1
|
Kong T, Li G, Zhao X, Shi E, Wang Y, Wu M, Zhao Y, Ma Y, Chu L. Polysaccharide edible film-the new star in food preservation: A review. Int J Biol Macromol 2025; 308:142716. [PMID: 40180108 DOI: 10.1016/j.ijbiomac.2025.142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Polysaccharide edible film (PEF) plays an important role in protecting food from physical extrusion, chemical hazards and microbial invasion. In recent years, on the basis of ensuring food safety, consumers have put forward higher requirements for maintaining sensory characteristics and nutritional value of food in the process of storage and circulation. As a natural component with convenient preparation and rich sources, polysaccharides have antibacterial, anti-inflammatory, antioxidant and other biological activities. The edible preservative film based on polysaccharide has the advantages of environmental protection, safety and no residue. Considering the health of consumers and the sustainable development of the environment, the environment-friendly, safe and effective PEF has become an important material in the field of food preservation and a creative solution to the problem of food preservation. Based on this, review focuses on the application of PEF in the preservation of different kinds of food, and briefly expounds the mechanism of PEF in the preservation of food, the production methods and different types of PEF. At the same time, it summarizes the existing problems and future development prospects and directions of PEF. After years of in-depth research and application, PEF technology has shown an important role and application potential in the field of food preservation. This paper hopes to provide reference value for the further application of PEF in the field of food preservation.
Collapse
Affiliation(s)
- Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Gen Li
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Xiaodan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Enjuan Shi
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yixi Wang
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| |
Collapse
|
2
|
Azizpour N, Partovi R, Azizkhani M, Abdulkhani A, Babaei A, Panahi Z, Samakkhah SA. Films of polylactic acid with graphene oxide-zinc oxide hybrid and Mentha longifolia essential oil: Effects on quality of refrigerated chicken fillet. Int J Food Microbiol 2025; 426:110893. [PMID: 39299061 DOI: 10.1016/j.ijfoodmicro.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
This study was conducted to investigate the morphological, thermal, mechanical, FTIR, physicochemical (thickness, humidity, solubility in water and water vapor permeability) and antimicrobial properties of polylactic acid film (PLA) containing hybrid graphene oxide‑zinc oxide (GO-ZnO: 1.5 % w/v) and Mentha longifolia essential oil (ML:1 % v/v) on chicken fillet kept in the refrigerator. The studied groups were microbially (total count of mesophilic aerobic bacteria, psychrotrophic bacteria, Enterobacteriaceae, Staphylococcus aureus, and lactic acid bacteria), chemically (pH, TVB-N) and sensory (color, odor, and taste) evaluated at 8-day interval (0, 2, 5 and 8). In the examination of the morphological characteristics, the PLA film had a smooth and uniform surface and the addition of ML essential oil created a discontinuous structure and the addition of GO-ZnO led to the production of a denser and more homogeneous film. The presence of GO-ZnO increased the thickness, decreased moisture content and solubility in water, and added ML essential oil increased moisture content and decreased solubility in water (p˂0.05). The results of the mechanical evaluation showed that the addition of ML essential oil and GO-ZnO reduced elongation at break and tensile strength (p˂0.05). The addition of ML essential oil increased the thermal resistance and the addition of GO-ZnO decreased the thermal resistance compared to the film containing ML essential oil. The antimicrobial effect of films containing ML essential oil was confirmed in this study (p˂0.05). The addition of GO-ZnO did not change the count of any of the microbial groups. TVB-N showed that groups containing ML essential oil had lower levels of volatile nitrogenous bases than the control group (p˂0.05). Sensory evaluation of the studied groups showed that chicken fillets packed with films containing ML essential oil had the highest score in terms of color, smell and taste. The results of the present study showed that PLA film containing GO-ZnO and ML essential oil can be used to increase the shelf life and maintain the sensory characteristics of chicken fillets, and it can be used as a suitable packaging to increase the shelf life of food products.
