1
|
Nehru VJ, Jose Vandakunnel M, Brammacharry U, Ramachandra V, Pradhabane G, Mani BR, Vn AD, Muthaiah M. Risk assessment and transmission of fluoroquinolone resistance in drug-resistant pulmonary tuberculosis: a retrospective genomic epidemiology study. Sci Rep 2024; 14:19719. [PMID: 39181942 PMCID: PMC11344791 DOI: 10.1038/s41598-024-70535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Fluoroquinolone resistance is a major challenge in treating Multidrug-Resistant Tuberculosis globally. The GenoType MTBDRsl Ver 2.0, endorsed by the WHO, was used to characterize fluoroquinolone resistance. The fluoroquinolone resistance rates in the MDR-TB, Rifampicin-Resistant TB, and non-MDR-TB were 33%, 16.5%, and 5.4%, respectively. The most common mutation found in fluoroquinolone-resistant isolates was D94G (49.5%) in the gyrA gene. Of the 150 MDR-TB isolates, the prevalence of Extensively Drug-Resistant Tuberculosis and pre-XDR-TB was 1.33% and 30%, respectively. Among the 139 RR-TB isolates, pre-XDR-TB prevalence was 15.8%. The fluoroquinolone resistance rates were 5.12% among the 1230 isoniazid-monoresistant isolates. The study found that MDR-TB and RR-TB have higher risk of fluoroquinolone resistance than non-MDR tuberculosis. Rifampicin-resistant isolates with a mutation at codon S450L have a higher risk (RR = 12.96; 95%CI: 8.34-20.13) of developing fluoroquinolone resistance than isolates with mutations at other codons in the rpoB gene. Isoniazid-resistant isolates with a mutation at codon S315T have a higher risk (RR = 2.09; 95%CI: 1.25-3.50) of developing fluoroquinolone resistance. The study concludes that rapid diagnosis of fluoroquinolone resistance before starting treatment is urgently needed to prevent the spread and increase of resistance and to achieve better treatment outcomes in areas where it is higher.
Collapse
MESH Headings
- Humans
- Fluoroquinolones/pharmacology
- Fluoroquinolones/therapeutic use
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/drug effects
- Retrospective Studies
- Tuberculosis, Multidrug-Resistant/epidemiology
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/transmission
- Tuberculosis, Multidrug-Resistant/genetics
- Antitubercular Agents/pharmacology
- Antitubercular Agents/therapeutic use
- Male
- Female
- Tuberculosis, Pulmonary/epidemiology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Adult
- Mutation
- Risk Assessment
- Middle Aged
- Microbial Sensitivity Tests
- Rifampin/pharmacology
- Rifampin/therapeutic use
- Extensively Drug-Resistant Tuberculosis/epidemiology
- Extensively Drug-Resistant Tuberculosis/microbiology
- Extensively Drug-Resistant Tuberculosis/drug therapy
- Drug Resistance, Multiple, Bacterial/genetics
- Isoniazid/pharmacology
- Isoniazid/therapeutic use
- Aged
Collapse
Affiliation(s)
| | - Maria Jose Vandakunnel
- Department of Genetics, Institute of Basic Medical Sciences, University of Madras, Tamil Nadu, Chennai, India
| | - Usharani Brammacharry
- Department of Genetics, Institute of Basic Medical Sciences, University of Madras, Tamil Nadu, Chennai, India.
