1
|
Oomatia A, Chervova O, Al-Rashed AM, Smpokou ET, Ecker S, Pearce N, Heggeseth B, Nitsch D, Cardenas A, Beck S, Gonzalez-Quiroz M, Caplin B. Longitudinal leucocyte DNA methylation changes in Mesoamerican nephropathy. ENVIRONMENTAL EPIGENETICS 2025; 11:dvaf001. [PMID: 39917055 PMCID: PMC11801219 DOI: 10.1093/eep/dvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Abstract
Mesoamerican nephropathy (MeN) is a leading cause of morbidity and mortality in Central America, yet its aetiology remains unclear. Environmental exposures including heat stress, pesticides, and heavy metals have all been suggested as possible causes or exacerbating factors of the disease, but intermittent and cumulative exposures are difficult to capture using conventional biomonitoring. Locus-specific differential DNA-methylation (DNAm) which is known to occur in association with these environmental exposures can be readily measured in peripheral blood leucocytes, and therefore have the potential to be used as biomarkers of these exposures. In this study, we aimed first to perform a hypothesis-free epigenome-wide association study of MeN to identify disease-specific methylation signatures, and second to explore the association of DNAm changes associated with potentially relevant environmental exposures and MeN onset. Whole-blood epigenome-wide DNAm was analysed from a total of 312 blood samples: 53 incident cases (pre- and post-evidence of disease onset), 61 matched controls and 16 established cases, collected over a 5-year period. Mixed-effect models identified three unique differentially methylated regions that associated with incident kidney injury, two of which lie within the intron of genes (Amphiphysin on chromosome 7, and SLC29A3 chromosome 10), none of which have been previously reported with any other kidney disease. Next, we conducted a hypothesis-driven analysis examining the coefficients of CpG sites reported to be associated with ambient temperature, pesticides, arsenic, cadmium, and chromium. However, none showed an association with MeN disease onset. Therefore, we did not observe previously reported patterns of DNA methylation that might support a role of pesticides, temperature, or the examined metals in causing MeN.
Collapse
Affiliation(s)
- Amin Oomatia
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | - Olga Chervova
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Ali M Al-Rashed
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| | | | - Simone Ecker
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Neil Pearce
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Brianna Heggeseth
- Department of Data Sciences, Macalester College, St. Paul, MN 55105-1899, United States
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford, CA 94305-5405, United States
| | - Stephan Beck
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Marvin Gonzalez-Quiroz
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
- Department of Environmental and Occupational Health, UT School of Public Health San Antonio, The University of Texas Health Science Centre at San Antonio, San Antonio, TX 78249, United States
| | - Ben Caplin
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
2
|
White AC, Krout IN, Mouhi S, Chang J, Kelly SD, Caudle WM, Sampson TR. The pyrethroid insecticide deltamethrin disrupts neuropeptide and monoamine signaling pathways in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628386. [PMID: 39763966 PMCID: PMC11702531 DOI: 10.1101/2024.12.14.628386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Enteroendocrine cells (EECs) are a rare cell type of the intestinal epithelium. Various subtypes of EECs produce distinct repertoires of monoamines and neuropeptides which modulate intestinal motility and other physiologies. EECs also possess neuron-like properties, suggesting a potential vulnerability to ingested environmental neurotoxicants. One such group of toxicants are pyrethroids, a class of prevalent insecticides used residentially and agriculturally. Pyrethroids agonize voltage-gated sodium channels (VGSCs), inducing neuronal excitotoxicity, and affect the function of monoamine-producing neurons. Given their anatomical location at the interface with the environment and their expression of VGSCs, EECs likely represent a vulnerable cell-type to oral pyrethroid exposure. In this study, we used the EEC cell line, STC-1 cells, to evaluate the effects of the common pyrethroid deltamethrin on the functional status of EECs. We find that deltamethrin impacts both expression of serotonergic pathways and inhibits the adrenergic-evoked release of an EEC hormone, GLP-1, in vitro. In a mouse model of oral exposure, we found that deltamethrin induced an acute, yet transient, loss of intestinal motility, in both fed and fasted conditions. This constipation phenotype was accompanied by a significant decrease in peripheral serotonin production and an inhibition of nutrient-evoked intestinal hormone release. Together, these data demonstrate that deltamethrin alters monoaminergic signaling pathways in EECs and regulates intestinal motility. This work demonstrates a mechanistic link between pyrethroid exposure and intestinal impacts relevant to pyrethroid-associated diseases, including inflammatory bowel disease, neurodegenerative disease, and metabolic disorders.
