1
|
Dos Santos Mascarenhas LR, Vivoni AM, Caetano RG, Rusak LA, Alvarenga VO, Lacerda ICA. Molecular characterization and toxigenic profiles of Bacillus cereus isolates from foodstuff and food poisoning outbreaks in Brazil. Braz J Microbiol 2024; 55:1693-1701. [PMID: 38446406 PMCID: PMC11153380 DOI: 10.1007/s42770-024-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Bacillus cereus sensu stricto (s.s.) is a well-known foodborne pathogen that produces a range of enterotoxins and is able to cause two different types of foodborne illnesses-the emetic and the diarrheal syndromes. In this study, 54 B. cereus s.s. strains isolated from foodstuff and foods involved in food poisoning outbreaks were characterized according to the presence of toxin-encoding genes, virulence-encoding genes, and panC typing. Most isolates were assigned to panC groups IV (61.1%) and III (25.9%), but members of groups II and V could also be found. Investigation of specific alleles revealed high numbers of isolates carrying toxin and other virulence genes including nheA (100%), nheB (100%), hblA (79.6%), hblC (79.6%), hblD (74.1%), cytK-2 (61.1%), clo (100%), pc-plc (75.9%), sph (68.5%), pi-plc (66.6%), hlyIII (62.9%), and hlyII (24.1%). All isolates were negative for ces and cytK-1. In summary, we detected various enterotoxin and other virulence factor genes associated with diarrheal syndrome in strains analyzed, implicated or not with food poisoning. Furthermore, the most isolates analyzed belong to high-risk phylogenetic groups' panC types III and IV. Our study provides a convenient molecular scheme for characterization of B. cereus s.s. strains responsible for food poisoning outbreaks in order to improve the monitoring and investigation and assess emerging clusters and diversity of strains.
Collapse
Affiliation(s)
- Luís Renato Dos Santos Mascarenhas
- Food Microbiology Laboratory, Ezequiel Dias Foundation, Belo Horizonte/MG, Brazil.
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte/MG, Brazil.
| | | | - Renata Gomes Caetano
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte/MG, Brazil
| | - Leonardo Alves Rusak
- Bacterial Physiology Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro/RJ, Brazil
| | - Verônica Ortiz Alvarenga
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte/MG, Brazil
| | | |
Collapse
|
2
|
Chincha AAIA, Marone MP, Pia AKR, Freire L, Amorim-Neto DP, Carazzolle MF, Sant'Ana AS. Phenotypic, genotypic, and resistome of mesophilic spore-forming bacteria isolated from pasteurized liquid whole egg. Food Res Int 2024; 184:114215. [PMID: 38609213 DOI: 10.1016/j.foodres.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.
Collapse
Affiliation(s)
- Alexandra A I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marina P Marone
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil; Center for Computing and Engineering Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Ramirez-Olea H, Herrera-Cruz S, Chavez-Santoscoy RA. Microencapsulation and controlled release of Bacillus clausii through a novel non-digestible carbohydrate formulation as revolutionizing probiotic delivery. Heliyon 2024; 10:e24923. [PMID: 38304817 PMCID: PMC10830856 DOI: 10.1016/j.heliyon.2024.e24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Probiotics have gained significant attention in recent years due to the growing awareness of physical health and well-being. However, maintaining high concentrations of probiotics throughout the product's shelf life and during the gastrointestinal tract is crucial for ensuring their health-promoting effects. After determining an optimal formulation through a fractional factorial model, this study optimizes probiotic Bacillus Clausii delivery through spray-drying microencapsulation using a novel maltodextrin-alginate-inulin (MDX-ALG-IN) formulation (optimized ratio: 7:2:1). Notably, this formulation exclusively comprises non-digestible carbohydrates, marking a novel approach in probiotic encapsulation. Achieving a high Product Yield (51.06 %) and Encapsulation Efficiency (80.53 %), the study employed SEM for morphological analysis, revealing an irregular form and extensive surface in dentations characteristic of maltodextrin involvement. With a low moisture content of 3.02 % (±0.23 %) and 90.52 % solubility, the powder displayed exceptional properties. Probiotic viability remained robust, surviving up to 60 % even after 180 days at 4 °C, 25 °C, and 37 °C. Thermal characterization unveiled microcapsule resilience, exhibiting a glass transition temperature (Tg) at 138.61 °C and a melting point of 177.28 °C. The study systematically addresses crucial aspects of microencapsulation, including formulation optimization, morphological characteristics, and powder properties. Notably, the MDX-ALG-IN microcapsules demonstrated stability in simulated gastrointestinal conditions, indicating potential application for supplements and complex food matrices. In summary, this research contributes to microencapsulation understanding, emphasizing the MDX-ALG-IN formulation's efficacy in preserving probiotic viability across production stages and simulated digestive processes.