| | - Venkateswari Ramachandra
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Madras, Tamil Nadu, Chennai, India
| | - Gunavathy Pradhabane
- Department of Biotechnology, Indira Gandhi College of Arts and Science, Indira Nagar, Puducherry, India
| | | | - Azger Dusthackeer Vn
- Department of Bacteriology, National Institute of Research in Tuberculosis, Indian Council of Medical Research, Chennai, Tamil Nadu, India
| | - Muthuraj Muthaiah
- State TB Training and Demonstration Centre, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, India
| |
Collapse
|
2
|
Che Y, Lu Y, Zhu Y, He T, Li X, Gao J, Gao J, Wang X, Liu Z, Tong F. Surveillance of fluoroquinolones resistance in rifampicin-susceptible tuberculosis in eastern China with whole-genome sequencing-based approach. Front Microbiol 2024; 15:1413618. [PMID: 39050625 PMCID: PMC11266052 DOI: 10.3389/fmicb.2024.1413618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background Leveraging well-established DNA-level drug resistance mechanisms, whole-genome sequencing (WGS) has emerged as a valuable methodology for predicting drug resistance. As the most effective second-line anti-tuberculosis (anti-TB) drugs, fluoroquinoloness (FQs) are generally used to treat multidrug-resistant tuberculosis (MDR-TB, defined as being resistant to resistant to rifampicin and isoniazid) or rifampicin-resistant tuberculosis (RR-TB). However, FQs are also commonly used in the management of other bacterial infections. There are few published data on the rates of FQs resistance among rifampicin-susceptible TB. The prevalence of FQs resistance among TB patients who are rifampicin-susceptible has not been studied in Zhejiang Province, China. The goal of this study was to provide a baseline characterization of the prevalence of FQs resistance, particularly among rifampicin-susceptible TB in Zhejiang Province, China. Methods Based on WGS, we have investigated the prevalence of FQs resistance among rifampicin-susceptible TB in Zhejiang Province. All pulmonary TB patients with positive cultures who were identified in Zhejiang area during TB drug resistance surveillance from 2018 to 2019 have enrolled in this population-based retrospective study. Results The rate of FQs resistance was 4.6% (32/698) among TB, 4.0% (27/676) among rifampicin-susceptible TB, and 22.7% (5/22) among RR-TB. According to WGS, strains that differ within 12 single-nucleotide polymorphisms (SNPs) were considered to be transmission of FQ-resistant strains. Specifically, 3.7% (1/27) of FQs resistance was caused by the transmission of FQs-resistant strains among the rifampicin-susceptible TB and 40.7% (11/27) of FQs resistance was identified as hetero-resistance. Conclusion The prevalence of FQs resistance among TB patients who were rifampicin-susceptible was severe in Zhejiang. The emergence of FQs resistance in TB isolates that are rifampicin-susceptible was mainly caused by the selection of drug-resistant strains. In order to prevent the emergence of FQs resistance, the WGS-based surveillance system for TB should be urgently established, and clinical awareness of the responsible use of FQs for respiratory infections should be enhanced.
Collapse
Affiliation(s)
- Yang Che
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Yelei Zhu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianfeng He
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junli Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Xiaomeng Wang
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengwei Liu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Tong
- Institute of Tuberculosis Prevention and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| |
Collapse
|
3
|
