1
|
Fracari PR, Tomasevic I, Massia AG, Laroque DA, Balzan MM, Dos Santos BA, Cichoski AJ, Wagner R, Carciofi BAM, Campagnol PCB. Pulsed light and jabuticaba peel extract for nitrite reduction and quality enhancement in sliced mortadella. Meat Sci 2025; 224:109777. [PMID: 39983654 DOI: 10.1016/j.meatsci.2025.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/05/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
This study evaluated using pulsed light (PL) and jabuticaba peel extract (JPE) to control bacterial growth in sliced mortadella with reduced sodium nitrite content and assessed their impact on food quality. Three formulations were tested: 150 ppm nitrite (100 % of the allowed dosage, N100%), 75 ppm nitrite (N50%), and 75 ppm nitrite with 1 % JPE (N50% + JPE). The mortadella was cooked, sliced, treated with PL (5.28 J/cm2 fluence, 1046.9 W/cm2 irradiance), vacuum-packed, and stored at 4 °C for 30 days. N50% samples exhibited higher TBARS values (0.54 vs. 0.18 mg MDA/kg) and higher population counts of total mesophilic aerobic bacteria (TMAB, 8.38 vs. 7.1 Log CFU/g) and lactic acid bacteria (LAB) (8.21 vs. 6.17 Log CFU/g, respectively) than N100% after 30 days of storage. PL application reduced the TMAB and LAB by 1.4-1.55 Log CFU/g and 1.0-2.24 Log CFU/g for the N100% and N50% formulations (P < 0.05), respectively, but negatively affected pH and color, increasing lipid oxidation. JPE mitigated these defects, and combined JPE and PL presented an enhanced antimicrobial effect, with N50% + JPE + PL samples showing similar microbial counts to N100% over the storage. The combination of JPE and PL also significantly reduced nitrosamine levels, highlighting it as an effective strategy to improve the quality and safety of meat products.
Collapse
Affiliation(s)
- Priscila Rossato Fracari
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany
| | - Ana Guimarães Massia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Denise Adamoli Laroque
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, USA
| | - Manoela Meira Balzan
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Bibiana Alves Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Alexandre José Cichoski
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Bruno Augusto Matar Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Biological and Agricultural Engineering, University of California Davis, Davis, USA
| | | |
Collapse
|
2
|
Fracari PR, Massia AG, Laroque DA, Santos BAD, Cichoski AJ, Carciofi BAM, Campagnol PCB. Pulsed Light Treatment Effect on Color, Oxidative Stability, and Listeria monocytogenes Population of Sliced Mortadella. Foods 2024; 13:2976. [PMID: 39335904 PMCID: PMC11431120 DOI: 10.3390/foods13182976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated the effects of high-intensity pulsed light (PL) on sliced mortadella, assessing how the parameters pulse width (1260 to 2520 µs) and number of pulses (one to three) influence color, oxidative stability, and Listeria monocytogenes population. The different PL parameters generated a fluence ranging from 2.64 to 6.57 J/cm2 and irradiance ranging from 1046.9 to 1738.8 W/cm2. The PL slightly increased the temperature and pH of the samples, and this elevation was well correlated to the higher number of pulses and higher fluence. The color parameter a* was reduced while b* values increased after PL application, with these effects being more significant in treatments with a higher number of pulses and higher fluence. The highest values of TBARS were found in treatments with higher fluence (5.28 and 6.57 J/cm2), which were characterized by the attribute "oxidized color" in sensory evaluation. The different PL conditions reduced the count of L. monocytogenes by up to 1.44 Log CFU/cm2. The treatment with a pulse width of 1260 µs, two pulses, fluence of 4.38 J/cm2, and irradiance of 1738.3 W/cm2 achieved the same efficacy in pathogen reduction as the treatments with higher fluence. Moreover, these PL conditions had a minimal impact on the color and oxidative stability of mortadella, demonstrating an effective balance between microbiological safety and quality preservation.
