1
|
Liu M, Mo Y, Dong Z, Yang H, Lin B, Li Y, Lou Y, Fu S. Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea). Food Res Int 2025; 201:115642. [PMID: 39849782 DOI: 10.1016/j.foodres.2024.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.5, 1, 2 mg/mL) combined with seawater slurry ice preservation on storage quality and microbial community of large yellow croaker were further investigated. The results showed that ZnO-NPs had a strong antibacterial effect on Shewanella putrefaciens, which destroyed the integrity of the cell membrane, resulting in nucleic acid leakage and increased electrical conductivity. In addition, ZnO-NPs could effectively inhibit the proliferation of microorganisms, slow down the rate of lipid oxidation, delay the rise of pH value and total volatile basic nitrogen, and maintain the color of fish. Among them, 2 mg/mL ZnO-NPs treatment showed the best preservation effect on large yellow croaker. High-throughput sequencing results showed that Pseudoalteromonas and Shewanella became the dominant spoilage bacteria with the extension of storage time. ZnO-NPs significantly reduced the relative abundance of dominant spoilage bacteria and changed the microbial composition of fish. Inhibition of the growth of SSOs was important for delaying spoilage and prolonging the shelf-life of large yellow croaker. Therefore, ZnO-NPs combined with seawater slurry ice preservation could be used as a new storage method, which provides a new idea for food quality and safety control.
Collapse
Affiliation(s)
- Mengqing Liu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yuhan Mo
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zheyun Dong
- Zhejiang Yushan Supply Chain Management Co., Ltd., Ningbo 315100, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo 315021, China
| | - Yongyong Li
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yongjiang Lou
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shiqian Fu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
2
|
Yang X, Mei J, Xie J. Effects of different slaughtering methods on the biochemical characteristics and quality changes of tilapia ( Oreochromis niloticus) during cold storage. Food Chem X 2024; 24:101951. [PMID: 39582649 PMCID: PMC11582440 DOI: 10.1016/j.fochx.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Inappropriate slaughter methods can lead to differences in fish quality. In the past few years, few studies have focused on the effects of different slaughter methods on the postmortem effects of tilapia, especially the cold storage of tilapia after slaughter. The aim of this study was to investigate the effects of different slaughter methods on the biochemical characteristics and quality changes of tilapia during cold storage. In terms of blood and plasma parameters, the CS sample had lower levels of lactate dehydrogenase (LDH), cortisol (COR), and glucose (GLU) than the other samples. The results of K-value and FAAs showed that CS and ASCN groups were beneficial to prolong the freshness life of tilapia during cold storage. The texture properties of CS group were better. In summary, group CS is more conducive to prolonging the fresh life of refrigerated tilapia and is a recommended method of slaughter.
Collapse
Affiliation(s)
- Xinrui Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
3
|
Yuan J, Wang Z, Li H, Xu B. Effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during simulated cold chain distribution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7704-7712. [PMID: 38860511 DOI: 10.1002/jsfa.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cold chain distribution with multiple links maintains low temperatures to ensure the quality of meat products, whereas temperature fluctuations during this are often disregarded by the industry. The present study simulated two distinct temperatures cold chain distribution processes. Quality indicators and high-throughput sequencing were employed to investigate the effects of temperature fluctuations on the quality and microbial diversity of beef meatballs during cold chain distribution. RESULTS Quality indicators revealed that temperature fluctuations during simulated cold chain distribution significantly (P < 0.05) exacerbated the quality deterioration of beef meatballs. High-throughput sequencing demonstrated that temperature fluctuations affected the diversity and structure of microbial community. Lower microbial species abundance and higher microbial species diversity were observed in the temperature fluctuations group. Proteobacteria and Pseudomonas were identified as the dominant phylum and genus in beef meatballs, respectively, exhibiting faster growth rates and greater relative abundance under temperature fluctuations. CONCLUSION The present study demonstrates that temperature fluctuations during simulated cold chain distribution can worsen spoilage and shorten the shelf life of beef meatballs. It also offers certain insights into the spoilage mechanism and preservation of meat products during cold chain distribution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Huale Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
4
|
Gao Q, Huang H, Liu P, Zhao X, Tang Q, Xia Z, Cai M, Wang R, Huang G, Yi S. Integration of Gut Microbiota with Transcriptomic and Metabolomic Profiling Reveals Growth Differences in Male Giant River Prawns ( Macrobrachium rosenbergii). Animals (Basel) 2024; 14:2539. [PMID: 39272324 PMCID: PMC11393893 DOI: 10.3390/ani14172539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The giant freshwater prawn (GFP; Macrobrachium rosenbergii), a tropical species cultured worldwide, has high market demand and economic value. Male GFP growth varies considerably; however, the mechanisms underlying these growth differences remain unclear. In this study, we collected gut and hemolymphatic samples of large (ML), medium (MM), and small (MS) male GFPs and used the 16S rRNA sequencing and liquid chromatography-mass spectrometry-based metabolomic methods to explore gut microbiota and metabolites associated with GFP growth. The dominant bacteria were Firmicutes and Proteobacteria; higher growth rates correlated with a higher Firmicutes/Bacteroides ratio. Serum metabolite levels significantly differed between the ML and MS groups. We also combined transcriptomics with integrative multiomic techniques to further elucidate systematic molecular mechanisms in the GFPs. The results revealed that Faecalibacterium and Roseburia may improve gut health in GFP through butyrate release, affecting physiological homeostasis and leading to metabolic variations related to GFP growth differences. Notably, our results provide novel, fundamental insights into the molecular networks connecting various genes, metabolites, microbes, and phenotypes in GFPs, facilitating the elucidation of differential growth mechanisms in GFPs.