Collapse
Affiliation(s)
- Alexandria C. White
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Ian N. Krout
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| | - Sabra Mouhi
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Jianjun Chang
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - Sean D. Kelly
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
| | - W. Michael Caudle
- Gangarosa Dept of Environmental Health, Rollins School of Public Health; Emory University; Atlanta GA 30322
| | - Timothy R. Sampson
- Dept of Cell Biology; Emory University School of Medicine; Atlanta GA USA 30322
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase MD 20815
| |
Collapse
|
3
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Schaffner SL, Casazza W, Artaud F, Konwar C, Merrill SM, Domenighetti C, Schulze-Hentrich JM, Lesage S, Brice A, Corvol JC, Mostafavi S, Dennis JK, Elbaz A, Kobor MS. Genetic variation and pesticide exposure influence blood DNA methylation signatures in females with early-stage Parkinson's disease. NPJ Parkinsons Dis 2024; 10:98. [PMID: 38714693 PMCID: PMC11076573 DOI: 10.1038/s41531-024-00704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/05/2024] [Indexed: 05/10/2024] Open
Abstract
Although sex, genetics, and exposures can individually influence risk for sporadic Parkinson's disease (PD), the joint contributions of these factors to the epigenetic etiology of PD have not been comprehensively assessed. Here, we profiled sex-stratified genome-wide blood DNAm patterns, SNP genotype, and pesticide exposure in agricultural workers (71 early-stage PD cases, 147 controls) and explored replication in three independent samples of varying demographics (n = 218, 222, and 872). Using a region-based approach, we found more associations of blood DNAm with PD in females (69 regions) than in males (2 regions, Δβadj| ≥0.03, padj ≤ 0.05). For 48 regions in females, models including genotype or genotype and pesticide exposure substantially improved in explaining interindividual variation in DNAm (padj ≤ 0.05), and accounting for these variables decreased the estimated effect of PD on DNAm. The results suggested that genotype, and to a lesser degree, genotype-exposure interactions contributed to variation in PD-associated DNAm. Our findings should be further explored in larger study populations and in experimental systems, preferably with precise measures of exposure.
Collapse
Affiliation(s)
- S L Schaffner
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - W Casazza
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - F Artaud
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - C Konwar
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
| | - S M Merrill
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
| | - C Domenighetti
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - J M Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66041, Saarbrücken, Germany
| | - S Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Paris, France
| | - A Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Paris, France
| | - J C Corvol
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Paris, France
- Sorbonne University, Assistance Publique Hôpitaux de Paris, Paris Brain Insitute - ICM, Inserm, CNRS, Department of Neurology and CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France
| | - S Mostafavi
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
- Paul Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - J K Dennis
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - A Elbaz
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - M S Kobor
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Rohr P, Karen S, Francisco LFV, Oliveira MA, dos Santos Neto MF, Silveira HCS. Epigenetic processes involved in response to pesticide exposure in human populations: a systematic review and meta-analysis. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae005. [PMID: 38779494 PMCID: PMC11110075 DOI: 10.1093/eep/dvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
In recent decades, the use of pesticides in agriculture has increased dramatically. This has resulted in these substances being widely dispersed in the environment, contaminating both exposed workers and communities living near agricultural areas and via contaminated foodstuffs. In addition to acute poisoning, chronic exposure to pesticides can lead to molecular changes that are becoming better understood. Therefore, the aim of this study was to assess, through a systematic review of the literature, what epigenetic alterations are associated with pesticide exposure. We performed a systematic review and meta-analysis including case-control, cohort and cross-sectional observational epidemiological studies to verify the epigenetic changes, such as DNA methylation, histone modification and differential microRNA expression, in humans who had been exposed to any type of pesticide. Articles published between the years 2005 and 2020 were collected. Two different reviewers performed a blind selection of the studies using the Rayyan QCRI software. Post-completion, the data of selected articles were extracted and analyzed. Most of the 28 articles included evaluated global DNA methylation levels, and the most commonly reported epigenetic modification in response to pesticide exposure was global DNA hypomethylation. Meta-analysis revealed a significant negative correlation between Alu methylation levels and β-hexachlorocyclohexane, p,p'-dichlorodiphenyldichloroethane and p,p'-dichlorodiphenylethylene levels. In addition, some specific genes were reported to be hypermethylated in promoter regions, such as CDKN2AIGF2, WRAP53α and CDH1, while CDKN2B and H19 were hypomethylated due to pesticide exposure. The expression of microRNAs was also altered in response to pesticides, as miR-223, miR-518d-3p, miR-597, miR-517b and miR-133b that are associated with many human diseases. Therefore, this study provides evidence that pesticide exposure could lead to epigenetic modifications, possibly altering global and gene-specific methylation levels, epigenome-wide methylation and microRNA differential expression.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Shimoyama Karen