Collapse
Affiliation(s)
- Priscila Rossato Fracari
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Ana Guimarães Massia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Denise Adamoli Laroque
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Bibiana Alves Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Alexandre José Cichoski
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
3
|
Zhang Y, Ma Z, Chen J, Yang Z, Ren Y, Tian J, Zhang Y, Guo M, Guo J, Song Y, Feng Y, Liu G. Electromagnetic wave-based technology for ready-to-eat foods preservation: a review of applications, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39275803 DOI: 10.1080/10408398.2024.2399294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhiming Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiaxin Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhongshuai Yang
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yue Ren
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jing Tian
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Chen BR, Roobab U, Madni GM, Abdi G, Zeng XA, Aadil RM. A review of emerging applications of ultrasonication in Comparison with non-ionizing technologies for meat decontamination. ULTRASONICS SONOCHEMISTRY 2024; 108:106962. [PMID: 38943850 PMCID: PMC11261440 DOI: 10.1016/j.ultsonch.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.
Collapse
Affiliation(s)
- Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates.
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169 Iran.
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Lee Y, Yoon Y. Principles and Applications of Non-Thermal Technologies for Meat Decontamination. Food Sci Anim Resour 2024; 44:19-38. [PMID: 38229860 PMCID: PMC10789560 DOI: 10.5851/kosfa.2023.e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024] Open
Abstract
Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.
Collapse
Affiliation(s)
- Yewon Lee
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
6
|
Duma-Kocan P, Rudy M, Gil M, Stanisławczyk R, Żurek J, Zaguła G. The Impact of a Pulsed Light Stream on the Quality and Durability of the Cold-Stored Longissimus Dorsal Muscle of Pigs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4063. [PMID: 36901071 PMCID: PMC10002303 DOI: 10.3390/ijerph20054063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effect of pulsed light application (exposure to a pulsed light beam (PL) of 400 Hz for a period of 60 s, with an energy dose of 600 mW and wavelengths of 660 and 405 nm) on the physicochemical, technological, and sensory properties, as well as the nutritional value and shelf life of cold-storage pig longissimus dorsi muscle. Each muscle was divided into six parts, three of which were control samples, and the rest were exposed to pulsed light. The detailed laboratory tests of the meat were conducted 1, 7, and 10 days after slaughter. The meat was cold stored at +3 °C ± 0.5 °C. The study showed that the application of pulsed light has a favorable effect on lowering the TBARS index, oxidation-reduction potential, and water activity values. In addition, the application of PL had no statistically significant effect on the variation in the perception of selected sensory characteristics of meat. Furthermore, PL processing, as a low-energy-intensive method that can be environmentally friendly and thus have a large potential for implementation, is an innovative way to extend the shelf life, especially of raw meat, without a negative impact on its quality. This is of particular importance for food security (especially in the quantitative and qualitative aspects of food, but also in terms of food safety).