Collapse
Affiliation(s)
- Hugo Ramirez-Olea
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Sebastian Herrera-Cruz
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| | - Rocio Alejandra Chavez-Santoscoy
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada, 2501 Sur, C. P. 64849 Monterrey, N. L., Mexico
| |
Collapse
|
4
|
Superheated steam effectively inactivates diverse microbial targets despite mediating effects from food matrices in bench-scale assessments. Int J Food Microbiol 2022; 378:109838. [PMID: 35863173 DOI: 10.1016/j.ijfoodmicro.2022.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Sanitation in dry food processing environments is challenging due to the exclusion of water. Superheated steam (SHS) is a novel sanitation technique that utilizes high temperature steam to inactivate microorganisms. The high sensible heat of SHS prevents condensation on surfaces. Here we evaluated SHS thermal inactivation of various vegetative and spore forming bacteria and fungi and determined the effect of food matrix composition on SHS efficacy. Capillary tubes with vegetative cells (Salmonella, E. coli O157:H7, Listeria monocytogenes, or Enterococcus faecium), Aspergillus fischeri ascospores, or B. cereus spores (100 μL) were SHS treated at 135 ± 1 °C for 1 or 2 s. After 1 s, SHS achieved a reduction of 10.91 ± 0.63 log10 CFU/mL for vegetative cells, 2.09 ± 0.58 log10 ascospores/mL for A. fischeri, and 0.21 ± 0.10 log10 spores/mL for B. cereus. SHS treatment achieved significant reductions in vegetative cells and fungal ascospores (p < 0.05), however B. cereus spores were not significantly reduced after 2 s and were determined to be the most resistant of the cell types evaluated. Consequently, peanut butter compositions (peanut powder, oil, and water) and milk powder (whole and nonfat) inoculated with B. cereus spores on aluminum foil coupons (2 × 3 × 0.5 cm) were tested. The D161°C values for B. cereus spores ranged from 46.53 ± 4.48 s (6 % fat, 55 % moisture, aw: 0.927) to 79.21 ± 14.87 s (43 % fat, 10 % moisture, aw: 0.771) for various peanut butter compositions. Whole milk powder had higher D161°C (34.38 ± 20.90 s) than nonfat milk powder (24.73 ± 6.78 s). SHS (135 ± 1 °C) rapidly (1 s) inactivated most common vegetative bacterial cells; however B. cereus spores were more heat resistant. B. cereus spore inactivation was significantly affected by product composition (p < 0.05). Compared to the log-linear model (R2 0.81-0.97), the Weibull model had better fit (R2 0.94-0.99). Finally, the ease of peanut butter removal from surfaces increased while the ease of non-fat dry milk removal decreased with the increasing SHS treatment duration. However, allergen residues were detectable on surfaces regardless of SHS treatment. The findings from this study can inform the development of pilot-scale research on SHS.
Collapse
|
5
|
Meireles Mafaldo Í, Priscila Barros de Medeiros V, Karoline Almeida da Costa W, Francisca da Costa Sassi C, da Costa Lima M, Leite de Souza E, Eduardo Barão C, Colombo Pimentel T, Magnani M. Survival during long-term storage, membrane integrity, and ultrastructural aspects of Lactobacillus acidophilus 05 and Lacticaseibacillus casei 01 freeze-dried with freshwater microalgae biomasses. Food Res Int 2022; 159:111620. [DOI: 10.1016/j.foodres.2022.111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
|
6
|
Cheese whey recycling in the perspective of the circular economy: Modeling processes and the supply chain to design the involvement of the small and medium enterprises. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Wedel C, Atamer Z, Dettling A, Wenning M, Scherer S, Hinrichs J. Towards low-spore milk powders: A review on microbiological challenges of dairy powder production with focus on aerobic mesophilic and thermophilic spores. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Microbial contaminants in powdered infant formula: what is the impact of spray-drying on microbial inactivation? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Prado-Silva LD, Alvarenga VO, Braga GÚ, Sant’Ana AS. Inactivation kinetics of Bacillus cereus vegetative cells and spores from different sources by antimicrobial photodynamic treatment (aPDT). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Pulsed electric field pre-treatment for enhanced bacterial survival after drying: Effect of carrier matrix and strain variability. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Sánchez Chica J, Correa MM, Aceves-Diez AE, Rasschaert G, Heyndrickx M, Castañeda-Sandoval LM. Genomic and Toxigenic Heterogeneity of Bacillus cereus sensu lato Isolated from Ready-to-Eat Foods and Powdered Milk in Day Care Centers in Colombia. Foodborne Pathog Dis 2019; 17:340-347. [PMID: 31738585 DOI: 10.1089/fpd.2019.2709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) is a group of bacteria commonly found in diverse environments, including foods, with potential to cause emesis and diarrhea. In Colombia, it is one of the main foodborne pathogens. The aim of this study was to determine the genomic and toxigenic heterogeneity of B. cereus s.l. isolated from ready-to-eat foods and powdered milk collected in day care centers of Medellin, Colombia. Of 112 B. cereus s.l. isolates obtained, 94% were β-hemolytic. Toxigenic heterogeneity was established by the presence of nheABC, hblCDAB, cytK2, entFM, and cesB toxigenic genes. The nheABC operon and entFM gene were most frequently detected in the isolates, whereas the cesB gene was not found. According to the toxin genes content, nine toxigenic profiles were identified. A 44% of isolates had profiles with all genes for nonhemolytic enterotoxin, hemolysin BL, and enterotoxin FM production (profiles II and IV). Pulsed-field gel electrophoresis analysis indicated a high genomic heterogeneity among the B. cereus s.l., with 68 isolates grouping into 16 clusters and 33 placed separately in the dendrogram. This study provides useful information on the safety of ready-to-eat foods and powdered milk in day care centers where children, a susceptible population, are exposed and it should incentive for more studies to understand the distribution of different toxin-encoding genes among B. cereus s.l. isolates, enabling detailed risk assessment.