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Luiza Flávia Veiga Francisco
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Marco Antônio Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Martins Fidelis dos Santos Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
- Campus São Paulo, University of Anhanguera, São Paulo, SP 04119-901, Brazil
| |
Collapse
|
6
|
Arsuffi-Marcon R, Souza LG, Santos-Miranda A, Joviano-Santos JV. Neurotoxicity of Pyrethroids in neurodegenerative diseases: From animals' models to humans' studies. Chem Biol Interact 2024; 391:110911. [PMID: 38367681 DOI: 10.1016/j.cbi.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Neurodegenerative diseases are associated with diverse symptoms, both motor and mental. Genetic and environmental factors can trigger neurodegenerative diseases. Chemicals as pesticides are constantly used in agriculture and also domestically. In this regard, pyrethroids (PY), are a class of insecticides in which its main mechanism of action is through disruption of voltage-dependent sodium channels function in insects. However, in mammals, they can also induce oxidative stress and enzyme dysfunction. This review investigates the association between PY and neurodegenerative diseases as Alzheimer's, Huntington's, Parkinson's, Amyotrophic Lateral Sclerosis, and Autism in animal models and humans. Published works using specific and non-specific models for these diseases were selected. We showed a tendency toward the development and/or aggravating of these neurodegenerative diseases following exposure to PYs. In animal models, the biochemical mechanisms of the diseases and their interaction with the insecticides are more deeply investigated. Nonetheless, only a few studies considered the specific model for each type of disease to analyze the impacts of the exposure. The choice of a specific model during the research is an important step and our review highlights the knowledge gaps of PYs effects using these models reinforcing the importance of them during the design of the experiments.
Collapse
Affiliation(s)
- Rafael Arsuffi-Marcon
- Center for Mathematics, Computing, and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Lizandra Gomes Souza
- Center for Mathematics, Computing, and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Yuan S, Arellano AF, Knickrehm L, Chang HI, Castro CL, Furlong M. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2024; 319:120262. [PMID: 38250567 PMCID: PMC10798238 DOI: 10.1016/j.atmosenv.2023.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
While pesticide vapor and particles from agricultural spray drift have been reported to pose a risk to public health, limited baseline ambient measurements exist to warrant an accurate assessment of their impacts at community-to-county-wide scale. Here, we present an initial modeling investigation of the transport and deposition of applied pesticides in an agricultural county in Arizona (Yuma County), to provide initial estimates on the corresponding enhancements in ambient levels of these spray drifts downwind of application sites. With a 50 × 50 km domain, we use the dispersion model CALPUFF with meteorology from the Weather Research and Forecasting (WRF) to investigate the spatiotemporal distribution of pesticide abundance due to spray drift from a representative sample of nine application sites. Data records for nine application days in September and October 2011, which are the peak months of pesticide application, were retroactively simulated for 48-h for all nine application sites using an active ingredient lambda-cyhalothrin, which is a commonly-used pesticide in the county. Twenty-one WRF/CALPUFF simulations were conducted with varying emissions, chemical lifetime, deposition rate, application height, and meteorology inputs, allowing for an ensemble-based analysis on the possible ranges in modeled abundance. Our results show that dispersion of vapors released at time of application heavily depends on prevailing meteorology, particularly wind speed and direction. Dispersion is limited to thin plumes that are easily transported out of the domain. The ensemble-mean vapor concentrations of the 48-h average (> 90 percentile domain-wide) range from 0.2 nanograms (ng)/m3 to 200 ng/m3, and the peak can be as high as 1000 ng/m3 near the application sites. Pesticide particles are mainly deposited within 1-2 km from the application sites at an average rate of 106 ng/km2/h but vary with particle mean diameter and standard deviation. While these findings are generally consistent with reported ambient levels in the literature, the associated ensemble-spread on these estimates are in the same order of magnitude as their ensemble-mean. At the two nearby communities downwind of these sites, we find that peak vapor concentrations are less than 50 ng/m3 with exposure times of less than an hour, as approximately 99.4% of the vapors are advected out and 99.5% of the particles deposit within the domain. Results of this study indicate pesticide spray drift from a sample of application sites and representative days in Fall may have a limited impact on neighboring communities. However, we strongly suggest that field measurements should be collected for model validation and more rigorous investigation of the actual scale of these impacts when the bulk of pesticide applications across the county, variation in active pesticide ingredients, and potential resuspension of deposited particles are considered.