Collapse
Affiliation(s)
- Paulina Duma-Kocan
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Marian Gil
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Cwiklinskiej 2, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food and Nutrition Technology, College of Natural Science, University of Rzeszow, Cwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
7
|
Wang J, Chen J, Sun Y, He J, Zhou C, Xia Q, Dang Y, Pan D, Du L. Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Obileke K, Onyeaka H, Miri T, Nwabor OF, Hart A, Al‐Sharify ZT, Al‐Najjar S, Anumudu C. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- KeChrist Obileke
- Department of Physics, Renewable Energy Research Centre University of Fort Hare Alice Eastern Cape South Africa
| | - Helen Onyeaka
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Taghi Miri
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Ozioma Forstinus Nwabor
- Natural Products Research Centre of Excellence, Division of Biological Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Abarasi Hart
- Department of Chemical and Biological Engineering University of Sheffield Sheffield South Yorkshire UK
| | - Zainab T. Al‐Sharify
- School of Chemical Engineering University of Birmingham Birmingham UK
- Environmental Engineering Department Mustansiriyah University Baghdad Iraq
| | - Shahad Al‐Najjar
- Chemical Engineering Department Al‐Nahrian University Baghdad Iraq
| | - Christian Anumudu
- School of Chemical Engineering University of Birmingham Birmingham UK
| |
Collapse
|
9
|
Zdolec N, Kotsiri A, Houf K, Alvarez-Ordóñez A, Blagojevic B, Karabasil N, Salines M, Antic D. Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses. Foods 2022; 11:2110. [PMID: 35885353 PMCID: PMC9315615 DOI: 10.3390/foods11142110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Interventions from lairage to the chilling stage of the pig slaughter process are important to reduce microbial contamination of carcasses. The aim of this systematic review and meta-analysis was to assess the effectiveness of abattoir interventions in reducing aerobic colony count (ACC), Enterobacteriaceae, generic Escherichia coli, and Yersinia spp. on pig carcasses. The database searches spanned a 30 year period from 1990 to 2021. Following a structured, predefined protocol, 22 articles, which were judged as having a low risk of bias, were used for detailed data extraction and meta-analysis. The meta-analysis included data on lairage interventions for live pigs, standard processing procedures for pig carcasses, prechilling interventions, multiple carcass interventions, and carcass chilling. Risk ratios (RRs) for prevalence studies and mean log differences (MDs) for concentration outcomes were calculated using random effects models. The meta-analysis found that scalding under commercial abattoir conditions effectively reduced the prevalence of Enterobacteriaceae (RR: 0.05, 95% CI: 0.02 to 0.12, I2 = 87%) and ACC (MD: -2.84, 95% CI: -3.50 to -2.18, I2 = 99%) on pig carcasses. Similarly, significant reductions of these two groups of bacteria on carcasses were also found after singeing (RR: 0.25, 95% CI: 0.14 to 0.44, I2 = 90% and MD: -1.95, 95% CI: -2.40 to -1.50, I2 = 96%, respectively). Rectum sealing effectively reduces the prevalence of Y. enterocolitica on pig carcasses (RR: 0.60, 95% CI: 0.41 to 0.89, I2 = 0%). Under commercial abattoir conditions, hot water washing significantly reduced ACC (MD: -1.32, 95% CI: -1.93 to -0.71, I2 = 93%) and generic E. coli counts (MD: -1.23, 95% CI: -1.89 to -0.57, I2 = 61%) on pig carcasses. Conventional dry chilling reduced Enterobacteriaceae prevalence on pig carcasses (RR: 0.32, 95% CI: 0.21 to 0.48, I2 = 81%). Multiple carcass interventions significantly reduced Enterobacteriaceae prevalence (RR: 0.11, 95% CI: 0.05 to 0.23, I2 = 94%) and ACC on carcasses (MD: -2.85, 95% CI: -3.33 to -2.37, I2 = 97%). The results clearly show that standard processing procedures of scalding and singeing and the hazard-based intervention of hot water washing are effective in reducing indicator bacteria on pig carcasses. The prevalence of Y. enterocolitica on pig carcasses was effectively reduced by the standard procedure of rectum sealing; nevertheless, this was the only intervention for Yersinia investigated under commercial conditions. High heterogeneity among studies and trials investigating interventions and overall lack of large, controlled trials conducted under commercial conditions suggest that more in-depth research is needed.
