1
|
Jia M, Zhang J, Feng J, Zhuang Y, Xu Z, Yuan L, Luo J, Hong L, Xia J, Wu H, Chen X, Chen M. Epidemiological and genomic insights of mcr-1-positive colistin-resistant Klebsiella pneumoniae species complex strains from wastewater treatment plants in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126146. [PMID: 40158675 DOI: 10.1016/j.envpol.2025.126146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The emergence of mcr-1-positive Klebsiella pneumoniae species complex (MP-KpSC) poses a significant threat to public health due to its resistance to last-resort antibiotics like colistin. This study aimed to investigate the prevalence, genomic characteristics, and transmission features of MP-KpSC in wastewater treatment plants (WWTPs) in Shanghai, China. A total of 13 (0.36 %) MP-KpSC isolates were identified, including 12 K. pneumoniae and 1 K. quasipneumoniae subsp. similipneumoniae (Kqps). Nine multidrug-resistant (MDR) MP-KpSC and 3 extensively drug-resistant (XDR) MP-KpSC strains were identified. Twenty-two resistance determinants were present in over 30 % of the strains, with the most prevalent being mcr-1 (100 %), floR (84.62 %), mphA (69.23 %), and tet(A) (69.23 %). MP-KpSC exhibited 11 sequence types, 4 plasmid types, 6 mcr-1-flanked regions, 4 clonal groups, and diverse serotypes. In 53.85 % of strains, transposons were identified within the mcr-1-flanked regions. One strain contained both mcr-8.2 and mcr-1 gene. Notably, the mcr-1 gene was identified for the first time in Kqps and was located on the conjugative IncP1 plasmid, with ISApl1 elements upstream of it. Worryingly, two carbapenem- and colistin-resistant XDR MP-KpSC stains, and three possible hypervirulence (hv) were found in MDR MP-KpSC strains. Moreover, multiple virulence genes and mcr-1, on the same contig with IS679 insert element. The evolutionary trajectories of these strains among WWTPs-human-animals were unveiled in Shanghai. The study reveals that WWTPs serve as critical environmental reservoirs for MP-KpSC, highlighting the potential transmission risks posed by XDR and hv strains to both humans and aquatic ecosystems. These findings advocate for the implementation of active surveillance targeting WWTPs to curb the spread of MP-KpSC.
Collapse
Affiliation(s)
- Min Jia
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lingyue Yuan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Shanghai Municipal Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
2
|
Zhang Y, Chen J, Yang X, Wu Y, Wang Z, Xu Y, Zhou L, Wang J, Jiao X, Sun L. Emerging Mobile Colistin Resistance Gene Mcr-1 and Mcr-10 in Enterobacteriaceae Isolates From Urban Sewage in China. Infect Drug Resist 2025; 18:1035-1048. [PMID: 39990786 PMCID: PMC11847452 DOI: 10.2147/idr.s502067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to investigate the epidemiology and dissemination of mcr-positive Enterobacteriaceae in urban sewage in Yangzhou, China. Methods A total of 366 sewage samples were collected from the Yangzhou Wastewater Treatment Plant in Jiangsu Province. Colistin-resistant Enterobacteriaceae was identified through PCR targeting mcr-1 to mcr-10 genes. The isolates underwent antimicrobial susceptibility testing, and whole-genome sequencing was performed to analyze their genomic features. Additionally, conjugation experiments were conducted to assess the transferability of mcr-positive plasmids. Results Three mcr-positive Enterobacteriaceae isolates were identified, representing an isolation rate of 0.82%. These included one mcr-1-positive Escherichia coli (ST167) and two mcr-10-positive Klebsiella pneumoniae complex strains with novel sequence types ST6801 and ST6825. The mcr-1 gene was located on an IncI2 plasmid (pYZ22WS208_3) and successfully transferred to recipient strains. In contrast, the mcr-10 gene was carried on IncF plasmids (pYZ22WS067_1 and pYZ22WS223_1) but was not transferable in this study. Phylogenetic analysis revealed that the mcr-1-positive E. coli strain clustered within Clade II, alongside strains from various countries and sources. Phylogenomic analysis of mcr-10-positive isolates showed their sporadic distribution across 13 countries, with associations to diverse hosts and environments, indicating potential for widespread transmission. Conclusion This study demonstrates the presence of mcr-1 and mcr-10-positive Enterobacteriaceae in wastewater, emphasizing the importance of wastewater surveillance for tracking antibiotic resistance. The horizontal transfer of mcr-1 and potential spread of mcr-10 across various hosts underscore the need for ongoing monitoring and preventive measures.
