1
|
Li X, Wang L, Lin J, Gu Y, Liu Z, Hu J. Detection of CRISPR‒Cas and type I R-M systems in Klebsiella pneumoniae of human and animal origins and their relationship to antibiotic resistance and virulence. Microbiol Spectr 2025; 13:e0000924. [PMID: 39699265 PMCID: PMC11792477 DOI: 10.1128/spectrum.00009-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)‒CRISPR-associated protein (Cas) and restriction‒modification (R-M) systems are important immune systems in bacteria. Information about the distributions of these two systems in Klebsiella pneumoniae from different hosts and their mutual effect on antibiotic resistance and virulence is still limited. In this study, the whole genomes of 520 strains of K. pneumoniae from GenBank, including 325 from humans and 195 from animals, were collected for CRISPR‒Cas systems and type I R-M systems, virulence genes, antibiotic resistance genes, and multilocus sequence typing detection. The results showed that host origin had no obvious influence on the distributions of the two systems (CRISPR‒Cas systems in 29.8% and 24.1%, type I R-M systems in 9.8% and 11.8% of human-origin and animal-origin strains, respectively) in K. pneumoniae. Identical spacer sequences from different hosts demonstrated there was a risk of human-animal transmission. All virulence genes (yersiniabactin, colibactin, aerobactin, salmochelin, rmpADC, and rmpA2) detection rates were higher when only the CRISPR‒Cas systems were present but were all reduced when coexisting with type I R-M systems. However, a lower prevalence of most antibiotic-resistance genes was found when the CRISPR‒Cas systems were alone, and when type I R-M systems were coexisting, some of the antibiotic resistance gene incidence rates were even lower (quinolones, macrolides, tetracyclines and carbapenems), and some of them were higher instead (aminoglycosides, clindamycins, rifampicin-associated, sulfonamides, methotrexates, beta-lactamases and ultrabroad-spectrum beta-lactamases). The synergistic and opposed effects of the two systems on virulence and antibiotic-resistance genes need further study.IMPORTANCEK. pneumoniae is an important opportunistic pathogen responsible for both human and animal infections, and the emergence of hypervirulent and multidrug-resistant K. pneumoniae has made it difficult to control this pathogen worldwide. Here, we find that CRISPR‒Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, have synergistic and opposed effects on virulence and antibiotic resistance genes in K. pneumoniae. Moreover, this study provides insights into the distributions of the two systems in K. pneumoniae from different hosts, and there is no significant difference in the prevalence of the two systems among K. pneumoniae spp. In addition, this study also characterizes the CRISPR arrays of K. pneumoniae from different hosts, suggesting that the strains sharing the same spacer sequences have the potential to spread between humans and animals.
Collapse
Affiliation(s)
- Xue Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinghuan Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingjuan Gu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Fallah T, Shafiei M. Comprehensive Analysis of CRISPR-Cas Systems and Their Influence on Antibiotic Resistance in Salmonella enterica Strains. Bioinform Biol Insights 2024; 18:11779322241307984. [PMID: 39703747 PMCID: PMC11656426 DOI: 10.1177/11779322241307984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Salmonella enterica is a gram-negative bacterium that demonstrates a remarkable ability to acquire antibiotic resistance genes (ARGs). The role of the CRISPR-Cas system in influencing antibiotic resistance in S. enterica is still under investigation. This study explores the distribution and impact of CRISPR-Cas systems on antibiotic resistance by analyzing 316 S. enterica genomes. We conducted sequence alignments, phylogenetic analyses, and conservation studies on Cas genes, direct repeats (DRs), and leader sequences. Promoter predictions and RNA secondary structure analyses were also performed. ARGs were identified, and their correlation with Cas gene clusters was evaluated. Our findings revealed that 82.33% of strains possess complete CRISPR-Cas systems, while 17.66% have orphan CRISPRs. We identified 290 distinct DRs, most of which formed stable stem-loop structures, although no promoter regions were detected within the leader sequences. Most spacers were chromosome-targeting, with a smaller proportion homologous to phages and plasmids. Importantly, strains with complete CRISPR-Cas systems showed a higher incidence of ARGs compared with those with orphan or no CRISPR systems. Specifically, the incidence of ARGs was 54.3% higher in strains with complete CRISPR-Cas systems than in strains without CRISPR-Cas systems, and 15.1% higher than in strains with orphan CRISPRs. Spearman's correlation analysis confirmed a statistically significant but weak correlation between the presence of Cas genes and the frequency of ARGs (P-value = 3.892e-06). These results suggest that CRISPR-Cas systems may play a role in the acquisition of ARGs, potentially through mutations under antibiotic pressure. Future studies should investigate mutations, particularly in Cas3-the signature protein of type I CRISPR-Cas systems. In addition, experimental validation, such as culturing S. enterica strains with complete CRISPR-Cas systems under different antibiotic conditions, followed by sequencing to assess the uptake or absence of newly acquired ARGs, would help clarify the potential role of CRISPR-Cas systems in bacterial adaptation to antimicrobial pressures.