Collapse
Affiliation(s)
- Nevijo Zdolec
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Aurelia Kotsiri
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Kurt Houf
- Faculty of Veterinary Medicine, Department of Veterinary and Biosciences, Ghent University, 9820 Merelbeke, Belgium;
| | - Avelino Alvarez-Ordóñez
- Institute of Food Science and Technology, Department of Food Hygiene and Technology, Universidad de León, 24004 León, Spain;
| | - Bojan Blagojevic
- Faculty of Agriculture, Department of Veterinary Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nedjeljko Karabasil
- Faculty of Veterinary Medicine, University of Belgrade, Department of Food Hygiene and Technology, 11000 Belgrade, Serbia;
| | - Morgane Salines
- French Ministry of Agriculture, Office for Slaughterhouses and Cutting Plants, 75015 Paris, France;
| | - Dragan Antic
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
10
|
Novel Techniques for Microbiological Safety in Meat and Fish Industries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The consumer tendency towards convenient, minimally processed meat items has placed extreme pressure on processors to certify the safety of meat or meat products without compromising the quality of product and to meet consumer’s demand. This has prompted difficulties in creating and carrying out novel processing advancements, as the utilization of more up-to-date innovations may influence customer decisions and assessments of meat and meat products. Novel advances received by the fish and meat industries for controlling food-borne microbes of huge potential general wellbeing concern, gaps in the advancements, and the requirement for improving technologies that have been demonstrated to be effective in research settings or at the pilot scale shall be discussed. Novel preparing advancements in the meat industries warrant microbiological approval before being named as industrially suitable alternatives and authorizing infra-structural changes. This miniature review presents the novel techniques for the microbiological safety of meat products, including both thermal and non-thermal methods. These technologies are being successfully implemented and rationalized in subsisting processing surroundings.
Collapse
|
11
|
Ren M, Yu X, Mujumdar AS, Yagoub AEGA, Chen L, Zhou C. Visualizing the knowledge domain of pulsed light technology in the food field: A scientometrics review. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Vargas-Ramella M, Pateiro M, Gavahian M, Franco D, Zhang W, Mousavi Khaneghah A, Guerrero-Sánchez Y, Lorenzo JM. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Rybak K, Wiktor A, Pobiega K, Witrowa-Rajchert D, Nowacka M. Impact of pulsed light treatment on the quality properties and microbiological aspects of red bell pepper fresh-cuts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Preetha P, Pandiselvam R, Varadharaju N, Kennedy ZJ, Balakrishnan M, Kothakota A. Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Abstract
Abstract
Purpose of Review
The market for minimally processed products is constantly growing due to consumer demand. Besides food safety and increased shelf life, nutritional value and sensory appearance also play a major role and have to be considered by the food processors. Therefore, the purpose of the review was to summarize recent knowledge about important alternative non-thermal physical technologies, including both those which are actually applied (e.g. high-pressure processing and irradiation) and those demonstrating a high potential for future application in raw meat decontamination (e.g. pulsed light UV-C and cold plasma treatment). The evaluation of the methods is carried out with respect to efficiency, preservation of food quality and consumer acceptance.
Recent Findings
It was evident that significantly higher bacterial reductions are achieved with gamma-ray, electron beam irradiation and high pressure, followed by pulsed light, UV-C and cold plasma, with ultrasound alone proving the least effective. As a limitation, it must be noted that sensory deviations may occur and that legal approvals may have to be applied for.
Summary
In summary, it can be concluded that physical methods have the potential to be used for decontamination of meat surfaces in addition to common hygiene measures. However, the aim of future research should be more focused on the combined use of different technologies to further increase the inactivation effects by keeping meat quality at the same time.
Collapse
|
16
|
Lee SY, Lee WK, Lee JW, Chung MS, Oh SW, Shin JK, Min SC. Microbial Decontamination of Rice Germ Using a Large-Scale Plasma Jet-Pulsed Light-Ultraviolet-C Integrated Treatment System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02590-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Söbeli C, Uyarcan M, Kayaardı S. Pulsed UV-C radiation of beef loin steaks: Effects on microbial inactivation, quality attributes and volatile compounds. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | - Marcelo Cristianini
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | | |
Collapse
|
19
|
Unconventional Methods of Preserving Meat Products and Their Impact on Health and the Environment. SUSTAINABILITY 2020. [DOI: 10.3390/su12155948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A dual objective of food storage is to retain nutritional value and safe consumption over time. As supply chains have globalized, food protection and preservation methods have advanced. However, increasing demands to cater for larger volumes and for more effective food storage call for new technologies. This paper examines promising meat preservation methods, including high pressure process, ultrasounds, pulsating electric and magnetic field, pulsed light and cold plasma. These methods not only make it possible to obtain meat and meat products with a longer shelf life, safer for health and without preservatives, but also are more environment-friendly in comparison with traditional methods. With the use of alternative methods, it is possible to obtain meat products that are microbiologically safer, whilst also high quality and free from chemical additives. Moreover, these new technologies are also more ecological, do not require large quantities of energy or water, and generate less waste.