Collapse
Affiliation(s)
- Nasim Azizpour
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Zahra Panahi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
3
|
Li K, Han G, Lu S, Xu X, Dong H, Wang H, Luan F, Jiang X, Liu T, Zhao Y. Inhibition effect of non-contact biocontrol bacteria and plant essential oil mixture on the generation of N-nitrosamines in deli meat during storage. Food Chem X 2024; 24:101897. [PMID: 39498253 PMCID: PMC11532439 DOI: 10.1016/j.fochx.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
To reduce the risk of N-nitrosamines in deli meat products, this study formulated a novel non-contact N-nitrosamines inhibiting preservative IV (NIP-IV) consisting of biocontrol bacteria and plant essential oils (EOs) (Stenotrophomonas rhizophila SR-1 + Paenibacillus provencensis PP-2 + Bacillus subtilis CF-3+ cinnamon EO + grapefruit EO). Luncheon pork, spiced beef, and red sausage were taken as representatives of typical deli meat products and used to validate the effectiveness of NIP-IV in inhibiting N-nitroso dimethylamine (NDMA) production. The results showed that NIP-IV restrain protein degradation and lipid oxidation in deli meat products and effectively control microbial activity. Biogenic amines, such as phenethylamine, spermidine, cadaverine, and tyramine, were reduced. The conversion of nitrite to NDMA in deli meats was effectively inhibited by NIP-IV. Volatile organic compounds were the key to excellent NIP-IV non-contact preservation. Butyric acid, 3-methylbutanoic acid, benzaldehyde, d-limonene, and (E)-cinnamaldehyde were significantly negatively correlated with NDMA in deli meat products.
Collapse
Affiliation(s)
- Ke Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Guixin Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Shixue Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Hao Dong
- Hisense Refrigerator Co., Ltd., Shandong, Qingdao 266000, China
| | - Haiyan Wang
- Hisense Refrigerator Co., Ltd., Shandong, Qingdao 266000, China
| | - Fulei Luan
- Hisense Refrigerator Co., Ltd., Shandong, Qingdao 266000, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Tianhong Liu
- Marine Science research Institute of Shandong Province, Qingdao, Shandong 266100, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Sanya Oceanographic Institution of Ocean University of China, Sanya 572024, China
| |
Collapse
|
4
|
Tura M, Gagliano MA, Valli E, Petracci M, Gallina Toschi T. A methodological review in sensory analyses of chicken meat. Poult Sci 2024; 103:104083. [PMID: 39217660 PMCID: PMC11402291 DOI: 10.1016/j.psj.2024.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
The sensory characteristics of poultry products are crucial in defining their quality and widely influence consumer choices. Even though the scientific literature clearly indicates that for muscle foods the sensory profile is relevant in purchase decisions and overall acceptability, sensory evaluation has often been underestimated and considered complementary to instrumental and/or chemical assessments. Sensory analysis includes different types of validated tests (discriminative, descriptive, and affective), applied depending on the purpose of the research study, requiring special attention in the sample preparation phase, in particular for nonhomogeneous products such as poultry meat, requiring reproducible cutting, cooking and presentation to the tasters. The aim of this paper is to review, critically assess and discuss sensory methods, standardized procedures and sample preparation tailored for chicken meat, through the literature from 2000 to 2023, with a section dedicated to ethical aspects that must be carefully considered when designing a sensory protocol. The target readers are both the research and the business communities, as the information can be widely applied for quality control, to develop new food products, to understand or drive preferences or, for example, to assess potential sensory differences among chickens fed with different diets. To the best of the authors' knowledge, this review represents a useful first guide for those approaching the sensory analysis of chicken meat.