Li S, Tan Y, Deng Y, Bai G, Huang M, Shang Y, Wang Y, Xue Z, Zhang X, Wang W, Pan J, Pang Y. The emerging threat of fluroquinolone-, bedaquiline-, and linezolid-resistant Mycobacterium tuberculosis in China: Observations on surveillance data. J Infect Public Health 2024; 17:137-142. [PMID: 38000314 DOI: 10.1016/j.jiph.2023.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB), constitutes a major obstacle to fulfill end TB strategy globally. Although fluoroquinolones (FQs), linezolid (LZD) and bedaquiline (BDQ) were classified as Group A drugs for MDR-TB treatment, our knowledge of the prevalence of TB which were resistant to Group A drugs in China is quite limited. METHODS In this study, we conducted a prospective multicenter surveillance study in China to determine the proportion of TB patients that were resistant to Group A drugs. A total of 1877 TB patients were enrolled from 2022 at four TB specialized hospitals. The drug susceptibility of isolated strains was conducted using the MGIT 960 system and the molecular mechanisms conferring drug resistance were investigated by Sanger sequencing. RESULTS 12.9% of isolates were resistant to levofloxacin (LFX), 13.2% were resistant to moxifloxacin (MOX), 0.2% were resistant to bedaquiline (BDQ), and 0.8% were resistant to linezolid (LZD). Totally, 14.0% and 0.4% were classified as multidrug resistant- (MDR-) and extensively drug resistant- (XDR-) TB. The drug resistance was more common in retreated TB cases compared to new cases. In addition, 70.0% of fluoroquinolone (FQ)-resistant isolates harbored mutations in the gyrA and gyrB gene. By contrast, the common drug-resistant mutations were only found in 50% BDQ-resistant and 20% LZD-resistant isolates. CONCLUSIONS Our data demonstrate that approximate half of MDR -TB patients are resistant to fluoroquinolones, with extremely low prevalence of initial BDQ and LZD resistance. Findings from this study provide important implications for the current management of MDR-TB patients.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, PR China
| | - Yufeng Deng
- Katharine Hsu International Research Center of Human Infectious Diseases, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, PR China
| | - Guanghong Bai
- Department of Clinical Laboratory, Shaanxi Provincial Tuberculosis Institute, Xi'an, PR China
| | - Mingxiang Huang
- Department of Clinical Laboratory, Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, PR China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Yufeng Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China
| | - Junhua Pan
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Capital Medical University, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, PR China.
| |
Collapse
|
4
|
Huang HT, Lin WH, Chan TH, Jou R. Genetic surveillance and outcomes of pyrazinamide and fluoroquinolones-resistant tuberculosis in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1236-1244. [PMID: 37690869 DOI: 10.1016/j.jmii.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pyrazinamide (PZA) and fluoroquinolone (FQ), particularly moxifloxacin (MXF), are essential drugs in the World Health Organization (WHO) recommended short-course regimen to treat drug-susceptible tuberculosis (TB). METHODS To understand the extent of PZA and MXF susceptibility in general TB cases in Taiwan, we conducted retrospective analyses of 385 conservative Mycobacterium tuberculosis complex (MTBC) isolates identified from 4 TB laboratories in different regions of Taiwan. The case information was obtained from the TB registry. Genotypic drug susceptibility testing (DST) was performed by sequencing drug-resistance associated genes, PZA (pncA) and FQ (gyrA, and gyrB). Phenotypic DST was determined using the Bactec MGIT 960 system or the agar proportion method. Genotyping was carried out using spacer oligonucleotide typing. RESULTS In this study, 4.7% (18/385) cases' isolates harbored pncA mutations and 7.0% (27/385) cases' isolates harbored gyrA or gyrB mutation. Notably, pncA mutation was associated with Beijing family genotypes (P = 0.028), East African-Indian (EAI) genotypes (P = 0.047) and MDR-TB (P < 0.001). Whereas, gyrA or gyrB mutation was associated with EAI genotypes (P = 0.020) and MDR-TB (P = 0.006). In addition, a statistically significant difference was found between the favorable outcomes using active and inactive PZA (P = 0.009) in 38 case isolates with any pncA, gyrA, or gyrB mutation. CONCLUSION We concluded that routine PZA and FQ susceptibility tests are recommended for guiding the treatment of TB.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tai-Hua Chan
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan; Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhang Y, Jiang Y, Yu C, Li J, Shen X, Pan Q, Shen X. Whole-genome sequencing for surveillance of fluoroquinolone resistance in rifampicin-susceptible tuberculosis in a rural district of Shanghai: A 10-year retrospective study. Front Public Health 2022; 10:990894. [PMID: 36187694 PMCID: PMC9521709 DOI: 10.3389/fpubh.2022.990894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 01/26/2023] Open
