1
|
Hetland MAK, Winkler MA, Kaspersen HP, Håkonsholm F, Bakksjø RJ, Bernhoff E, Delgado-Blas JF, Brisse S, Correia A, Fostervold A, Lam MMC, Lunestad BT, Marathe NP, Raffelsberger N, Samuelsen Ø, Sunde M, Sundsfjord A, Urdahl AM, Wick RR, Löhr IH, Holt KE. A genome-wide One Health study of Klebsiella pneumoniae in Norway reveals overlapping populations but few recent transmission events across reservoirs. Genome Med 2025; 17:42. [PMID: 40296028 PMCID: PMC12039103 DOI: 10.1186/s13073-025-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Members of the Klebsiella pneumoniae species complex (KpSC) are opportunistic pathogens that cause severe and difficult-to-treat infections. KpSC are common in non-human niches, but the clinical relevance of these populations is disputed. METHODS In this study, we analysed 3255 whole-genome sequenced isolates from human, animal and marine sources collected in Norway between 2001 and 2020. We used population genomics in a One Health context to assess the diversity of strains, genes and other clinically relevant genetic features within and between sources. We further explored niche-enriched traits using genome-wide association studies and investigated evidence of spillover and connectivity across the KpSC populations from the three niches. RESULTS We found that the KpSC populations in different niches were distinct but overlapping. Overall, there was high genetic diversity both between and within sources, with nearly half (49%) of the genes in the accessory genome overlapping the ecological niches. Further, several sublineages (SLs) including SL17, SL35, SL37, SL45, SL107 and SL3010 were common across sources. There were few niche-enriched traits, except for aerobactin-encoding plasmids and the bacteriocin colicin a, which were associated with KpSC from animal sources. Human infection isolates showed the greatest connectivity with each other, followed by isolates from human carriage, pigs, and bivalves. Nearly 5% of human infection isolates had close relatives (≤22 substitutions) amongst animal and marine isolates, despite temporally and geographically distant sampling of these sources. There were limited but notable recent spillover events, including the movement of plasmids encoding the virulence locus iuc3 between pigs and humans. CONCLUSIONS Our large One Health genomic study highlights that human-to-human transmission of KpSC is more common than transmission between ecological niches. Still, spillover of clinically relevant strains and genetic features between human and non-human sources does occur and should not be overlooked. Infection prevention measures are essential to limit transmission within human clinical settings and reduce infections. However, preventing transmission that leads to colonisation, e.g. from direct contact with animals or via the food chain, could also play an important role in reducing the KpSC disease burden.
Collapse
Affiliation(s)
- Marit A K Hetland
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway.
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway.
| | - Mia A Winkler
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Håkon P Kaspersen
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Fredrik Håkonsholm
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Institute of Marine Research, Bergen, Norway
| | - Ragna-Johanne Bakksjø
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Jose F Delgado-Blas
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annapaula Correia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
| | - Aasmund Fostervold
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Margaret M C Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bjørn-Tore Lunestad
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Marianne Sunde
- Section for Bacteriology, Department for Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne Margrete Urdahl
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Ryan R Wick