Collapse
|
20
|
Pulsed Light: Challenges of a Non-Thermal Sanitation Technology in the Winemaking Industry. BEVERAGES 2020. [DOI: 10.3390/beverages6030045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pulsed light is an emerging non-thermal technology viable for foodstuff sanitation. The sanitation is produced through the use of high energy pulses during ultra-short periods of time (ns to µs). The pulsed light induces irreversible damages at the DNA level with the formation of pyrimidine dimers, but also produces photo-thermal and photo-physical effects on the microbial membranes that lead to a reduction in the microbial populations. The reduction caused in the microbial populations can reach several fold, up to 4 log CFU/mL decrement. A slight increase of 3 to 4 °C in temperature is observed in treated food; nonetheless, this increase does not modify either the nutritional properties of the product or its sensory profile. The advantages of using pulsed light could be used to a greater extent in the winemaking industry. Experimental trials have shown a positive effect of reducing native yeast and bacteria in grapes to populations below 1–2 log CFU/mL. In this way, pulsed light, a non-thermal technology currently available for the sanitation of foodstuffs, is an alternative for the reduction in native microbiota and the later control of the fermentative process in winemaking. This certainly would allow the use of fermentation biotechnologies such as the use of non-Saccharomyces yeasts in mixed and sequential fermentations to preserve freshness in wines through the production of aroma volatile compounds and organic acids, and the production of wines with less utilization of SO2 in accordance with the consumers’ demand in the market.
Collapse
|
21
|
Zhu Y, Li C, Cui H, Lin L. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157:H7 and its application in carrot juice. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
23
|
Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Shoaib M, Shehzad A, Raza H, Niazi S, Khan IM, Akhtar W, Safdar W, Wang Z. A comprehensive review on the prevalence, pathogenesis and detection ofYersinia enterocolitica. RSC Adv 2019; 9:41010-41021. [PMID: 35540058 PMCID: PMC9076465 DOI: 10.1039/c9ra06988g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat. “Yersiniosis” is caused by a pathogen named Yersinia enterocolitica and is characterized by diarrheal, ileitis, and mesenteric lymphadenitis types of sicknesses. This neglected pathogen starts its pathogenic activity by colonizing inside the intestinal tract of the host upon the ingestion of contaminated food. Y. enterocolitica remains a challenge for researchers and food handlers due to its growth habits, low concentrations in samples, morphological similarities with other bacteria and lack of rapid, cost-effective, and accurate detection methods. In this review, we presented recent information about its prevalence, biology, pathogenesis, and existing cultural, immunological, and molecular detection approaches. Our ultimate goal is to provide updated knowledge regarding this pathogen for the development of quick, effective, automated, and sensitive detection methods for the systematic detection of Y. enterocolitica. Food safety is imperative for a healthy life, but pathogens are still posing a significant life threat.![]()
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Aamir Shehzad
- UniLaSalle
- Transformations & Agroressources Research Unit
- France
- National Institute of Food Science and Technology
- FFNHS
| | - Husnain Raza
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- National Institute of Food Science and Technology
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| | - Wasim Akhtar
- Synergetic Innovation Center of Food Safety and Nutrition
- Jiangnan University
- Wuxi 214122
- People's Republic of China
| | - Waseem Safdar
- University Institute of Diet and Nutritional Sciences
- The University of Lahore-Islamabad Campus
- Islamabad
- Pakistan
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- Synergetic Innovation Center of Food Safety and Nutrition
| |
Collapse
|