Collapse
Affiliation(s)
- Sunyi Yuan
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States
- Now at COMAC Flight Test Center, 201323, Shanghai, China
| | - Avelino F. Arellano
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States
| | - Lauren Knickrehm
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States
| | - Hsin-I Chang
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States
| | - Christopher L. Castro
- Department of Hydrology and Atmospheric Sciences, University of Arizona, United States
| | - Melissa Furlong
- Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, United States
| |
Collapse
|
8
|
Xia Z, Lv C, Zhang Y, Shi R, Lu Q, Tian Y, Lei X, Gao Y. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study. CHEMOSPHERE 2023; 341:139973. [PMID: 37640215 DOI: 10.1016/j.chemosphere.2023.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to adverse childhood neurodevelopment, but little is known about whether BPA substitutes exposures are also related to childhood neurodevelopment. OBJECTIVES To investigate the associations of exposure to BPA and its substitutes with infant neurodevelopment at 12 months. METHODS A total of 420 infants at 12 months were included from the Laizhou Wan (Bay) Birth Cohort in Shandong, China. Urinary concentrations of BPA and its substitutes including bisphenol S (BPS), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol P (BPP) and bisphenol Z (BPZ) were measured. Developmental quotient (DQ) scores based on the Gesell Development Schedules (GDS) were used to evaluate infant neurodevelopment. The multivariable linear regression and weighted quantile sum (WQS) regression were applied to estimate the associations of exposure to individual bisphenols and their mixtures with DQ scores, respectively. Sex-stratified analyses were also performed. RESULTS BPA was detected in most infants (89.05%) and had the highest median concentration (0.709 ng/mL) among all bisphenols. BPA substitutes except BPZ were ubiquitous in infants' urine samples (>70%), and BPS showed the highest median concentration (0.064 ng/mL) followed by BPAP (0.036 ng/mL), BPAF (0.028 ng/mL), BPP (0.015 ng/mL) and BPB (0.013 ng/mL). In multivariable linear regression, only BPAF exposure was inversely associated with social DQ scores among all infants (β = -0.334; 95% CI: -0.650, -0.019). After sex stratification, this inverse association was significant in girls (β = -0.605; 95% CI: -1.030, -0.180). Besides, BPA exposure was negatively related to gross motor DQ scores in boys (β = -1.061; 95% CI: -2.078, -0.045). WQS analyses confirmed these results. CONCLUSIONS Our study suggests that bisphenol exposure during infancy may be associated with poor infant neurodevelopment, and BPAF as a commonly used BPA substitute contributing the most to this adverse association deserves more attention.