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Attalla ET, Khalil AM, Zakaria AS, Evans R, Tolba NS, Mohamed NM. Efficacy of colistin-based combinations against pandrug-resistant whole-genome-sequenced Klebsiella pneumoniae isolated from hospitalized patients in Egypt: an in vitro/vivo comparative study. Gut Pathog 2024; 16:73. [PMID: 39627871 PMCID: PMC11616336 DOI: 10.1186/s13099-024-00667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Colistin resistance significantly constrains available treatment options and results in the emergence of pandrug-resistant (PDR) strains. Treating PDR infections is a major public health issue. A promising solution lies in using colistin-based combinations. Despite the availability of in vitro data evaluating these combinations, the in vivo studies remain limited. RESULTS Thirty colistin-resistant Klebsiella pneumoniae (ColRKp) isolates were collected from hospitalized patients. Colistin resistance was detected using broth microdilution, and antimicrobial susceptibility was tested using the Kirby-Bauer method against 18 antibiotics. Extremely high resistance levels were detected, with 17% of the isolates being PDR. Virulence profiling, assessed using Anthony capsule staining, the string test, and the crystal violet assay, indicated the predominance of non-biofilm formers and non-hypermucoid strains. The isolates were screened for mcr genes using polymerase chain reaction. Whole-genome sequencing (WGS) and bioinformatics analysis were performed to characterize the genomes of PDR isolates. No plasmid-borne mcr genes were detected, and WGS analysis revealed that PDR isolates belonged to the high-risk clones: ST14 (n = 1), ST147 (n = 2), and ST383 (n = 2). They carried genes encoding extended-spectrum β-lactamases and carbapenemases, blaCTX-M-15 and blaNDM-5, on conjugative IncHI1B/IncFIB plasmids, illustrating the convergence of virulence and resistance genes. The most common mechanism of colistin resistance involved alterations in mgrB. Furthermore, deleterious amino acid substitutions were also detected within PhoQ, PmrC, CrrB, ArnB, and ArnT. Seven colistin-containing combinations were compared using the checkerboard experiment. Synergy was observed when combining colistin with tigecycline, doxycycline, levofloxacin, ciprofloxacin, sulfamethoxazole/trimethoprim, imipenem, or meropenem. The efficacy of colistin combined with either doxycycline or levofloxacin was assessed in vitro using a resistance modulation assay, and in vivo, using a murine infection model. In vitro, doxycycline and levofloxacin reversed colistin resistance in 80% and 73.3% of the population, respectively. In vivo, the colistin + doxycycline combination demonstrated superiority over colistin + levofloxacin, rescuing 80% of infected animals, and reducing bacterial bioburden in the liver and kidneys while preserving nearly intact lung histology. CONCLUSIONS This study represents the first comparative in vitro and in vivo investigation of the efficacy of colistin + doxycycline and colistin + levofloxacin combinations in clinical PDR ColRKp isolates characterized at a genomic level.
Collapse
Affiliation(s)
- Eriny T Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal M Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Nesrin S Tolba
- Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
3
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Boominathan M, Thillaichidambaram M, Reneese JA, Narayanan K, Sivaramapillai M, Ramaiyan S. Detection of Extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli in wastewaters of Madurai, India. Microb Pathog 2024; 196:106904. [PMID: 39208962 DOI: 10.1016/j.micpath.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The present study aimed to determine the presence of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamase (ESBL)s property from treated wastewater effluents. Treated effluent samples were collected from two major water treatment plants which located at Avaniyapuram and Sakkimangalam, Madurai, Tamil Nadu, India. Among the 51 isolates, 56.86 % represented E. coli (18 from Avaniyapuram and 11 from Sakkimangalam) and 43.14 % were K. pneumoniae (7 from Avaniyapuram and 15 from Sakkimangalam). Based on the ESBL propensity, E. coli was overrepresented in the present study. All the isolates turned positive for ESBL, while 5.88 % of K. pneumoniae and 7.84 % of E. coli were positive for carbapenemases. Further, K. pneumoniae isolates from both sites showed 100 % resistance to beta-lactams, with resistance to other antibiotics such as tetracycline and meropenem. E. coli isolates were 100 % resistant to ceftazidime and cefuroxime, and 88.9 % were resistant to amoxicillin/clavulanate and ceftriaxone. The MAR indices observed in the present study for E. coli and K. pneumoniae were above the threshold value of 0.2 suggested a high risk of environmental contamination. These findings highlighted the need for routine surveillance at appropriate intervals for the presence of ESBL producing pathogens and other MDR pathogens in the environment to provide proper clinical management, develop various counter measures and policies to address and halt the spread of such potential threats.