Collapse
Affiliation(s)
- Yujing Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiajie Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinyu Yang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yangshiyu Wu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yawen Xu
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhang S, Shu Y, Yang Z, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, Wu Z, He Y, Cheng A. Decoding the enigma: unveiling the transmission characteristics of waterfowl-associated bla NDM-5-positive Escherichia coli in select regions of China. Front Microbiol 2024; 15:1501594. [PMID: 39717269 PMCID: PMC11663885 DOI: 10.3389/fmicb.2024.1501594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Escherichia coli (E. coli) serves as a critical indicator microorganism for assessing the prevalence and dissemination of antibiotic resistance, notably harboring various antibiotic-resistant genes (ARGs). Among these, the emergence of the bla NDM gene represents a significant threat to public health, especially since carbapenem antibiotics are vital for treating severe infections caused by Gram-negative bacteria. This study aimed to characterize the antibiotic resistance features of bla NDM-5-positive E. coli strains isolated from waterfowl in several regions of China and elucidate the dissemination patterns of the bla NDM-5 gene. We successfully isolated 103 bla NDM-5-positive E. coli strains from 431 intestinal fecal samples obtained from waterfowl across five provincial-level units in China, with all strains exhibiting multidrug resistance (MDR). Notably, the bla NDM-5 gene was identified on plasmids, which facilitate efficient and stable horizontal gene transfer (HGT). Our adaptability assays indicated that while the bla NDM-5-positive plasmid imposed a fitness cost on the host bacteria, the NDM-5 protein was successfully induced and purified, exhibiting significant enzymatic activity. One strain, designated DY51, exhibited a minimum inhibitory concentration (MIC) for imipenem of 4 mg/L, which escalated to 512 mg/L following exposure to increasing imipenem doses. This altered strain demonstrated stable resistance to imipenem alongside improved adaptability, correlating with elevated relative expression levels of the bla NDM-5 and overexpression of efflux pumps. Collectively, this study highlights the horizontal dissemination of the bla NDM-5 plasmid among E. coli strains, confirms the associated fitness costs, and provides insights into the mechanisms underlying the stable increase in antibiotic resistance to imipenem. These findings offer a theoretical framework for understanding the dissemination dynamics of bla NDM-5 in E. coli, which is essential for developing effective strategies to combat carbapenem antibiotic resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yanxi Shu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhechen Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| |
Collapse
|
4
|
Guan Y, Wang Z, Shang Z, Zou H, Zhao L, Hou X, Wu T, Meng M, Li X. Steady existence of Escherichia coli co-resistant to carbapenem and colistin in an animal breeding area even after the colistin forbidden. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123084. [PMID: 39488963 DOI: 10.1016/j.jenvman.2024.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Carbapenem- and colistin-resistant Escherichia coli (CCREC) cause high mortality rates and health costs, and have become serious health concerns. Total 1764 samples were collected from 60 animal farms in 2019 and 2021, including worker and animal faeces, wastewater, well water, air, vegetables, human hands, object surfaces, throat swabs, soil, and flies to investigate the prevalence and potential transmission pathways of CCREC. Eleven CCREC were detected: 9 (5 in 2019 and 4 in 2021) from 5 worker faeces, 3 animal faeces, 1 wastewater, and 2 from 1 flies sample. Chicken farms had the highest number of CCREC (n = 9). The detection rate was low (<1.1%) overall, and there was no significant difference in both years, indicating that CCREC existed stably after 4 years of colistin ban. The combinations of chromosomes and plasmids harbouring blaNDM and mcr-1.1 were divided into 4 patterns: IncX3 plasmid-blaNDM & chromosome-mcr.1.1 (n = 5); IncX3 plasmid-blaNDM & IncHI2 plasmid-mcr.1.1 (n = 3); IncFII plasmid-blaNDM & IncI2 plasmid-mcr.1.1 (n = 2); both chromosome (n = 1). The blaNDM located on plasmids was surrounded by similar genetic structures: Tn3-IS-blaNDM-bleMBL-TrpF-DsbD-IS. The genetic contexts of mcr-1.1 were highly similar, with 'ISApl1-mcr-1.1-PAP2' and 'mcr-1.1-PAP2'. All plasmids can be successfully transferred into E. coli J53, except for the IncHI2 plasmids with the transfer rate of 33.3%. The IncFII and IncI2 plasmids from same strain of flies could be co-transferred. The clonal spread of CCREC from humans to humans occurred on the same pig farm (P4) or different chicken farms (BC9 and LH7). This study suggested that flies, chromosomes, and plasmids jointly contribute to the steady existence of CCREC.