Collapse
Affiliation(s)
- Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022; 456:116280. [DOI: 10.1016/j.taap.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
|
10
|
Paul KC, Kusters C, Furlong M, Zhang K, Yu Y, Folle AD, Del Rosario I, Keener A, Bronstein J, Sinsheimer JS, Horvath S, Ritz B. Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson's disease patients. Brain Behav Immun Health 2022; 26:100530. [PMID: 36325427 PMCID: PMC9618774 DOI: 10.1016/j.bbih.2022.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Although Parkinson's Disease (PD) is typically described in terms of motor symptoms, depression is a common feature. We explored whether depression influences blood-based genome-wide DNA methylation (DNAm) in 692 subjects from a population-based PD case-control study, using both a history of clinically diagnosed depression and current depressive symptoms measured by the geriatric depression scale (GDS). While PD patients in general had more immune activation and more accelerated epigenetic immune system aging than controls, the patients experiencing current depressive symptoms (GDS≥5) showed even higher levels of both markers than patients without current depressive symptoms (GDS<5). For PD patients with a history of clinical depression compared to those without, we found no differences in immune cell composition. However, a history of clinical depression among patients was associated with differentially methylated CpGs. Epigenome-wide association analysis (EWAS) revealed 35 CpGs associated at an FDR≤0.05 (569 CpGs at FDR≤0.10, 1718 CpGs at FDR≤0.15). Gene set enrichment analysis implicated immune system pathways, including immunoregulatory interactions between lymphoid and non-lymphoid cells (p-adj = 0.003) and cytokine-cytokine receptor interaction (p-adj = 0.004). Based on functional genomics, 25 (71%) of the FDR≤0.05 CpGs were associated with genetic variation at 45 different methylation quantitative trait loci (meQTL). Twenty-six of the meQTLs were also expression QTLs (eQTLs) associated with the abundance of 53 transcripts in blood and 22 transcripts in brain (substantia nigra, putamen basal ganglia, or frontal cortex). Notably, cg15199181 was strongly related to rs823114 (SNP-CpG p-value = 3.27E-310), a SNP identified in a PD meta-GWAS and related to differential expression of PM20D1, RAB29, SLC41A1, and NUCKS1. The entire set of genes detected through functional genomics was most strongly overrepresented for interferon-gamma-mediated signaling pathway (enrichment ratio = 18.8, FDR = 4.4e-03) and T cell receptor signaling pathway (enrichment ratio = 13.2, FDR = 4.4e-03). Overall, the current study provides evidence of immune system involvement in depression among Parkinson's patients. Parkinson's disease (PD) is associated with clinical depression prior to PD onset and depressive symptoms after PD diagnosis. Epigenome-wide analysis revealed CpGs related to current depressive symptoms and a history of clinical depression among PD patients. Patients experiencing current depressive symptoms had the highest epigenetic-based neutrophil-to-lymphocyte ratio on average. Patients with a history of clinical depression had differentially methylated CpGs in genes enriched for immune system pathways. Many of the depression associated CpGs were linked to differential expression through meQTL/eQTLs, which included GWAS variants.
Collapse
Affiliation(s)
- Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Corresponding author. 73-320B CHS, CAMPUS-177220, UCLA, Los Angeles, CA, 90095, USA.
| | - Cynthia Kusters
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Melissa Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Yu Yu
- Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Adrienne Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Janet S. Sinsheimer
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Steve Horvath
- Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
11
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Lucia RM, Huang WL, Pathak KV, McGilvrey M, David-Dirgo V, Alvarez A, Goodman D, Masunaka I, Odegaard AO, Ziogas A, Pirrotte P, Norden-Krichmar TM, Park HL. Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47001. [PMID: 35377194 PMCID: PMC8978648 DOI: 10.1289/ehp10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide in the world and is purported to have a variety of health effects, including endocrine disruption and an elevated risk of several types of cancer. Blood DNA methylation has been shown to be associated with many other environmental exposures, but to our knowledge, no studies to date have examined the association between blood DNA methylation and glyphosate exposure. OBJECTIVE We conducted an epigenome-wide association study to identify DNA methylation loci associated with urinary glyphosate and its metabolite aminomethylphosphonic acid (AMPA) levels. Secondary goals were to determine the association of epigenetic age acceleration with glyphosate and AMPA and develop blood DNA methylation indices to predict urinary glyphosate and AMPA levels. METHODS For 392 postmenopausal women, white blood cell DNA methylation was measured using the Illumina Infinium MethylationEPIC BeadChip array. Glyphosate and AMPA were measured in two urine samples per participant using liquid chromatography-tandem mass spectrometry. Methylation differences at the probe and regional level associated with glyphosate and AMPA levels were assessed using a resampling-based approach. Probes and regions that had an false discovery rate q < 0.1 in ≥ 90 % of 1,000 subsamples of the study population were considered differentially methylated. Differentially methylated sites from the probe-specific analysis were combined into a methylation index. Epigenetic age acceleration from three epigenetic clocks and an epigenetic measure of pace of aging were examined for associations with glyphosate and AMPA. RESULTS We identified 24 CpG sites whose methylation level was associated with urinary glyphosate concentration and two associated with AMPA. Four regions, within the promoters of the MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8 genes, were associated with glyphosate levels, along with an association between ESR1 promoter hypomethylation and AMPA. The methylation index accurately predicted glyphosate levels in an internal validation cohort. AMPA, but not glyphosate, was associated with greater epigenetic age acceleration. DISCUSSION Glyphosate and AMPA exposure were associated with DNA methylation differences that could promote the development of cancer and other diseases. Further studies are warranted to replicate our results, determine the functional impact of glyphosate- and AMPA-associated differential DNA methylation, and further explore whether DNA methylation could serve as a biomarker of glyphosate exposure. https://doi.org/10.1289/EHP10174.