Collapse
Affiliation(s)
- Meganathan Boominathan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Joseph Antony Reneese
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Muthukumar Sivaramapillai
- Department of Biotechnology, SRM Arts and Science College, Tankular, Chengalpattu, Tamil Nadu, India
| | - Sankar Ramaiyan
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
5
|
Tiwari A, Radu E, Kreuzinger N, Ahmed W, Pitkänen T. Key considerations for pathogen surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173862. [PMID: 38876348 DOI: 10.1016/j.scitotenv.2024.173862] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Wastewater surveillance (WWS) has received significant attention as a rapid, sensitive, and cost-effective tool for monitoring various pathogens in a community. WWS is employed to assess the spatial and temporal trends of diseases and identify their early appearances and reappearances, as well as to detect novel and mutated variants. However, the shedding rates of pathogens vary significantly depending on factors such as disease severity, the physiology of affected individuals, and the characteristics of pathogen. Furthermore, pathogens may exhibit differential fate and decay kinetics in the sewerage system. Variable shedding rates and decay kinetics may affect the detection of pathogens in wastewater. This may influence the interpretation of results and the conclusions of WWS studies. When selecting a pathogen for WWS, it is essential to consider it's specific characteristics. If data are not readily available, factors such as fate, decay, and shedding rates should be assessed before conducting surveillance. Alternatively, these factors can be compared to those of similar pathogens for which such data are available.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Elena Radu
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria; Stefan S. Nicolau Institute of Virology, Department of Cellular and Molecular Pathology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania; University of Medicine and Pharmacy Carol Davila, Department of Virology, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria.
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
6
|
Su W, Wang W, Li L, Zhang M, Xu H, Fu C, Pang X, Wang M. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. ENGINEERING MICROBIOLOGY 2024; 4:100165. [PMID: 39629109 PMCID: PMC11610970 DOI: 10.1016/j.engmic.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
Tigecycline serves as a critical "final-resort" antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.
Collapse
Affiliation(s)
- Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
7
|
Khanal S, K C S, Joshi TP, Han Z, Wang C, Maharjan J, Tuladhar R, Joshi DR. Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134660. [PMID: 38795483 DOI: 10.1016/j.jhazmat.2024.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Wastewaters serve as significant reservoirs of antibiotic resistant bacteria. Despite the evidence of antimicrobial resistance in wastewaters and river water in Kathmandu, direct linkage between them is not discussed yet. This study investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing bacteria and associated resistance genes in wastewaters and river water. Out of 246 bacteria from wastewaters, 57.72% were ESBL producers and 77.64% of them were multidrug resistant (MDR). ESBL producing E. coli was dominant in municipal and hospital wastewaters (HWW) as well as in river water while K. pneumoniae was common in pharmaceutical wastewater. The blaSHV and blaTEM genes were prevalent and commonly co-occurred with aac(6')-Ib-cr in K. pneumoniae isolated pharmaceutical wastewater. blaCTX-M carrying E. coli from hospital co-harbored aac(6')-Ib-cr while that from municipal influent and river water co-harbored qnrS. Whole genome sequencing data revealed the presence of diverse ARGs in bacterial isolates against multiple antibiotics. In average, an E. coli and a K. pneumoniae isolate contained 55.75 ± 0.96 and 40.2 ± 5.36 ARGs, respectively. Multi-locus sequence typing showed the presence of globally high-risk clones with wider host range such as E. coli ST10, and K. pneumoniae ST15 and ST307 in HWW and river indicating frequent dissemination of antimicrobial resistance in wastewater of Kathmandu. Whole genome sequence data aligned with phenotypic antibiograms and resistance genes detected by PCR in selected isolates. The presence of significant plasmid replicons (IncF, IncY) and mobile genetic elements (IS903, IS26) indicate high frequency of spreading antibiotic resistance. These findings indicate burden and dissemination of antimicrobial resistance in the environment and highlight the need for effective strategies to mitigate the antibiotic resistance.