Collapse
Affiliation(s)
- Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Hao Huang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Peimin Liu
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Xiuxin Zhao
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Rui Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Guanghua Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Shaokui Yi
- College of Life Science, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| |
Collapse
|
5
|
Huang Y, Luo B, Shan S, Wu Y, Lin H, Wang F, Li C, Zhu R, Zhao C. Application of Ulva lactuca polysaccharide in the preservation of refrigerated of Lateolabrax maculatus fillets. Food Chem X 2024; 22:101494. [PMID: 38846800 PMCID: PMC11154192 DOI: 10.1016/j.fochx.2024.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to explore the use of Ulva lactuca polysaccharide (ULP) as a preservative for perch (Lateolabrax maculatus) fillets stored under refrigeration at 4 °C. Fresh perch fillets were treated with ULP (7-10 kDa) and potassium sorbate, respectively, to evaluate their effectiveness in inhibiting bacterial growth and maintain freshness. A 0.5% ULP solution significantly decreased the pH value, total volatile basic nitrogen value, thiobarbituric acid value, and total bacterial count of perch fillets. ULP solution delayed the changes in whiteness and texture of fillets, as well as protein degradation. The acute toxicity experiment further evaluates the safety and reliability of ULP. Simultaneously, utilizing 16S rRNA techniques, the ULP solution inhibited microorganisms known for their strong spoilage capabilities, such as Pseudomonas, Actinetobacter, and Shewanella. Microorganisms with a weaker ability to cause corruption became the dominant bacteria, such as Acetobacter, Lactobacillus, and Faecalibacterium, thereby exerting a degree of inhibition against spoilage.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biying Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijing Wu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Haiyan Lin
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feifei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Chen Y, Li P, Xu D, Zhang X, Huang T. Quality and Microbiome Analysis of Pickled Swimming Crabs ( Portunus trituberculatus) during Storage at Two Alternative Temperatures. Molecules 2023; 28:7744. [PMID: 38067474 PMCID: PMC10707827 DOI: 10.3390/molecules28237744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The storage quality and microbiome analysis of pickled swimming crabs (Portunus trituberculatus) stored at 20 and 4 °C were investigated. It showed that samples stored at 4 °C had a longer shelf life, lower total viable count (TVC), pH, and total volatile base nitrogen (TVB-N) contents than those stored at 20 °C. The biogenic amine (BA) results demonstrated that tyramine (tyr), putrescine (put), and cadaverine (cad) were the dominant amines in all samples, and samples stored at 4 °C had lower BA contents. A microbiome analysis indicated that a salt-alcohol water mixture significantly inhibited the growth of Tenericutes. Firmicutes, Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, and Cyanobacteria were the dominant bacteria of stored pickled crabs, and storage at 4 °C significantly inhibited the growth of dominant bacteria, more than that of 20 °C. In conclusion, 4 °C storage guaranteed the quality of samples by inhibiting changes in biochemical properties and the growth of dominant bacteria, thereby prolonging its shelf life.
Collapse
Affiliation(s)
- Yu Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (Y.C.); (P.L.); (D.X.); (X.Z.)