Abstract
Background Fluoroquinolones (FQs) are the most important second-line anti-tuberculosis (anti-TB) drugs, primarily used for the treatment of multidrug- or rifampicin-resistant TB (MDR/RR-TB). However, FQs are also commonly used to treat other bacterial infections. There are few published data on the rates of FQ resistance among rifampicin-susceptible TB. Methods We used whole-genome sequencing (WGS) to determine the prevalence of FQ resistance among rifampicin-susceptible TB in a rural district of Shanghai. This was a population-based retrospective study of all culture-positive pulmonary TB patients diagnosed in the Chongming district of Shanghai, China during 2009-2018. Results The rate of FQ resistance was 8.4% (29/345) among TB, 6.2% (20/324) among rifampicin-susceptible TB, and 42.9% (9/21) among MDR/RR-TB. Transmission of FQ-resistant strains was defined as strains differing within 12 single-nucleotide polymorphisms (SNPs) based on WGS. Among the rifampicin-susceptible TB, 20% (4/20) of FQ resistance was caused by the transmission of FQ-resistant strains and 45% (9/20) of FQ resistance was identified as hetero-resistance. Conclusions The prevalence of FQ resistance in rifampicin-susceptible TB was higher than expected in Shanghai. Both the transmission and the selection of drug-resistant strains drive the emergence of FQ resistance in rifampicin-susceptible TB isolates. Therefore, the WGS-based surveillance system for TB should be urgently established and the clinical awareness of the rational use of FQs for respiratory infections should be enhanced to prevent the premature occurrence of FQ resistance.
Collapse
Affiliation(s)
- Yangyi Zhang
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China,Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yuan Jiang
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Chenlei Yu
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Jing Li
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Xuhui Shen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Qichao Pan
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China
| | - Xin Shen
- Division of Tuberculosis and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China,Shanghai Institutes of Preventive Medicine, Shanghai, China,*Correspondence: Xin Shen
| |
Collapse
|
6
|
The CRyPTIC Consortium. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol 2022; 20:e3001721. [PMID: 35944069 PMCID: PMC9363010 DOI: 10.1371/journal.pbio.3001721] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
The Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) presents here a data compendium of 12,289 Mycobacterium tuberculosis global clinical isolates, all of which have undergone whole-genome sequencing and have had their minimum inhibitory concentrations to 13 antitubercular drugs measured in a single assay. It is the largest matched phenotypic and genotypic dataset for M. tuberculosis to date. Here, we provide a summary detailing the breadth of data collected, along with a description of how the isolates were selected, collected, and uniformly processed in CRyPTIC partner laboratories across 23 countries. The compendium contains 6,814 isolates resistant to at least 1 drug, including 2,129 samples that fully satisfy the clinical definitions of rifampicin resistant (RR), multidrug resistant (MDR), pre-extensively drug resistant (pre-XDR), or extensively drug resistant (XDR). The data are enriched for rare resistance-associated variants, and the current limits of genotypic prediction of resistance status (sensitive/resistant) are presented by using a genetic mutation catalogue, along with the presence of suspected resistance-conferring mutations for isolates resistant to the newly introduced drugs bedaquiline, clofazimine, delamanid, and linezolid. Finally, a case study of rifampicin monoresistance demonstrates how this compendium could be used to advance our genetic understanding of rare resistance phenotypes. The data compendium is fully open source and it is hoped that it will facilitate and inspire future research for years to come.