Collapse
Affiliation(s)
- Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Ziming Han
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jyoti Maharjan
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
8
|
Bobis Camacho J, Nilsson J, Larsson DGJ, Flach CF. Evaluation of culture conditions for sewage-based surveillance of antibiotic resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2024; 37:122-128. [PMID: 38552871 DOI: 10.1016/j.jgar.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 03/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Recent studies have shown promise in predicting clinical antibiotic resistance rates from sewage data. Few have focused on Klebsiella pneumoniae, despite its virulence and importance as carrier of antibiotic resistance. Several media have been suggested for the isolation of K. pneumoniae from complex samples. However, comprehensive evaluations of culture protocols for isolation of K. pneumoniae from sewage are lacking. METHODS Here, influent samples from a major Swedish sewage treatment plant were used to evaluate ten culture conditions in parallel: cultivation on Brilliant green containing Inositol-Nitrate-Deoxycholate agar (BIND), Bruce agar, Klebsiella ChromoSelect Selective agar®, MacConkey-Inositol-Carbenicillin, or Simmons Citrate Agar with Inositol (SCAI) incubated at either 37°C or 42°C for 44 h. The culture conditions were compared based on colony counts of presumed K. pneumoniae and identification precision assessed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS The sensitivity was lowest for BIND, whereas it was similar for the other media irrespective of incubation temperature. For four media, a better precision was observed after incubation at 42°C compared to 37°C, to a large extent explained by a lower frequency of captured Klebsiella oxytoca. SCAI incubated at 42°C showed the highest precision (84.4%). By combining this protocol with subsequent antibiotic resistance screening of collected isolates, low resistance rates in sewage K. pneumoniae were revealed, potentially reflecting the local resistance landscape. CONCLUSION When combined with downstream analyses, SCAI incubated at 42°C could be a valuable culture protocol for sewage-based studies on various aspects of K. pneumoniae epidemiology including antibiotic resistance prevalence.
Collapse
Affiliation(s)
- Julián Bobis Camacho
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dan Göran Joakim Larsson
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Davies AR, Chisnall T, Akter S, Afrad MMH, Sadekuzzaman M, Badhy SC, Hasan MZ, Rahman MT, Smith RP, Card RM, Brum E, Chowdhury MGA. Genomic characterisation of Escherichia coli isolated from poultry at retail through Sink Surveillance in Dhaka, Bangladesh reveals high levels of multi-drug resistance. Front Microbiol 2024; 15:1418476. [PMID: 38873136 PMCID: PMC11169737 DOI: 10.3389/fmicb.2024.1418476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
The surveillance of antimicrobial resistance (AMR) in commensal Escherichia coli from livestock at slaughter is widely employed to assess the potential for risk to humans. There is currently a limited understanding of AMR in Bangladesh poultry at retail in live bird markets, with studies focussing solely on phenotypic characterisation of resistance. To address this evidence gap we performed antimicrobial susceptibility testing and whole genome sequencing on E. coli obtained from chickens from live bird markets in Dhaka in 2018 (n = 38) and 2020 (n = 45). E. coli were isolated from caeca samples following ISO guidelines and sequenced using short and long read methods. Multidrug resistance was extremely common (n = 77) and there was excellent concordance between AMR phenotype and the presence of corresponding AMR genes or mutations. There was considerable genomic diversity, with 43 different sequence types detected. Public health considerations included the high occurrence of resistance to ciprofloxacin (n = 75) associated with plasmid-residing qnrS or mutations in the gyrA and parC chromosomal genes; and the detection of a tigecycline resistant isolate harbouring tet(X4) on an IncHI1A/B-IncFIA mosaic plasmid. Thirty-nine isolates were resistant to azithromycin and harboured mphA, with a significant increase in the incidence of resistance between 2018 and 2020. Although azithromycin is banned for veterinary use in Bangladesh it remains an important treatment option for humans. Interestingly, mphA confers high-level resistance to azithromycin and erythromycin, and the latter is commonly used on poultry farms in Bangladesh. Seven isolates were colistin resistant and carried mcr1. For two isolates hybrid assemblies revealed that mcr1 resided on a highly conserved IncHI2 plasmid that had 93% nucleotide identity to a plasmid from the published genome of an E. coli isolate of Bangladeshi human origin. Six isolates had resistance to third generation cephalosporins, associated with plasmid-residing bla CTX-M-55, bla CTX-M-65, or bla DHA-1. By employing phenotypic and genomic approaches for AMR surveillance we have provided new insights into the potential for One Health AMR linkages in Bangladesh. Employing similar approaches in human and environmental sectors will help inform the One Health approach to addressing AMR, and generate evidence to support mitigation measures such as improved antimicrobial stewardship.