Collapse
Affiliation(s)
- Rachel M. Lucia
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Wei-Lin Huang
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marissa McGilvrey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, California, USA
| | - Deborah Goodman
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, California, USA
| | - Andrew O. Odegaard
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, California, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, Auerbach SS, Long S, Shrestha S, Wang T, Beane Freeman LE, Hofmann JN, Parks C, Xu CJ, Ritz B, Koppelman GH, London SJ. Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97008. [PMID: 34516295 PMCID: PMC8437246 DOI: 10.1289/ehp8928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kimberly C. Paul
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Scott S. Auerbach
- Biomolecular Screening Branch, National Toxicology Program, NIEHS, NIH, DHHS, Morrisville, North Carolina, USA
| | | | - Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Cheng-Jian Xu
- Research Group of Bioinformatics and Computational Genomics, CiiM, Centre for individualized infection medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Blanc M, Antczak P, Cousin X, Grunau C, Scherbak N, Rüegg J, Keiter SH. The insecticide permethrin induces transgenerational behavioral changes linked to transcriptomic and epigenetic alterations in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146404. [PMID: 33752003 DOI: 10.1016/j.scitotenv.2021.146404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
The pyrethroid insecticide permethrin is widely used for agricultural and domestic purposes. Previous data indicated that it acts as a developmental neurotoxicant and can induce transgenerational effects in non-target organisms. However, associated underlying mechanisms remain unclear. The aim of this study was to investigate permethrin-related transgenerational effects in the zebrafish model, and to identify possible molecular mechanisms underlying inheritance. Zebrafish (F0) were exposed to permethrin during early-life (2 h post-fertilization up to 28 days). The F1 and F2 offspring generations were obtained by pairing exposed F0 males and females, and were bred unexposed. Locomotor and anxiety behavior were investigated, together with transcriptomic and epigenomic (DNA methylation) changes in brains. Permethrin exposed F0 fish were hypoactive at adulthood, while males from the F1 and F2 generations showed a specific decrease in anxiety-like behavior. In F0, transcriptomic data showed enrichment in pathways related to glutamatergic synapse activity, which may partly underlie the behavioral effects. In F1 and F2 males, dysregulation of similar pathways was observed, including a subset of differentially methylated regions that were inherited from the F0 to the F2 generation and indicated stable dysregulation of glutamatergic signaling. Altogether, the present results provide novel evidence on the transgenerational neurotoxic effects of permethrin, as well as mechanistic insight: a transient exposure induces persistent transcriptional and DNA methylation changes that may translate into transgenerational alteration of glutamatergic signaling and, thus, into behavioral alterations.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France.
| | - Philipp Antczak
- Centre for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Xavier Cousin
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Palavas, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Christoph Grunau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Nikolai Scherbak
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
15
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
16
|
Qu Y, Zhang Z, Lu Y, Zheng D, Yang W. RNA Sequencing Reveals the Wound Repair Mechanism of Cuyuxunxi Prescription in Surgical Patients with Anal Fistulas. Comb Chem High Throughput Screen 2021; 25:1284-1293. [PMID: 34060988 DOI: 10.2174/1386207324666210520112816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anal fistula is one of the most common colorectal and perirectal diseases in the world. Cuyuxunxi (CYXX) prescription is an efficient herbal fumigant used to promote the surgical wound healing of anal fistulas. OBJECTIVE This study aimed to explore the underlying molecular mechanism of CYXX prescription on surgical wound healing of anal fistulas. METHODS Ten patients with anal fistula were randomized into a control group or treatment group. The wound surface of patients in the control group was rinsed by normal saline, while that in the treatment group was rinsed by CYXX prescription. The wound tissues of patients with anal fistulas seven days after the surgery were collected for hematoxylin-eosin (HE) staining and RNA sequencing. The expressions of differentially expressed genes (DEGs) were validated by real-time quantitative PCR (RT-qPCR). RESULTS HE staining showed that CYXX treatment reduced the infiltration of inflammatory cells. A total of 472 DEGs, including 141 up-regulated genes and 331 down-regulated genes, were identified. These genes were significantly related to skin development, xenobiotic stimulus, and inflammation. In addition, the consistency rate of RT-qPCR and sequencing results was 83.33%, which showed a high relative reliability of the sequencing results. CONCLUSION CYXX prescription could improve epidermis repair and reduce inflammatory responses.