Collapse
|
7
|
Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor2010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present study aimed at analyzing the treatment outcomes and risk factors associated with fluoroquinolone drug resistance having mutations in the gyrA and gyrB genes. A total of 258 pulmonary tuberculosis samples with first-line drug-resistant (H, R, or HR) were subjected to GenoType MTBDRsl assay for the molecular detection of mutations. Among the 258 samples, 251 were drug-resistant tuberculosis and seven were sensitive to all first-line TB drugs. Out of 251 DR-TB cases, 42 cases were MDR TB, 200 were INH mono-resistant and nine cases were RIF mono-resistant tuberculosis. Out of 251 DR-TB cases performed with a MTBDRsl assay, 14 had Pre-XDR-FQ, one patient had pre-XDR-SLID, one had extensively drug-resistant tuberculosis (XDR-TB) and 235 cases were sensitive to both FQ and SLID drugs. The study group had a mean average of 42.7 ± 16.4 years. The overall successful treatment outcomes among the MDR, INH mono-resistant, and pre-XRD patients were 70.6%, 82.0%, and 51%, respectively. The percentage of risk for the unfavorable outcomes in the pre-XDR, INH -mono-resistant, and XDR cases were 113.84% increased risk with RR 2.14; 95% CI 0.7821–5.8468. The independent risk factor associated with the unfavorable outcomes to failure was 77.78% increased risk with RR 1.78; 95% CI 0.3375–9.3655. Logistic regression analysis revealed that the percentage relative risk among MDR-TB patients for gender, male (RR: 1.85), age ≥ 61 years (RR: 1.96), and diabetics (RR: 1.05) were 84.62%, 95.83%, and 4.76%, respectively. The independent risk factors associated with INH mono-resistant cases of age 16–60 (RR: 1.86), ≥61 year (RR: 1.18), and treated cases (RR: 5.06). This study presaged the significant risk of INH mono-resistant, pre-XDR, and MDR among males, young adults, diabetics, and patients with previous treatment failure. Timely identification of high-risk patients will give pronounced advantages to control drug resistance tuberculosis diseases.
Collapse
|
8
|
Misra R, Kesarwani V, Nath A. Assessment of burden of drug-resistant tuberculosis at a tertiary care centre in northern India: a prospective single centre cohort study. BMJ Open 2021; 11:e044096. [PMID: 33858870 PMCID: PMC8055106 DOI: 10.1136/bmjopen-2020-044096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES We aim to define the burden of rifampicin monoresistant tuberculosis (TB) at a tertiary care centre in northern India as well as determine the second-line drug susceptibilities (SL-DST) in a subset of patients. METHODS A total of 3045 pulmonary (n=1883) and extrapulmonary (n=1162) samples from likely patients with TB were subjected to microscopy, culture and the Xpert MTB/RIF assay from March 2017 to June 2019. SL-DST testing by line probe assay version 2 for fluoroquinolones (FQs) and second-line injectable drugs were performed on 62 samples. RESULTS Out of 3045 samples processed in our laboratory during the study period, 36.1% (1101/3045) were positive for Mycobacterium tuberculosis complex (MTBC) and 21.6% were rifampicin monoresistant (223/1032). The rate of rifampicin resistance in pulmonary samples was 23.5% (166/706) and in extrapulmonary cases, it was 17.4% (57/326). Out of 62 cases included for second-line testing, 48 were resistant to FQs (77.4%) while 11 were extensively drug resistant. CONCLUSIONS India urgently needs to arrest an emerging multidrug-resistant TB epidemic with associated resistance to FQs. A robust surveillance system is needed to execute the National Strategic Plan for 2017-2025.