Collapse
Affiliation(s)
- Alistair R. Davies
- FAO Reference Centre for AMR, Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Chisnall
- FAO Reference Centre for AMR, Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Shamima Akter
- Central Disease Investigation Laboratory (CDIL), Dhaka, Bangladesh
| | - Md. Mohibul Hassan Afrad
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | | | | | - Md. Zakiul Hasan
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - Md. Taifur Rahman
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - Richard P. Smith
- WOAH Collaborating Centre for Risk Analysis & Modelling, Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Roderick M. Card
- FAO Reference Centre for AMR, Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | | |
Collapse
|
10
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
11
|
Radisic V, Grevskott DH, Junghardt N, Øvreås L, Marathe NP. Multidrug-resistant Enterococcus faecium strains enter the Norwegian marine environment through treated sewage. Microbiologyopen 2024; 13:e1397. [PMID: 38441345 PMCID: PMC10913173 DOI: 10.1002/mbo3.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.
Collapse
Affiliation(s)
- Vera Radisic
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Didrik H. Grevskott
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Nadja Junghardt
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| | - Lise Øvreås
- Department of Biological SciencesUniversity of Bergen (UiB)BergenNorway
| | - Nachiket P. Marathe
- Department of Contaminants and BiohazardsInstitute of Marine Research (IMR)BergenNorway
| |
Collapse
|
12
|
Radisic V, Salvà-Serra F, Moore ERB, Marathe NP. Tigecycline-resistant Klebsiella pneumoniae strains from sewage in Norway carry heavy-metal resistance genes encoding conjugative plasmids. J Glob Antimicrob Resist 2024; 36:482-484. [PMID: 37972923 DOI: 10.1016/j.jgar.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVES Tigecycline is a last-resort antibiotic used for treatment of infections with carbapenem-resistant Klebsiella pneumoniae. The aim of the study was to understand the genetic mechanism of resistance and the genetic context of resistance genes in two tigecycline-resistant K. pneumoniae strains isolated from sewage in Bergen, Norway. METHODS Complete genome sequencing of the two strains was accomplished using a combination of short-read Illumina MiSeq-based and long-read Oxford Nanopore MinION-based sequencing. Conjugation experiments were performed using filter mating and a green fluorescent protein (GFP)-tagged Escherichia coli strain. RESULTS The complete genome sequences of strain K6-320.1 and strain K7-325 were assembled into two contigs for each strain, one contig representing the complete circular chromosomes of 5 223 440 bp (K6-320.1) and 5 263 092 bp (K7-325), respectively, and the other representing plasmids with sizes of 276 509 bp (pK6-320.1) and 246 731 bp (pK7-325). Strain K6-320.1 belonged to sequence type (ST)869, whereas strain K7-325 belonged to the pathogenic ST307. Both plasmids belonged to the IncFIB(K)/IncFII(K) group and carried several antibiotic resistance genes (ARGs), including tet(A) and blaCTX-M. Both plasmids (pK6-320.1 and pK7-325) were transferred to a GFP-tagged E. coli strain, leading to the acquisition of resistance against multiple classes of antibiotics. Several heavy-metal resistance genes (HMRGs) encoding resistance against silver (sil), copper (pco), and arsenic (ars) were also present on both plasmids. CONCLUSIONS Our study demonstrates the presence of multidrug-resistant K. pneumoniae strains carrying conjugative plasmids encoding both ARGs and HMRGs that have potential for persistence in the environment and human microbiota.