Collapse
Affiliation(s)
- Matilde Tura
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Bologna 40127, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy
| | - Mara Antonia Gagliano
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy
| | - Enrico Valli
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy.
| | - Massimiliano Petracci
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Bologna 40127, Italy; Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum - Università di Bologna, Cesena 47521, Italy
| |
Collapse
|
5
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
6
|
Wang J, Zhao F, Huang J, Li Q, Yang Q, Ju J. Application of essential oils as slow-release antimicrobial agents in food preservation: Preparation strategies, release mechanisms and application cases. Crit Rev Food Sci Nutr 2024; 64:6272-6297. [PMID: 36651301 DOI: 10.1080/10408398.2023.2167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Food spoilage caused by foodborne microorganisms will not only cause significant economic losses, but also the toxins produced by some microorganisms will also pose a serious threat to human health. Essential oil (EOs) has significant antimicrobial activity, but its application in the field of food preservation is limited because of its volatile, insoluble in water and sensitive to light and heat. Therefore, in order to solve these problems effectively, this paper first analyzed the antibacterial effect of EOs as an antimicrobial agent on foodborne bacteria and its mechanism. Then, the application strategies of EOs as a sustained-release antimicrobial agent in food preservation were reviewed. On this basis, the release mechanism and application cases of EOs in different antibacterial composites were analyzed. The purpose of this paper is to provide technical support and solutions for the preparation of new antibacterial packaging materials based on plant active components to ensure food safety and reduce food waste.
Collapse
Affiliation(s)
- Jindi Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jinglin Huang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qianyu Li
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
7
|
Hosseini SM, Tavakolipour H, Mokhtarian M, Armin M. Co-encapsulation of Shirazi thyme ( Zataria multiflora) essential oil and nisin using caffeic acid grafted chitosan nanogel and the effect of this nanogel as a bio-preservative in Iranian white cheese. Food Sci Nutr 2024; 12:4385-4398. [PMID: 38873443 PMCID: PMC11167143 DOI: 10.1002/fsn3.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 06/15/2024] Open
Abstract
The current study aims to co-encapsulate Shirazi thyme (Zataria multiflora) essential oil (ZEO) and nisin into chitosan nanogel as an antimicrobial and antioxidant agent to enhance the shelf-life of cheese. Chitosan-caffeic acid (CS-CA) nanogel was produced to co-encapsulate Zataria multiflora essential oil and nisin. This nanogel was characterized by dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopic analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) images. The effect of free (TFZN) and encapsulated ZEO-nisin in chitosan nanogel (TCZN) on the chemical and microbiological properties of Iranian white cheese was assessed. The particle size, polydispersity index value (PDI), zeta potential, antioxidant activity, and encapsulation efficiency of the optimal chitosan-ZEO-nisin nanogel were 421.6 nm, 0.343, 34.0 mV, 71.06%-82.69%, and 41.3 ± 0.5%, 0.79 ± 0.06 mg/mL. respectively. FTIR and XRD approved ZEO and nisin entrapment within chitosan nanogel. The chitosan nanogel showed a highly porous surface with an irregular shape. The bioactive compounds of ZEO and nisin decreased the pH changes in cheese. On the 60th day of storage, the acidity of treated samples was significantly lower than that of control. Although the lowest anisidine index value was observed in samples treated with sodium nitrate (NaNO3) (TS), there was no significant difference between this sample and TCZN. The lowest microbial population was observed in TCZN and TS. After 60 days of ripening, Coliforms were not detected in the culture medium of TCZN and TS. The results can contribute to the development of a natural preservative with the potential for application in the dairy industry.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Hamid Tavakolipour
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohsen Mokhtarian
- Department of Food Science and Technology, Roudehen BranchIslamic Azad UniversityRoudehenIran
| | - Mohammad Armin
- Department of Agronomy, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| |
Collapse
|
8
|