Collapse
Affiliation(s)
- Richa Misra
- MD, Department of Microbiology, Division Mycobacteriology, SGPGIMS, Lucknow, India
| | - Vasudha Kesarwani
- MD, Department of Microbiology, Division Mycobacteriology, SGPGIMS, Lucknow, India
| | - Alok Nath
- MD, DM, Department of Pulmonary Medicine, SGPGIMS, Lucknow, India
| |
Collapse
|
9
|
Sethi S, Agarwal P, Khaneja R, Kumar N, Kumar N, Chandna J, Aggarwal AN, Yadav R. Second-line Drug Resistance Characterization in Mycobacterium tuberculosis by Genotype MTBDRsl Assay. J Epidemiol Glob Health 2021; 10:42-45. [PMID: 32175709 PMCID: PMC7310802 DOI: 10.2991/jegh.k.191215.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 12/03/2019] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB) remains a main hurdle for national programs due to increase in drug resistance to antitubercular drugs. World Health Organization (WHO)-endorsed Line Probe Assay, Genotype MTBDRsl Ver 2.0, gives opportunity for rapid diagnosis and molecular characterization of different mutations in drug targets of fluoroquinolone (FQ) and second-line injectable drugs (SLID). We, retrospectively, analyzed the data of Genotype MTBDRsl Ver 2.0 from January 2018 to June 2018. A total of 863 isolates of Mycobacterium tuberculosis, 687 rifampicin resistant and 176 isoniazid resistant only, were screened for drug resistance in FQ and SLID. All the isolates were tested for Genotype MTBDRsl Ver 2.0 according to the manufacturer’s instructions. The FQ and SLID resistance were detected in 295 (34.2%) and 70 (8.1%) isolates, respectively. Among newly diagnosed and follow-up rifampicin-resistant TB (RR TB) patients, the FQ resistance was 25.8% and 44.5%, respectively. The most common mutation (42.7%) in FQ-resistant isolates was MUT3C in gyrA gene. Both SLID and FQ resistance were detected in 59 (6.8%) RR TB isolates. The mono SLID resistance was detected in 12 (1.7%) isolates of RR TB. Genotype MTBDRsl Ver 2.0 assay is a rapid and important tool for the diagnosis and molecular characterization of second-line drug resistance under programmatic conditions.
Collapse
Affiliation(s)
- Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Naresh Kumar
- Directorate of Health Services, Sector 34, Chandigarh, India
| | - Nitin Kumar
- Intermediate Reference Lab, Patiala, Punjab, India
| | | | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Yadav
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Aydın Kayalı R, Özkan SA, Biçmen C, Erer OF. The Relation Between the Emergence of Fluoroquinolone Resistance and Fluoroquinolone Exposure in New Cases of Active Pulmonary Tuberculosis. Turk Thorac J 2021; 22:45-49. [PMID: 33646103 DOI: 10.5152/turkthoracj.2021.19128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to determine the ratio of fluoroquinolone (FQ) exposure before the diagnosis of patients with a new case of active pulmonary tuberculosis (TB) and to investigate the correlation of this treatment with the emergence of FQ-resistant strains. MATERIAL AND METHODS In this retrospective comparative case series study, a total of 132 patients, who had been diagnosed with adult, culture-positive, active pulmonary TB were reviewed. The FQ group had 30 patients who had had ≥1 time and ≥7 days of FQ exposure within 1 year before the diagnoses. The control group included an equal number of patients with TB with similar demographic characteristics (non-FQ group). Ofloxacin (OFX) and moxifloxacin (MFX) resistance were examined at 2 different concentrations (2 and 4 mg/L for OFX; 0.25 and 0.5 mg/L for MFX). RESULTS Of the 132 patients, 30 (22%) had 7 days or longer of FQ monotherapy within 1 year of initiation of anti-TB treatment. FQ resistance was detected in 2 (3.3%) patients. In the FQ group, MFX resistance at 0.25 mg/L concentration was observed in 1 patient, whereas another patient had OFX and MFX resistance at 4 mg/L and 0.5 mg/L concentrations, respectively. In the non-FQ group, no FQ resistance was detected in any of the patients. No statistically significant difference in terms of development of FQ resistance was found between the ratios of FQ and non-FQ groups (p=0.492). Although there was no statistically significant difference, 2 patients, in whom resistance was detected, had FQ exposure before their diagnosis. CONCLUSION The FQ exposure ratio before the diagnosis is high (22%) in this cohort that includes patients with new active pulmonary TB, and the presence of patients with FQ resistance (even if only a few) should be a noteworthy and cautionary result in terms of FQ exposure and resistance development.