Collapse
Affiliation(s)
- Yanyu Guan
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongyi Wang
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhenhua Shang
- NO.6 Geological Team of Shandong Provincial Geological and Mineral Exploration and Development Bureau, China
| | - Huiyun Zou
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinjiao Hou
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tianle Wu
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Meng
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of environment and health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Guo CH, Chu MJ, Liu T, Wang J, Zou M, Liu BT. High prevalence and transmission of bla NDM-positive Escherichia coli between farmed ducks and slaughtered meats: An increasing threat to food safety. Int J Food Microbiol 2024; 424:110850. [PMID: 39094468 DOI: 10.1016/j.ijfoodmicro.2024.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The emergence of carbapenem-resistant bacteria especially carbapenem-resistant Escherichia coli (CREC) in food animals poses a serious threat to food safety and public health. Reports about the dissemination of carbapenem-resistant bacteria along the food animal production chain are scattered and mainly focus on swine and chicken. Abuse of antibiotics in duck farms is common especially in China which has the largest duck production industry, however, the CREC transmission between farmed ducks and slaughtered meats remains unclear and the role of slaughterhouse in disseminating CREC among duck meats remains largely unknown. Herein, we collected 251 fecal samples from five typical duck farms along with 125 slaughtered meat samples (25 from each farm) in the corresponding slaughterhouse in Anhui Province, China, in December 2018. All samples were screened for CREC isolates which were analyzed for the presence of carbapenemase genes and colistin resistance gene mcr. The resistance profiles, transferability, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing and phylogenetic analysis of the CREC isolates from both ducks and meats were further characterized. This is the first report presenting the high prevalence of blaNDM-positive CREC isolates in ducks from duck farms (57.8 %) and slaughtered meats (33.6 %) in the corresponding slaughterhouse. Among the 203 blaNDM-positive CREC isolates obtained in this study, 19.2 % harbored mcr-1 and all CREC isolates showed resistance to nearly all currently available antibiotics (except tigecycline). Of note, mcr-1 was found in 17.8 % of the meat-derived CREC carrying blaNDM. Based on the PFGE analysis, clonal spread of blaNDM-positive CREC including some also carrying mcr-1 was found between farmed ducks and slaughtered duck meats even from different farms. Special attention should be paid to the clonal dissemination of meat-derived CREC within the slaughterhouse, which contributed to the high prevalence of blaNDM in slaughtered meats. Additionally, horizontal transmission mainly mediated by transferable blaNDM-5-bearing IncX3 plasmids, untypable blaNDM-1-bearing plasmids and mcr-1-bearing IncHI2 plasmids further facilitated the rapid spread of such multidrug-resistant strains. Notably, the blaNDM-bearing plasmids and mcr-1-bearing plasmids in CREC from meats were highly similar to those from animals and humans. More worryingly, the phylogenomic analysis showed that CREC isolates from both ducks and corresponding meats clustered with previously reported human CREC isolates carrying mcr-1 in different geographical areas including China. These findings further prove that the CREC and resistance plasmids in farmed ducks could transmit to meats even from different farms via the slaughterhouse and then trigger infections in humans. The high prevalence and clonal transmission of CREC isolates including those also carrying mcr-1 between ducks and meats are alarming, and urgent control measures are required to reduce the dissemination of such organisms.
Collapse
Affiliation(s)
- Cai-Hong Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tiantian Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
C SK, Khanal S, Joshi TP, Khadka D, Tuladhar R, Joshi DR. Antibiotic resistance determinants among carbapenemase producing bacteria isolated from wastewaters of Kathmandu, Nepal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123155. [PMID: 38114055 DOI: 10.1016/j.envpol.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
The emergence of carbapenem resistant bacteria (CRB) possesses a remarkable threat to the health of humans. CRB and carbapenem resistance genes (CRGs) have frequently been reported in clinical isolates from hospitals, however, their occurrence and distribution in wastewaters from various sources and river water have not been emphasized in Nepal. So, this study aimed to detect carbapenem resistant bacterial isolates and their resistance determinants in river water and different types of wastewaters. River water and both untreated and treated wastewater samples from hospitals, pharmaceutical industries, and municipal sewage were collected in summer and winter seasons. From 68 grab wastewater samples, CRB were detected only in 16 samples, which included eight hospital wastewater, and four each from untreated municipal sewage and river water. A total of 25 CRB isolates were detected with dominance of E. coli (44.0%) and K. pneumoniae (24.0%). The majority of the isolates harbored blaNDM-1 (76.0%), followed by blaOXA (36.0%) and blaKPC (20.0%) genes. Hospital wastewater majorly contributed to the presence of blaNDM-1, blaKPC, and blaOXA along with intI1 genes compared to river water and untreated municipal sewage, especially during the winter season. However, CRB were not detected in treated effluents of hospitals and municipal sewage, and both influents and effluents from pharmaceutical industries. The combined presence of each blaNDM-1 & blaOXA and blaKPC & blaOXA occurred in 16.0% of the bacterial isolates. The increased minimum inhibitory concentration (MIC) of meropenem was significantly associated with the presence of CRGs. The results of this study highlight the significance of carbapenem resistance in bacteria isolated from wastewater and river water, and underscore the necessity for efficient monitoring and control strategies to prevent the dispersion of carbapenem resistance in the environment and its potential consequences on human health.