Collapse
Affiliation(s)
- Tina Fallah
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Wang L, Yang J, Li X, Gu Y, Wang L, Liu Z, Hu J. Comparison of CRISPR typing and conventional molecular methods for distinguishing Laribacter hongkongensis isolates from fish, frogs and humans. Int J Food Microbiol 2024; 422:110824. [PMID: 39003891 DOI: 10.1016/j.ijfoodmicro.2024.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
High-resolution and efficient typing for Laribacter hongkongensis (L. hongkongensis) is essential for epidemiological investigation of such emerging foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) typing is an innovative molecular method that shows great promise for L. hongkongensis typing. Here, we explored the CRISPR typing method by combining CRISPR1 and CRISPR2 loci to characterize a collection of 109 L. hongkongensis isolates from humans and animals and compared it to current molecular methods such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The results showed that all three methods have high discriminatory power (diversity index was 0.9902 for PFGE, 0.9663 for CRISPR and 0.9562 for MLST); strong congruence was observed between them (Rand index was 0.969 between CRISPR and PFGE, 0.953 between CRISPR and MLST, 0.958 between PFGE and MLST). CRISPR typing could well distinguish the isolates in the same STs or PFGE profiles, and the genetic information contained by the CRISPR array is useful for deep phylogenetic typing. We demonstrate that rapid CRISPR typing is a practical genetic fingerprinting tool with high resolution, comparable ease of use and lower cost, ability to track the source of various groups of L. hongkongensis strains and indication of genetic characteristics.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Yang
- Shaoguan Municipal Health Supervision Agency, Shaoguan 510200, China
| | - Xue Li
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yingjuan Gu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Wang
- Luohu district Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
4
|
Cuetero-Martínez Y, Flores-Ramírez A, De Los Cobos-Vasconcelos D, Aguirre-Garrido JF, López-Vidal Y, Noyola A. Removal of bacterial pathogens and antibiotic resistance bacteria by anaerobic sludge digestion with thermal hydrolysis pre-treatment and alkaline stabilization post-treatment. CHEMOSPHERE 2023; 313:137383. [PMID: 36436581 DOI: 10.1016/j.chemosphere.2022.137383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Primary sludge (PS) is associated with public health and environmental risks, so regulations focus on reducing the pathogenic and heavy metal contents of the treated material (biosolids), intended for soil amendments and land reclamation. The regulations set limits for Escherichia coli (or fecal coliforms), Salmonella spp., helminth eggs and enterovirus. However, the potential risk due to antibiotic resistant bacteria (ARB) and other human potential pathogenic bacteria (HPB) are not considered. In this work, three sludge treatment processes, having in common an anaerobic digestion step, were applied to assess the removal of regulated bacteria (fecal coliforms, Salmonella spp), ARB and HPB. The treatment arrangements, fed with PS from a full-scale wastewater treatment plant were: 1) Mesophilic anaerobic digestion followed by alkaline stabilization post-treatment (MAD-CaO); 2) Thermophilic anaerobic digestion (TAD) and, 3) Pre-treatment (mild thermo-hydrolysis) followed by TAD (PT-TAD). The results address the identification, quantification (colony forming units) and taxonomic characterization of ARB resistant to β-lactams and vancomycin, as well as the taxonomic characterization of HPB by sequencing with PacBio. In addition, quantification based on culture media of fecal coliforms and Salmonella spp. is presented. The capabilities and limitations of microbiological and metataxonomomic analyses based on PacBio sequencing are discussed, emphasizing that they complement each other. Genus Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Ochrobactrum, Pseudomonas and Raoultella, among others, were found in the PS, which are of clinical or environmental importance, being either HPB, HPB-ARB, or non-pathogenic ARB with the potentiality of horizontal gene transfer. Based on the analysis of fecal coliforms and Salmonella spp., the three processes produced class A (highest) biosolids, suitable for unrestricted agriculture applications. Mild thermo-hydrolisis was effective in decreasing ARB cultivability, but it reappeared after the following TAD. O. intermedium (HPB-ARB) was enriched in MAD and TAD while Laribacter hongkongensis (HPB) did persist after the applied treatments.