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Peipei Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (Y.C.); (P.L.); (D.X.); (X.Z.)
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Dan Xu
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (Y.C.); (P.L.); (D.X.); (X.Z.)
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Xiaojun Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (Y.C.); (P.L.); (D.X.); (X.Z.)
- Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Chen B, Yan Q, Li D, Xie J. Degradation mechanism and development of detection technologies of ATP-related compounds in aquatic products: recent advances and remaining challenges. Crit Rev Food Sci Nutr 2023; 65:101-122. [PMID: 37855450 DOI: 10.1080/10408398.2023.2267690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The degradation of ATP-related compounds is an important biochemical process that reflects the freshness of aquatic products after death. There has been considerable interest in investigating the factors affecting the degradation of ATP-related compounds in aquatic products and in developing techniques to detect them. This review provides the latest knowledge on the degradation mechanisms of ATP-related compounds during the storage of aquatic products and discusses the latest advances in ATP-related compound detection techniques. The degradation mechanisms discussed include mainly degradation pathways, endogenous enzymes, and microbial mechanisms of action. Microbial activity is the main reason for the degradation of IMP and related products during the mid to late storage of aquatic products, mainly through the related enzymes produced by microorganisms. Further elucidation of the degradation mechanisms of ATP-related compounds provides new ideas for quality control techniques in raw aquatic products during storage. The development of new technologies for the detection of ATP-related compounds has become a significant area of research. And, biosensors further improve the efficiency and accuracy of detection and have potential application prospects. The development of biosensor back-end modalities (test strips, fluorescent probes, and artificial intelligence) has accelerated the practical application of biosensors for the detection of ATP-related compounds.
Collapse
Affiliation(s)
- Bohan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
8
|
Yu M, Ding Y, Du Q, Liao Y, Miao W, Deng S, Cullen PJ, Zhou R. Efficacy of Chitosan Oligosaccharide Combined with Cold Atmospheric Plasma for Controlling Quality Deterioration and Spoilage Bacterial Growth of Chilled Pacific White Shrimp ( Litopenaeus vannamei). Foods 2023; 12:foods12091763. [PMID: 37174301 PMCID: PMC10178389 DOI: 10.3390/foods12091763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.
Collapse
Affiliation(s)
- Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yixuan Ding
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Du
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanggui Deng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan 316022, China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Biodegradable fish gelatin/chitosan-based active films alter chill-stored golden pomfret (Trachinotus blochii) metabolites mainly through modulating four metabolic pathways. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
11
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
12
|
The effects of ozonated slurry ice treatment on microbial, physicochemical, and quality of large yellow croaker (Pseudosciaena crocea) during cold-chain circulation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Xu W, Zhang F, Wang J, Ma Q, Sun J, Tang Y, Wang J, Wang W. Real-Time Monitoring of the Quality Changes in Shrimp ( Penaeus vannamei) with Hyperspectral Imaging Technology during Hot Air Drying. Foods 2022; 11:3179. [PMID: 37430926 PMCID: PMC9601712 DOI: 10.3390/foods11203179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hot air drying is the most common processing method to extend shrimp's shelf life. Real-time monitoring of moisture content, color, and texture during the drying process is important to ensure product quality. In this study, hyperspectral imaging technology was employed to acquire images of 104 shrimp samples at different drying levels. The water distribution and migration were monitored by low field magnetic resonance and the correlation between water distribution and other quality indicators were determined by Pearson correlation analysis. Then, spectra were extracted and competitive adaptive reweighting sampling was used to optimize characteristic variables. The grey-scale co-occurrence matrix and color moments were used to extract the textural and color information from the images. Subsequently, partial least squares regression and least squares support vector machine (LSSVM) models were established based on full-band spectra, characteristic spectra, image information, and fused information. For moisture, the LSSVM model based on full-band spectra performed the best, with residual predictive deviation (RPD) of 2.814. For L*, a*, b*, hardness, and elasticity, the optimal models were established by LSSVM based on fused information, with RPD of 3.292, 2.753, 3.211, 2.807, and 2.842. The study provided an in situ and real-time alternative to monitor quality changes of dried shrimps.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
14
|
Remya S, Sivaraman GK, Joseph TC, Parmar E, Sreelakshmi KR, Mohan CO, Ravishankar CN. Influence of corn starch based bio-active edible coating containing fumaric acid on the lipid quality and microbial shelf life of silver pomfret fish steaks stored at 4 °C. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3387-3398. [PMID: 35875210 PMCID: PMC9304496 DOI: 10.1007/s13197-021-05322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2021] [Accepted: 11/07/2021] [Indexed: 06/15/2023]
Abstract
The present study aimed at assessing the impact of addition of fumaric acid (0.5%), as an active agent, in a corn starch (2%) based edible coating, on the lipid quality and microbial shelf life of silver pomfret (Pampus argenteus) fish steaks stored at 4 °C. Treating fish steaks with FA resulted in a bacteriostatic effect leading to reduced counts of total mesophilic and psychrotrophic bacteria, H2S producing bacteria and Pseudomonas spp. The total mesophilic bacterial count of uncoated control sample exceeded the permissible limit of 7 log cfu g-1 on 6th day and had the lowest microbial shelf life. FA incorporation in the CS coating improved the microbial stability of fish steaks resulting in a shelf life of 15 days. The outcomes of the study suggest that CS based coating is beneficial in delaying lipid oxidation as displayed by the lower TBA and PV values while FA is an effective agent for further increasing the preservative action of CS coating by significantly inhibiting microbial growth as well as lipid quality deterioration, which could be exploited by the seafood industry as an active packaging component.