Eshaghi R, Mohsenzadeh M, Ayala-Zavala JF. Bio-nanocomposite active packaging films based on carboxymethyl cellulose, myrrh gum, TiO 2 nanoparticles and dill essential oil for preserving fresh-fish (Cyprinus carpio) meat quality. Int J Biol Macromol 2024; 263:129991. [PMID: 38331078 DOI: 10.1016/j.ijbiomac.2024.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
This study developed a composite film for packaging refrigerated common carp fillets using carboxymethyl cellulose (CMC) (1.5 % w/v)/Myrrh gum (MG) (0.25 % w/v) base with the addition of titanium dioxide nanoparticles (TiO2 NPs) (0.25 %, 0.5 %, and 1 %) and Dill essential oil (DEO) (1.5 %, 2.25 %, and 3 %). The film was produced using a casting method and optimized for mechanical and barrier properties. The incorporation of DEO and TiO2 NPs into CMC/MG composite films significantly reduced moisture content (MC) and water vapor permeability (WVP), improved their tensile strength (TS), and increased their antimicrobial and antioxidant properties. Moreover, MG can improve the physicomechanical properties of the CMC/MG composite films. The film components had good compatibility without significant aggregation or cracks. In conclusion, the optimized CMC/MG (1.5 %/0.25 %) film containing TiO2 NPs (0.5 %), and DEO (2.25 %) has the best overall performance and can be a good source for making edible film. Functionally, this bioactive nanocomposite film significantly increased the shelf life of refrigerated fish fillet samples for 12 days by inhibiting microbial growth and reducing the oxidation rate compared to the control sample. The knowledge obtained from this study can guide the development of bio-nanocomposite and biodegradable food packaging films based on CMC/MG to increase the shelf life of food products and environmental protection.
Collapse
Affiliation(s)
- Reza Eshaghi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mohsenzadeh
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. Gustavo E. Astiazarán Rosas No. 46, Col. La Victoria, C.P. 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
9
|
Li S, Jiang S, Jia W, Guo T, Wang F, Li J, Yao Z. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem 2024; 432:137231. [PMID: 37639892 DOI: 10.1016/j.foodchem.2023.137231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Plant-based antimicrobial substances have emerged as promising alternatives to conventional antibiotics and preservatives. Although many review studies have been done in this field, many of these reviews solely focus on specific compounds from particular perspectives. This paper aims to provide a comprehensive review on the various types of plant-based antimicrobial substances, the extraction and purification processes, as well as the application and safety issues. Combining different natural plant-derived substances shows promise in enhancing antimicrobial activities. Moreover, despite the existence of various methods (e.g., microwave-assisted extraction, supercritical fluid extraction) to extract and purify antimicrobial substances, isolating pure compounds remains a laborious process. Sustainability issues should also be considered when developing extraction methods. Additionally, the extraction process generates a significant amount of plant waste, necessitating proper utilization to ensure economic viability. Lastly, not all plant-derived substances are safe, and further research is needed to investigate their toxicity before widespread application.
Collapse
Affiliation(s)
- Shuo Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Tongming Guo
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Li W, Bai X, Xia X, Chen H. Effect of sodium alginate ice glazing on the quality of the freeze-thawed fish balls. Int J Biol Macromol 2024; 254:128097. [PMID: 37972840 DOI: 10.1016/j.ijbiomac.2023.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The effect of 1.0 % (w/v) sodium alginate (SA) glazing on surface frost formation and the quality of frozen fish balls in repeated freeze-thaw (F-T) cycles was studied. The optimal glazing property of 1.0 % SA solution was manifested by high transmittance, excellent water resistance, and high ice glazing rate. After seven F-T cycles, compared with the control, the ice production, thawing loss, and total volatile base nitrogen (TVB-N) value of samples with 1.0 % ice glazing decreased by 28.30 %, 21.02 %, and 27.35 %, while the chewiness and whiteness were increased by 15.02 % and 10.40 %, respectively. Moreover, compared to the control, the microstructure of fish balls glazed with 1.0 % SA was smoother and more uniform, and the ice crystal diameter was smaller. Therefore, 1.0 % SA glazing effectively inhibits the formation of ice crystals, reducing water migration and loss while minimizing damage to the meat structure, thus enhancing the quality of meat products.