Collapse
Affiliation(s)
- Yin Qu
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zhijun Zhang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yafeng Lu
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - De Zheng
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Yang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| |
Collapse
|
17
|
Yan Q, Paul KC, Walker DI, Furlong MA, Del Rosario I, Yu Y, Zhang K, Cockburn MG, Jones DP, Ritz BR. High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. Chem Res Toxicol 2021; 34:1337-1347. [PMID: 33913694 DOI: 10.1021/acs.chemrestox.0c00523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pesticides are widely used in the agricultural Central Valley region of California. Historically, this has included organophosphates (OPs), organochlorines (OCs), and pyrethroids (PYRs). This study aimed to identify perturbations of the serum metabolome in response to each class of pesticide and mutual associations between groups of metabolites and multiple pesticides. We conducted high-resolution metabolomic profiling of serum samples from 176 older adults living in the California Central Valley using liquid chromatography with high-resolution mass spectrometry. We estimated chronic pesticide exposure (from 1974 to year of blood draw) to OPs, OCs, and PYRs from ambient sources at homes and workplaces with a geographic information system (GIS)-based model. Based on partial least-squares regression and pathway enrichment analysis, we identified metabolites and metabolic pathways associated with one or multiple pesticide classes, including mitochondrial energy metabolism, fatty acid and lipid metabolism, and amino acid metabolism. Utilizing an integrative network approach, we found that the fatty acid β-oxidation pathway is a common pathway shared across all three pesticide classes. The disruptions of the serum metabolome suggested that chronic pesticide exposure might result in oxidative stress, inflammatory reactions, and mitochondrial dysfunction, all of which have been previously implicated in a wide variety of diseases. Overall, our findings provided a comprehensive view of the molecular mechanisms of chronic pesticide toxicity, and, for the first time, our approach informs exposome research by moving from macrolevel population exposures to microlevel biologic responses.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10019, United States
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona 85724, United States
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Yu Yu
- Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Myles G Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States.,Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States.,Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA Methylation by Hispanic Ethnicity Among Firefighters in the United States. Epigenet Insights 2021; 14:25168657211006159. [PMID: 35036834 PMCID: PMC8756104 DOI: 10.1177/25168657211006159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA,Jaclyn M Goodrich, Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Melissa A Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Timothy Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Shawn Beitel
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|
19
|
Furlong MA, Paul KC, Cockburn M, Bronstein J, Keener A, Rosario ID, Folle AD, Ritz B. Ambient Pyrethroid Pesticide Exposures in Adult Life and Depression in Older Residents of California's Central Valley. Environ Epidemiol 2020; 4:e123. [PMID: 33336137 PMCID: PMC7727463 DOI: 10.1097/ee9.0000000000000123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Pyrethroid pesticide exposures may be associated with the onset of depression in later life via disruption of dopaminergic, serotonergic, and neurological functioning. We sought to investigate the association between living near agricultural pyrethroid pesticide applications and depression measures in central California, using two waves (PEG 1&2, total N = 1,654) of a case control study of Parkinson's disease (PD). At enrollment, participants self-reported history of use of depression medications and dates of MD-diagnosed depression and anxiety. Participants also completed a Geriatric Depression Scale-Short Form upon enrollment. We used the California Pesticide Use Registry to assign estimated ambient pyrethroid pesticide exposures at participant's home addresses over the 5 years before the index date (date of outcome, or an age-matched year for participants without the outcome). We used logistic and linear regression to evaluate associations between living near any pyrethroid applications over the 5-year index period and measures of depression and anxiety. We also evaluated modification by study wave and PD status. We observed associations of pyrethroids with depression, depression medications, and anxiety (adjusted odds ratio [aOR] depression = 1.54, 95% confidence interval [CI] 1.14, 2.07; aOR depression medications = 1.68, 95% CI 1.25, 2.25; aOR anxiety = 1.60, 95% CI 1.17, 2.18). However, we observed no associations with mild/moderate depressive symptoms according to the GDS score at enrollment (aOR = 1.04, 95% CI 0.77, 1.42). We did not observe a consistent modification of the pyrethroid-depression associations by study wave and PD status. Ambient pyrethroid pesticide exposures may be associated with measures of depression in later life.
Collapse
Affiliation(s)
- Melissa A. Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona
| | - Kimberly C. Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, California
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California
| | - Adrienne Keener
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, California
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|