Collapse
Affiliation(s)
- Vera Radisic
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Contaminants and Biohazards, Institute of Marine Research (IMR), Bergen, Norway.
| |
Collapse
|
13
|
Mollerup IM, Bjørneset J, Krock B, Jensen TH, Galatius A, Dietz R, Teilmann J, van den Brand JMA, Osterhaus A, Kokotovic B, Lundholm N, Olsen MT. Did algal toxin and Klebsiella infections cause the unexplained 2007 mass mortality event in Danish and Swedish marine mammals? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169817. [PMID: 38184244 DOI: 10.1016/j.scitotenv.2023.169817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
An unusual mass mortality event (MME) of harbour seals (Phoca vitulina) and harbour porpoises (Phocoena phocoena) occurred in Denmark and Sweden in June 2007. Prior to this incident, the region had experienced two MMEs in harbour seals caused by Phocine Distemper Virus (PDV) in 1988 and 2002. Although epidemiology and symptoms of the 2007 MME resembled PDV, none of the animals examined for PDV tested positive. Thus, it has been speculated that another - yet unknown - pathogen caused the June 2007 MME. To shed new light on the likely cause of death, we combine previously unpublished veterinary examinations of harbour seals with novel analyses of algal toxins and algal monitoring data. All harbour seals subject to pathological examination showed pneumonia, but were negative for PDV, influenza and coronavirus. Histological analyses revealed septicaemia in multiple animals, and six animals tested positive for Klebsiella pneumonia. Furthermore, we detected the algal Dinophysis toxin DTX-1b (1-115 ng g-1) in five seals subject to toxicology, representing the first time DTX-1b has been detected in marine vertebrates. However, no animals tested positive for both Klebsiella and toxins. Thus, while our relatively small sample size prevent firm conclusions on causative agents, we speculate that the unexplained MME may have been caused by a chance incidence of multiple pathogens acting in parallel in June 2007, including Dinophysis toxin and Klebsiella. Our study illustrates the complexity of wildlife MMEs and highlights the need for thorough sampling during and after MMEs, as well as additional research on and monitoring of DTX-1b and other algal toxins in the region.
Collapse
Affiliation(s)
- Ida-Marie Mollerup
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Juni Bjørneset
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Bernd Krock
- Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Trine Hammer Jensen
- Aalborg Zoo/Section of Biology and Environmental Science, University of Aalborg, Fredrik Bajers Vej 7, H, 9220 Aalborg, Denmark
| | - Anders Galatius
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rune Dietz
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Albert Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Branko Kokotovic
- Reference Laboratory for Antimicrobial Resistance, Department of Bacteria, Parasites & Fungi, Statens Seruminstitut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark.
| | - Morten Tange Olsen
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark; Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
14
|
Basiry D, Kommedal R, Kaster KM. The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. FRONTIERS IN ANTIBIOTICS 2024; 3:1351999. [PMID: 39816252 PMCID: PMC11731629 DOI: 10.3389/frabi.2024.1351999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 01/18/2025]
Abstract
Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla SHV-1, bla TEM-1, msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC90 values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.