Collapse
Affiliation(s)
- Jennifer Sánchez Chica
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Angel E Aceves-Diez
- Laboratorios Minkab, Departamento de Investigación y Desarrollo, Guadalajara, Jalisco, Mexico
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
13
|
Pereira APM, Stelari HA, Carlin F, Sant’Ana AS. Inactivation kinetics of Bacillus cereus and Geobacillus stearothermophilus spores through roasting of cocoa beans and nibs. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Li B, Mo L, Yang Y, Zhang S, Xu J, Ge Y, Xu Y, Shi Y, Le G. Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Adv 2019; 9:22161-22175. [PMID: 35519476 PMCID: PMC9066704 DOI: 10.1039/c9ra03223a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
This study explored the effects of protein oxidation during milk processing on spatial learning and memory in rats. Increasing the heating time, fat content, and inlet air temperature during processing by boiling, microwave heating, spray-drying, or freeze-drying increases milk protein oxidation. Oxidative damage done to milk proteins by microwave heating is greater than that caused by boiling. Dityrosine (DT), as a kind of tyrosine oxidation product, is the most important marker of this process, especially during spray-drying. Rats received diets containing either SWM (spray-dried milk powder diet), FWM (freeze-dried milk powder diet), FWM + LDT (freeze-dried milk powder + low dityrosine diet, DT: 1.4 mg kg-1), or FWM + HDT (freeze-dried milk powder + high dityrosine diet, DT: 2.8 mg kg-1) for 6 weeks. We found that the SWM group, the FWM + LDT group, and the FWM + HDT group appeared to have various degrees of redox state imbalance and oxidative damage in plasma, liver, and brain tissues. Further, hippocampal inflammatory and apoptosis genes were significantly up-regulated in such groups, while learning and memory genes were significantly down-regulated. Eventually, varying degrees of spatial learning and memory impairment were demonstrated in those groups in the Morris water maze. This means that humans should control milk protein oxidation and improve the processing methods applied to food.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Ling Mo
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- School of Public Health, Guilin Medical University Guilin PR China 541001
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- College of Grain and Food Science, Henan University of Technology Zhengzhou PR China 450001
| | - Shuai Zhang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Jingbing Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| |
Collapse
|
15
|
The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int 2019; 125:108542. [PMID: 31554104 DOI: 10.1016/j.foodres.2019.108542] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
The resistance of Bifidobacterium, Lactobacillus, and Bacillus strains with claimed probiotic properties in different food matrices was evaluated. Lactobacillus paracasei PXN 37, Lactobacillus acidophilus La-5, Bifidobacterium animalis subsp. lactis Bb-12, Bifidobacterium breve PXN 25, Bacillus subtilis PXN 21, Bacillus coagulans GBI30 6086 and Bacillus coagulans MTCC 5856 strains were inoculated in "requeijão cremoso" cheese, pasteurized orange juice, and bread. Further, the counts of the strains with claimed probiotic properties were determined throughout the products' shelf-life. Additionally, the survival (%), at the beginning and at the end of their shelf-life, of each strain with claimed probiotic properties inoculated in the three foods was estimated by using a static in vitro system simulating the gastric (pH 2), enteric I (pH 5) and enteric II (pH 7) phases of gastrointestinal tract (GIT). Overall, it has been found that the Bacillus strains with claimed probiotic properties showed greater viability than probiotic Bifidobacterium and Lactobacillus strains no matter the food studied. The percentage of survival of the Bacillus strains with claimed probiotic properties were always above 83%. The Bacillus strains with claimed probiotic properties were able to survive well in all the food matrices tested. Therefore, this study shows that these strains of Bacillus may comprise a feasible strategy for expanding the range of "probiotic food" choices given their high resistance to the composition of foods, manufacturing steps, and resistance to simulated GIT conditions.
Collapse
|