Collapse
Affiliation(s)
- Yovany Cuetero-Martínez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico; Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Aarón Flores-Ramírez
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Daniel De Los Cobos-Vasconcelos
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana - Unidad Lerma, 52005 Lerma de Villada, Edo. Mex, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Adalberto Noyola
- Subdirección de Hidráulica y Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico.
| |
Collapse
|
5
|
Tao S, Zhou D, Chen H, Li N, Zheng L, Fang Y, Xu Y, Jiang Q, Liang W. Analysis of genetic structure and function of clustered regularly interspaced short palindromic repeats loci in 110 Enterococcus strains. Front Microbiol 2023; 14:1177841. [PMID: 37168121 PMCID: PMC10165109 DOI: 10.3389/fmicb.2023.1177841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune system involved in specific defenses against the invasion of foreign mobile genetic elements, such as plasmids and phages. This study aims to analyze the gene structure and to explore the function of the CRISPR system in the Enterococcus genome, especially with regard to drug resistance. The whole genome information of 110 enterococci was downloaded from the NCBI database to analyze the distribution and the structure of the CRISPR-Cas system including the Cas gene, repeat sequences, and spacer sequence of the CRISPR-Cas system by bioinformatics methods, and to find drug resistance-related genes and analyze the relationship between them and the CRISPR-Cas system. Multilocus sequence typing (MLST) of enterococci was performed against the reference MLST database. Information on the drug resistance of Enterococcus was retrieved from the CARD database, and its relationship to the presence or absence of CRISPR was statistically analyzed. Among the 110 Enterococcus strains, 39 strains (35.45%) contained a complete CRISPR-Cas system, 87 CRISPR arrays were identified, and 62 strains contained Cas gene clusters. The CRISPR system in the Enterococcus genome was mainly type II-A (59.68%), followed by type II-C (33.87%). The phylogenetic analysis of the cas1 gene sequence was basically consistent with the typing of the CRISPR-Cas system. Of the 74 strains included in the study for MLST typing, only 19 (25.68%) were related to CRISPR-Cas typing, while the majority of the strains (74.32%) of MLST typing were associated with the untyped CRISPR system. Additionally, the CRISPR-Cas system may only be related to the carrying rate of some drug-resistant genes and the drug-resistant phenotype. In conclusion, the distribution of the enterococcus CRISPR-Cas system varies greatly among different species and the presence of CRISPR loci reduces the horizontal transfer of some drug resistance genes.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Dongdong Zhou
- Department of General Medicine, Ningbo First Hospital, Ningbo, China
| | - Huimin Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Lin Zheng
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Qi Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Qi Jiang,
| | - Wei Liang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, China
- Wei Liang,
| |
Collapse
|
6
|
Wang Y, Mao T, Li Y, Xiao W, Liang X, Duan G, Yang H. Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of Staphylococci. Front Microbiol 2021; 12:736565. [PMID: 34751223 PMCID: PMC8571024 DOI: 10.3389/fmicb.2021.736565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus (S. aureus), which is one of the most important species of Staphylococci, poses a great threat to public health. Clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are an adaptive immune platform to combat foreign mobile genetic elements (MGEs) such as plasmids and phages. The aim of this study is to describe the distribution and structure of CRISPR-Cas system in S. aureus, and to explore the relationship between CRISPR and horizontal gene transfer (HGT). Here, we analyzed 67 confirmed CRISPR loci and 15 companion Cas proteins in 52 strains of Staphylococci with bioinformatics methods. Comparing with the orphan CRISPR loci in Staphylococci, the strains harboring complete CRISPR-Cas systems contained multiple CRISPR loci, direct repeat sequences (DR) forming stable RNA secondary structures with lower minimum free energy (MFE), and variable spacers with detectable protospacers. In S. aureus, unlike the orphan CRISPRs away from Staphylococcal cassette chromosome mec (SCCmec), the complete CRISPR-Cas systems were in J1 region of SCCmec. In addition, we found a conserved motif 5'-TTCTCGT-3' that may protect their downstream sequences from DNA interference. In general, orphan CRISPR locus in S. aureus differed greatly from the structural characteristics of the CRISPR-Cas system. Collectively, our results provided new insight into the diversity and characterization of the CRISPR-Cas system in S. aureus.
Collapse
Affiliation(s)
- Ying Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tingting Mao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinxia Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenwei Xiao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuan Liang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|