Collapse
Affiliation(s)
- Rahime Aydın Kayalı
- Department of Intensive Care, Health Sciences University Dr. Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, İzmir, Turkey
| | - Serir Aktoğu Özkan
- Department of Chest Diseases, Health Sciences University Dr. Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, İzmir, Turkey
| | - Can Biçmen
- Medical Microbiology Laboratory,Health Sciences University Dr. Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, İzmir, Turkey
| | - Onur Fevzi Erer
- Department of Chest Diseases, Health Sciences University Dr. Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
11
|
Sharma R, Singh BK, Kumar P, Ramachandran R, Jorwal P. Presence of Fluoroquinolone mono-resistance among drug-sensitive Mycobacterium tuberculosis isolates: An alarming trend and implications. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
Kim H, Mok JH, Kang B, Lee T, Lee HK, Jang HJ, Cho YJ, Jeon D. Trend of multidrug and fluoroquinolone resistance in Mycobacterium tuberculosis isolates from 2010 to 2014 in Korea: a multicenter study. Korean J Intern Med 2019; 34:344-352. [PMID: 30045614 PMCID: PMC6406095 DOI: 10.3904/kjim.2018.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS This study was conducted to evaluate the recent prevalence and trend of anti-tuberculosis (TB) drug resistance with a focus on multidrug-resistance (MDR) and fluoroquinolone resistance in South Korea. METHODS We retrospectively reviewed the drug susceptibility testing results of culture-confirmed Mycobacterium tuberculosis isolates collected from 2010 to 2014 at seven tertiary hospitals in South Korea. RESULTS A total of 5,599 cases were included: 4,927 (88.0%) were new cases and 672 (12.0%) were previously treated cases. The MDR rate has significantly decreased from 6.0% in 2010 to 3.0% in 2014 among new cases, and from 28.6% in 2010 to 18.4% in 2014 among previously treated cases (p < 0.001 and p = 0.027, respectively). The resistance rate to any f luoroquinolone was 0.8% (43/5,221) in non-MDR-TB patients, as compared to 26.2% (99/378) in MDR-TB patients (p < 0.001). There was no significant change in the trend of fluoroquinolone resistance among both nonMDR-TB and MDR-TB patients. Among the 43 non-MDR-TB patients with fluoroquinolone resistance, 38 (88.4%) had fluoroquinolone mono-resistant isolates. CONCLUSION The prevalence of MDR-TB has significantly decreased from 2010 to 2014. The prevalence of fluoroquinolone resistance among non-MDR-TB patients was low, but the existence of fluoroquinolone mono-resistant TB may be a warning on the widespread use of fluoroquinolone in the community.
Collapse
Affiliation(s)
- Hyeonseok Kim
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeong Ha Mok
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Bohyoung Kang
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - Taehoon Lee
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | - Hang Jea Jang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yu Ji Cho
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Doosoo Jeon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Correspondence to Doosoo Jeon, M.D. Department of Internal Medicine, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan 50612, Korea Tel: +82-55-360-1414 Fax: +82-55-360-1759 E-mail:
| |
Collapse
|
13
|
[Prevalence of Mycobacterium tuberculosis resistance to quinolones and injectables in Colombia, 2012-2013]. BIOMEDICA 2017; 37:96-103. [PMID: 28527253 DOI: 10.7705/biomedica.v37i2.3204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/18/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Tuberculosis is a health problem worldwide. The World Health Organization estimated 9.6 million new cases and 480,000 multirresistant cases for 2014. The assessment of resistance to quinolones and injectables was implemented only a few years ago, so its prevalence is not known. OBJECTIVE To determine the prevalence of resistance to amikacin, capreomycin and ofloxacin in cases of tuberculosis resistant to isoniazid and/or rifampin during 2012-2013. MATERIALS AND METHODS This was a cross-sectional study of 489 isolates resistant to isoniazid and/or rifampin. We used the Bactec MGITTM technique for susceptibility tests. For analyzing the rate of resistance, we grouped cases according to the history of treatment with second line drugs. RESULTS In the 438 new cases, the drug that showed greater overall resistance was kanamycin with 7.1 % (95% CI: 4.6 to 9.6). In 51 previously treated cases, this highest resistance was 27.5 % (95% CI:14.2 to 40.7). The overall resistance was higher in cases with a history of treatment with quinolones and injectables. We found seven cases of extremely resistant tuberculosis. CONCLUSION This study demonstrates the presence of resistance to second line drugs in people with drug-resistant tuberculosis with and without previous treatment with quinolones and/or injectables, these latter having a higher percentage of resistance. For that reason, it is essential to perform susceptibility testing and analyze this information routinely.
