumis melo L.) were evaluated. Mesophilic aerobic bacteria (MAB), pH, total titratable acidity (TTA), and texture profile were performed. No changes in pH and TTA (p>0.05) were obtained. Firmness, chewiness, cohesiveness, and gumminess increased (p<0.05) after the ultrasound application. A synergistic effect between ultrasound and NaOCl in the MAB reduction was achieved. Therefore, ultrasound improves the antimicrobial effect of NaOCl and texture profile without undesirable chemical changes.
Collapse
|
50
|
Alenyorege EA, Ma H, Ayim I, Aheto JH, Hong C, Zhou C. Effect of multi-frequency multi-mode ultrasound washing treatments on physicochemical, antioxidant potential and microbial quality of tomato. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9980-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|