Collapse
Affiliation(s)
- Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
11
|
Dourou D, Doulgeraki AI, Vitsou-Anastasiou S, Argyri AA, Chorianopoulos NG, Nychas GJE, Tassou CC. Deciphering the growth responses and genotypic diversity of bioluminescent Photobacterium phosphoreum on chicken meat during aerobic refrigerated storage. Int J Food Microbiol 2023; 405:110334. [PMID: 37517119 DOI: 10.1016/j.ijfoodmicro.2023.110334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
The advent of high-throughput sequencing technologies in recent years has revealed the unexpected presence of genus Photobacterium within the chicken meat spoilage ecosystem. This study was undertaken to decipher the occurrence, the growth patterns and the genotypic biodiversity of Photobacterium phosphoreum on chicken breast fillets stored aerobically at 4 °C through conventional microbiological methods and molecular techniques. Samples were periodically cultured on marine broth agar (MA; supplemented with meat extract and vancomycin) for the enumeration of presumptive bioluminescent Photobacterium spp. In total, 90 bioluminescent bacteria were recovered from the initial (time of first appearance), middle and end stages of storage. Concomitantly, 95 total psychrotrophic/psychrophilic bacteria were isolated from the same medium to assess the presence and diversity of non-luminous photobacteria. Genetic diversity between bioluminescent isolates was assessed with two PCR-based DNA fingerprinting methods, i.e. RAPD and rep-PCR. Moreover, the characterization of selected bacterial isolates at the genus and/or species level was performed by sequencing of the 16S rRNA and/or gyrB gene. Bioluminescent bacteria were scarcely encountered in fresh samples at population levels of ca. 2.0 log CFU/g, whilst total psychrotrophic/psychrophilic bacteria were found at levels of ca. 4.4 log CFU/g. As time proceeded and close to shelf-life end, bioluminescent bacteria were encountered at higher populations, and were found at levels of 5.3 and 7.0 log CFU/g in samples from the second and third batch, respectively. In the first batch their presence was occasional and at levels up to 3.9 log CFU/g. Accordingly, total psychrotrophic/psychrophilic bacteria exceeded 8.4 log CFU/g at the end of storage, suggesting the possible underestimation of bioluminescent populations following the specific cultivation conditions. Sequence analysis assigned bioluminescent isolates to Photobacterium phosphoreum, while genetic fingerprinting revealed high intra-species variability. Respectively, total psychrotrophs/psychrophiles were assigned to genera Pseudomonas, Shewanella, Psychrobacter, Acinetobacter, Vibrio and Photobacterium. Non-luminous photobacteria were not identified within the psychrotrophs/psychrophiles. Results of the present study reveal the intra- and inter-batch variability on the occurrence and growth responses of P. phosphoreum and highlight its potential role in the chicken meat spoilage consortium.
Collapse
Affiliation(s)
- Dimitra Dourou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
| | - Agapi I Doulgeraki
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece.
| | - Stamatia Vitsou-Anastasiou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - Anthoula A Argyri
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
| | - Nikos G Chorianopoulos
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - George-John E Nychas
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology, Iera Odos 75, 11855 Athens, Greece
| | - Chrysoula C Tassou
- Hellenic Agricultural Organization - DIMITRA, Institute of Technology of Agricultural Products, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece.