Collapse
Affiliation(s)
- S. Remya
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - G. K. Sivaraman
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - Toms C. Joseph
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - Ejaz Parmar
- Veraval Research Centre, ICAR-CIFT, Bhidia, Veraval, Gujarat 362 269 India
| | - K. R. Sreelakshmi
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - C. O. Mohan
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| | - C. N. Ravishankar
- Quality Assurance and Management Division, Indian Council of Agricultural Research-Central Institute of Fisheries Technology, Willingdon Island, Cochin, Kerala 682 029 India
| |
Collapse
|
15
|
Chen Y, Chen H, Gong F, Yang F, Jiang Q, Xu Y, Xia W. A comparison of eating safety and quality of live and dead freshwater crayfish (Procambarus clarkii) at different stages. Food Res Int 2022; 159:111630. [DOI: 10.1016/j.foodres.2022.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
16
|
ATP catabolism and bacterial succession in postmortem tissues of mud crab (Scylla paramamosain) and their roles in freshness. Food Res Int 2022; 155:110992. [DOI: 10.1016/j.foodres.2022.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/25/2021] [Accepted: 01/19/2022] [Indexed: 11/19/2022]
|
17
|
Effect of acetylated distarch adipate on the physicochemical characteristics and structure of shrimp (Penaeus vannamei) myofibrillar protein. Food Chem 2022; 373:131530. [PMID: 34774379 DOI: 10.1016/j.foodchem.2021.131530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/10/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023]
Abstract
To investigate the effect of acetylated distarch adipate (ADA) on the physicochemical properties and structure of shrimp myofibrillar protein (MP), the changes in chemical bonds, secondary structure and protein composition of shrimp MP and MP gel (MPG) were analyzed. Besides, the microstructure, water state, texture properties and water holding capacity (WHC) of MPG with different ADA additions were compared. The results showed that the shrimp MPG with 1% ADA addition had the highest breaking force and gel strength, WHC, and the densest three-dimensional network structure. The ADA had little significant effect on the secondary structure of MP and MPG. In addition, hydrogen and ionic bonds were the main chemical bonds of MP, while MPG is mainly dominated by hydrophobic and disulfide bonds. The correlation analysis of gel properties and water state of MPG showed that bound water and immobilized water had a positive effect on the gel strength.