Collapse
Affiliation(s)
- Sudeep K C
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal; Department of Microbiology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Deegendra Khadka
- Molecular Biotechnology, Faculty of Science, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal.
| |
Collapse
|
7
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
8
|
Brătfelan DO, Tabaran A, Colobatiu L, Mihaiu R, Mihaiu M. Prevalence and Antimicrobial Resistance of Escherichia coli Isolates from Chicken Meat in Romania. Animals (Basel) 2023; 13:3488. [PMID: 38003106 PMCID: PMC10668644 DOI: 10.3390/ani13223488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
The current study was conducted in order to analyze the prevalence of Escherichia coli (E. coli) in samples of chicken meat (100 chicken meat samples), as well as to evaluate the antimicrobial susceptibility of these isolates. A total of 30 samples were positive for E. coli among the collected chicken samples. Most isolates proved to be highly resistant to tetracycline (80%), ampicillin (80%), sulfamethoxazole (73.33%), chloramphenicol (70%) and nalidixic acid (60%). Strong resistance to ciprofloxacin (56.66%), trimethoprim (50%), cefotaxime (46.66%), ceftazidime (43.33%) and gentamicin (40%) was also observed. Notably, one E. coli strain also proved to be resistant to colistin. The antimicrobial resistance determinants detected among the E. coli isolates recovered in our study were consistent with their resistance phenotypes. Most of the isolates harbored the tetA (53.33%), tetB (46.66%), blaTEM (36.66%) and sul1 (26.66%) genes, but also aadA1 (23.33%), blaCTX (16.66%), blaOXA (16.66%), qnrA (16.66%) and aac (10%). In conclusion, to the best of our knowledge, this is among the first studies analyzing the prevalence and antimicrobial resistance of E. coli strains isolated from chicken meat in Romania and probably the first study reporting colistin resistance in E. coli isolates recovered from food sources in our country.
Collapse
Affiliation(s)
- Dariana Olivia Brătfelan
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Alexandra Tabaran
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| | - Liora Colobatiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street No. 8, 400012 Cluj-Napoca, Romania
| | - Romolica Mihaiu
- Department of Management, Faculty of Economic Sciences and Business Administration, Babes Bolyai University, Mihail Kogalniceanu Street No.1, 400084 Cluj-Napoca, Romania;
| | - Marian Mihaiu
- Department of Animal Breeding and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street No. 3/5, 400372 Cluj-Napoca, Romania; (D.O.B.); (A.T.); (M.M.)
| |
Collapse
|
9
|
Wang D, Berglund B, Li Q, Shangguan X, Li J, Liu F, Yao F, Li X. Transmission of clones of carbapenem-resistant Escherichia coli between a hospital and an urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122455. [PMID: 37633440 DOI: 10.1016/j.envpol.2023.122455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) constitute an urgent threat to worldwide public health. The spread of CRE is facilitated by transmission via the environment. Wastewater treatment plants (WWTPs) are considered to be important sources of antibiotic resistance and hot spots of antibiotic-resistant bacteria (ARB) which can facilitate dissemination of antibiotic resistance genes. In this study, water samples were collected over one year from a WWTP in Jinan, Shandong province, China, from different functional sites in the wastewater treatment process. Carbapenem-resistant Escherichia coli (CREC) were isolated by selective cultivation and whole-genome sequenced to investigate the occurrence and characteristics of CREC in the WWTP. A total of 77 CREC isolates were included in the study and the detection rate of CREC in the WWTP water inlet was found to be 85%. An additional 10 CREC were isolated from a nearby teaching hospital during the sampling period and included for comparison to the environmental isolates. Susceptibility testing showed that all CREC were multidrug-resistant. 6 different carbapenem resistance genes (CRGs) were detected, including blaNDM-5 (n = 75), blaNDM-1 (n = 6), blaNDM-4 (n = 3), blaNDM-6 (n = 1), blaNDM-9 (n = 1), and blaKPC-2 (n = 4). 42 CREC isolates were whole-genome sequenced with Illumina short-read sequencing. 11 of these were also sequenced with Nanopore long-read sequencing. Plasmids carrying CRGs were found to belong to IncX3 (n = 35), IncFII (n = 12), IncFIA (n = 5), IncFIB (n = 2), IncC (n = 1), and IncP6 (n = 1). Clonal dissemination of CREC belonging to ST167, ST448, and ST746 was observed between different parts of the WWTP. Furthermore, isolates from the WWTP, including an isolate belonging to the high-risk ST167 strain, were found to be clonally related to CREC isolated at the hospital. The spread of CRGs is of considerable concern and strategies to prevent environmental dissemination of this contaminant urgently needs to be implemented.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaorong Shangguan
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fanghui Yao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|