| |
Collapse
|
12
|
Barazi AÖ, Mehmetoğlu AÇ, Erkmen O. A Novel Edible Coating Produced from a Wheat Gluten, Pistacia vera L. Resin, and Essential Oil Blend: Antimicrobial Effects and Sensory Properties on Chicken Breast Fillets. Foods 2023; 12:2276. [PMID: 37372487 PMCID: PMC10297611 DOI: 10.3390/foods12122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial edible coatings can eliminate the risk of pathogen contamination on the surface of poultry products during storage. In this study, an edible coating (EC) based on wheat gluten, Pistacia vera L. tree resin (PVR), and the essential oil (EO) of PVR was applied on chicken breast fillets (CBF) by a dipping method to prevent the growth of Salmonella Typhimurium and Listeria monocytogenes. The samples were packed in foam trays wrapped with low-density polyethylene stretch film and stored at 8 °C for 12 days to observe the antimicrobial effects and sensory properties. The total bacteria count (TBC), L. monocytogenes, and S. Typhimurium were recorded during storage. The samples coated with EC, containing 0.5, 1, 1.5, and 2% v/v EO (ECEO), showed significant decreases in microbial growth compared to the control samples. The growth of TBC, L. monocytogenes, and S. Typhimurium was suppressed by 4.6, 3.2, and 1.6 logs, respectively, at the end of 12 days on the samples coated with ECEO (2%) compared to the uncoated controls (p < 0.05). Coating with ECEO (2%) also preserved the appearance, smell, and general acceptance parameters better than uncoated raw chicken (p < 0.05) on the fifth day of storage. In grilled chicken samples, ECEO (2%) did not significantly change the appearance, smell, and texture (p > 0.05) but increased the taste and general acceptance scores. Therefore, ECEO (2%) can be a feasible and reliable alternative to preserve CBFs without adversely affecting their sensory properties.
Collapse
Affiliation(s)
- Aykut Önder Barazi
- Food Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep 27310, Turkey;
| | - Arzu Çağrı Mehmetoğlu
- Food Engineering Department, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey;
| | - Osman Erkmen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Arel University, Istanbul 34440, Turkey
| |
Collapse
|
13
|
Ghasemi S, Jaldani S, Sanaei F, Ghiafehshirzadi A, Alidoost A, Hashemi M, Hossaeini Marashi SM, Khodaiyan F, Noori SMA. Application of alginate polymer films and coatings incorporated with essential oils in foods: a review of recent literature with emphasis on nanotechnology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Abstract
Food waste is one of the major challenges in food safety and finding a solution for this issue is critically important. Herein, edible films and coatings became attractive for scientists as they can keep food from spoilage. Edible films and coatings can effectively preserve the original quality of food and extend its shelf life. Polysaccharides, including starch and cellulose derivatives, chitosan, alginate and pectin, have been extensively studied as biopackaging materials. One of the most interesting polysaccharides is alginate, which has been used to make edible films and coatings. Incorporating essential oils (EO) in alginate matrices results in an improvement in some properties of the edible packages, such as antioxidant and antimicrobial properties. Additionally, the use of nanotechnology can improve the desirable properties of edible films and coatings. In this article we reviewed the antimicrobial and antioxidant properties of alginate coatings and films and their use in various food products.
Collapse
Affiliation(s)
- Sajjad Ghasemi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Shima Jaldani
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Farideh Sanaei
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Asiyeh Ghiafehshirzadi
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Ahmadreza Alidoost
- Faculty of Agriculture, Department of Food Science and Technology , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
- Department of Nutrition, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sayed Mahdi Hossaeini Marashi
- College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055) , Brunel University London , Uxbridge , UB8 3PH , UK
- School of Physics, Engineering and Computer Science, Centre for Engineering Research , University of Hertfordshire , Mosquito Way , Hatfield AL10 9EU , UK
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering , University of Tehran , Karaj , Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center , Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
- Department of Nutrition, School of Allied Medical Sciences , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
14
|
Lu H, Sun Y, Wang X, Lu Z, Zhu J. Transcriptomics reveal the antibiofilm mechanism of NaCl combined with citral against Vibrio parahaemolyticus. Appl Microbiol Biotechnol 2022; 107:313-326. [DOI: 10.1007/s00253-022-12286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
|