Collapse
Affiliation(s)
| | | | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
15
|
Fu S, Zhang Y, Wang R, Deng Z, He F, Jiang X, Shen L. Longitudinal wastewater surveillance of four key pathogens during an unprecedented large-scale COVID-19 outbreak in China facilitated a novel strategy for addressing public health priorities-A proof of concept study. WATER RESEARCH 2023; 247:120751. [PMID: 37918201 DOI: 10.1016/j.watres.2023.120751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising tool for monitoring the spread of SARS-CoV-2 and other pathogens, providing a novel public health strategy to combat disease. In this study, we first analysed nationwide reports of infectious diseases and selected Salmonella, norovirus, and influenza A virus (IAV) as prioritized targets apart from SARS-CoV-2 for wastewater surveillance. Next, the decay rates of Salmonella, norovirus, and IAV in wastewater at various temperatures were established to obtain corrected pathogen concentrations in sewage. We then monitored the concentrations of these pathogens in wastewater treatment plant (WWTP) influents in three cities, establishing a prediction model to estimate the number of infected individuals based on the mass balance between total viral load in sewage and individual viral shedding. From October 2022 to March 2023, we conducted multipathogen wastewater surveillance (MPWS) in a WWTP serving one million people in Xi'an City, monitoring the concentration dynamics of SARS-CoV-2, Salmonella, norovirus, and IAV in sewage. The infection peaks of each pathogen were different, with Salmonella cases and sewage concentration declining from October to December 2022 and only occasionally detected thereafter. The SARS-CoV-2 concentration rapidly increased from December 5th, peaked on December 26th, and then quickly decreased until the end of the study. Norovirus and IAV were detected in wastewater from January to March 2023, peaking in February and March, respectively. We used the prediction models to estimate the rate of SARS-CoV-2 infection in Xi'an city, with nearly 90 % of the population infected in urban regions. There was no significant difference between the predicted and actual number of hospital admissions for IAV. We also accurately predicted the number of norovirus cases relative to the reported cases. Our findings highlight the importance of wastewater surveillance in addressing public health priorities, underscoring the need for a novel workflow that links the prediction results of populations with public health interventions and allocation of medical resources at the community level. This approach would prevent medical resource panic squeezes, reduce the severity and mortality of patients, and enhance overall public health outcomes.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| | - Yixiang Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Zhiqiang Deng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiaotong Jiang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Håkonsholm F, Hetland MAK, Löhr IH, Lunestad BT, Marathe NP. Co-localization of clinically relevant antibiotic- and heavy metal resistance genes on plasmids in Klebsiella pneumoniae from marine bivalves. Microbiologyopen 2023; 12:e1368. [PMID: 37642489 PMCID: PMC10356976 DOI: 10.1002/mbo3.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 08/31/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with antibiotic resistance and present in a wide range of environments, including marine habitats. However, little is known about the development, persistence, and spread of antibiotic resistance in such environments. This study aimed to obtain the complete genome sequences of antibiotic-resistant K. pneumoniae isolated from marine bivalves in order to determine the genetic context of antibiotic- and heavy metal resistance genes in these isolates. Five antibiotic-resistant K. pneumoniae isolates, of which four also carried heavy metal resistance genes, were selected for complete genome sequencing using the Illumina MiSeq platform and the Oxford Nanopore Technologies GridION device. Conjugation experiments were conducted to examine the transfer potential of selected plasmids. The average length of the complete genomes was 5.48 Mbp with a mean chromosome size of 5.27 Mbp. Seven plasmids were detected in the antibiotic-resistant isolates. Three IncFIB, one IncFIB/IncFII, and one IncFIB/IncHIB plasmid, respectively, carried antibiotic resistance genes such as qnrS1, aph(6)-Id and aph(3')-Ia, aadA1, and aadA2. Four of these plasmids also carried genes encoding resistance to copper (pco), silver (sil), and arsenic (ars). One plasmid carrying tet(D) and blaSHV-1 as well as pco, sil, and ars genes was transferred to Escherichia coli by conjugation. We show the co-occurrence of antibiotic- and heavy metal resistance genes on a conjugative IncFIB plasmid from K. pneumoniae from marine bivalves. Our study highlights the importance of the marine environment and seafood as a possible dissemination route for antimicrobial resistance and provides insights into the potential for co-selection of antibiotic resistance genes by heavy metals.
Collapse
Affiliation(s)
- Fredrik Håkonsholm
- Institute of Marine ResearchBergenNorway
- Department of Medical Biology, Faculty of Health SciencesUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Marit A. K. Hetland
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Iren H. Löhr
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | | | | |
Collapse
|
17
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|