Collapse
|
18
|
Wang S, Jin J, Suo R, Wang Y, Wang J, Wang W, Liu Y, Chitrakar B. Evaluation of Solar Drying on Drying Behaviour and Drying Kinetics of Penaeus vannamei. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2048156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Suwen Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingyu Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding, Hebei, China
- Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China
| | - Yajiao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding, Hebei, China
- Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding, Hebei, China
- Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding, Hebei, China
- Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
19
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|
20
|
Li Y, Zhou C, He J, Wu Z, Sun Y, Pan D, Tian H, Xia Q. Combining e-beam irradiation and modified atmosphere packaging as a preservation strategy to improve physicochemical and microbiological properties of sauced duck product. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Cui Y, Liu X, Yi J, Kang Q, Hao L, Lu J. Cognition of polysaccharides from confusion to clarity: when the next "omic" will come? Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34845952 DOI: 10.1080/10408398.2021.2007045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the accelerated pace of modern life, people are facing more and more health pressure. The study of polysaccharides seemed a good choice as a potential treasure trove. Polysaccharides, one of the four basic substances (proteins, nucleic acids, lipids and carbohydrates) that constitute life activities, are obviously an underrated macromolecular substance with great potential. Compared with protein and nucleic acid, the research of polysaccharides is still in the primary stage. The relationship between structure and function of polysaccharides is not clear. In this review, we highlighted the main methods of extraction, purification and structure identification of polysaccharides; summarized their biological activities including immunoregulation, hypoglycemic, anti-tumor, anti-virus, anti-coagulation, and so on. Particularly, the relationship between their structures and activities was described. In addition, the applications of polysaccharides in health food, medicine and cosmetics were also reviewed. This review can help polysaccharide researchers quickly understand the whole process of polysaccharides research, and also provide a reference for the comprehensive utilization of polysaccharides. We need to standardize the research of polysaccharides to make the experimental data more universal, and take it as important references in the review process. Glycomic may appear as the next "omic" after genomic and proteomic in the future. This review provides support for the advancement of glycomics.
Collapse
Affiliation(s)
- Yinxin Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Chemical Engineering, Joint Research Center for Biology, Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Identification of the Specific Spoilage Organism in Farmed Sturgeon ( Acipenser baerii) Fillets and Its Associated Quality and Flavour Change during Ice Storage. Foods 2021; 10:foods10092021. [PMID: 34574132 PMCID: PMC8469357 DOI: 10.3390/foods10092021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Hybrid sturgeon, a popular commercial fish, plays important role in the aquaculture in China, while its spoilage during storage significantly limits the commercial value. In this study, the specific spoilage organisms (SSOs) from ice stored-sturgeon fillet were isolated and identified by analyzing their spoilage related on sensory change, microbial growth, and biochemical properties, including total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARS), and proteolytic degradation. In addition, the effect of the SSOs on the change of volatile flavor compounds was evaluated by solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results showed that the Pseudomonas fluorescens, Pseudomonas mandelii, and Shewanella putrefaciens were the main SSOs in the ice stored-sturgeon fillet, and significantly affect the odors by changing the volatile compounds in the sturgeon. Compared with the fresh sturgeon, the appreciable increase of polycyclic aromatic hydrocarbons and tetramethyl-pyrazine might be the spoilage indicators of the sturgeon contaminated by P. fluorescens; the appreciable increase of 1-octen-3-ol and (z)-2-penten-1-o might be the potential marker of the sturgeon contaminated by P. mandelii; and the appreciable increase of 1-(3,3-dimethylbicyclo [2.2.1] hept-2-yl)-ethanon and butylated hydroxytoluene were associated with S. putrefaciens. This study reveals the relationship between the SSOs and flavor changes in sturgeon fillets, which will contribute to the sturgeon preservation and shelf-life extension.
Collapse
|
23
|
İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 2021; 184:429-437. [PMID: 34166693 DOI: 10.1016/j.ijbiomac.2021.06.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
This study was carried out to characterize antioxidant activity, total phenolic content, and the phenolic and flavonoids profile of postbiotic of Pediococcus acidilactici and to evaluate the effects of postbiotics (10% and 50%) alone and in combination with chitosan coating (1%) on the microbial and chemical quality of chicken breast fillets during storage at 4 °C. Antioxidant activity and total phenolic content of the postbiotics were found to be 1291.02 ± 1.5 mg/L TEAC and 2336.11 ± 2.36 mg/L GAE, respectively. The most abundant phenolic was vanillic acid, followed by t-caffeic, gallic, and caftaric acids. The postbiotic-chitosan (50% + 1%) combination decreased L. monocytogenes and S. Typhimurium counts by 1.5 and 2.1 log10 CFU/g, respectively, compared to the control (P < 0.05). This combination decreased the total viable count (TVC), lactic acid bacteria (LAB), and psychrotrophic bacteria count compared to the control (P < 0.05). No differences were found in thiobarbituric acid (TBA) values among the samples during storage (P > 0.05). Postbiotic treatment did not significantly change the pH values and color properties of the breast fillets (P > 0.05). Postbiotic-chitosan combinations extended the shelf-life by up to 12 days compared to the control. In conclusion, the postbiotic-chitosan combination can be used to preserve and improve the microbial quality of chicken meat products.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|