Collapse
|
14
|
Zhang D, Gomez JE, Chien JY, Haseley N, Desjardins CA, Earl AM, Hsueh PR, Hung DT. Genomic Analysis of the Evolution of Fluoroquinolone Resistance in Mycobacterium tuberculosis Prior to Tuberculosis Diagnosis. Antimicrob Agents Chemother 2016; 60:6600-6608. [PMID: 27572408 PMCID: PMC5075065 DOI: 10.1128/aac.00664-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/07/2016] [Indexed: 02/01/2023] Open
Abstract
Fluoroquinolones (FQs) are effective second-line drugs for treating antibiotic-resistant tuberculosis (TB) and are being considered for use as first-line agents. Because FQs are used to treat a range of infections, in a setting of undiagnosed TB, there is potential to select for drug-resistant Mycobacterium tuberculosis mutants during FQ-based treatment of other infections, including pneumonia. Here we present a detailed characterization of ofloxacin-resistant M. tuberculosis samples isolated directly from patients in Taiwan, which demonstrates that selection for FQ resistance can occur within patients who have not received FQs for the treatment of TB. Several of these samples showed no mutations in gyrA or gyrB based on PCR-based molecular assays, but genome-wide next-generation sequencing (NGS) revealed minority populations of gyrA and/or gyrB mutants. In other samples with PCR-detectable gyrA mutations, NGS revealed subpopulations containing alternative resistance-associated genotypes. Isolation of individual clones from these apparently heterogeneous samples confirmed the presence of the minority drug-resistant variants suggested by the NGS data. Further NGS of these purified clones established evolutionary links between FQ-sensitive and -resistant clones derived from the same patient, suggesting de novo emergence of FQ-resistant TB. Importantly, most of these samples were isolated from patients without a history of FQ treatment for TB. Thus, selective pressure applied by FQ monotherapy in the setting of undiagnosed TB infection appears to be able to drive the full or partial emergence of FQ-resistant M. tuberculosis, which has the potential to confound diagnostic tests for antibiotic susceptibility and limit the effectiveness of FQs in TB treatment.
Collapse
Affiliation(s)
- Danfeng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - James E Gomez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jung-Yien Chien
- Graduate Institute of Clinical Medicine, National Taiwan University Medical College, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Ashlee M Earl
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Po-Ren Hsueh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University Medical College, Taipei, Taiwan
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Determination of MIC Breakpoints for Second-Line Drugs Associated with Clinical Outcomes in Multidrug-Resistant Tuberculosis Treatment in China. Antimicrob Agents Chemother 2016; 60:4786-92. [PMID: 27246779 DOI: 10.1128/aac.03008-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/07/2016] [Indexed: 11/20/2022] Open
Abstract
Our study aims to identify the clinical breakpoints (CBPs) of second-line drugs (SLDs) above which standard therapy fails in order to improve multidrug-resistant tuberculosis (MDR-TB) treatment. MICs of SLDs were determined for M. tuberculosis isolates cultured from 207 MDR-TB patients in a prospective cohort study in China between January 2010 and December 2012. Classification and regression tree (CART) analysis was used to identify the CBPs predictive of treatment outcome. Of the 207 MDR-TB isolates included in the present study, the proportion of isolates above the critical concentration recommended by WHO ranged from 5.3% in pyrazinamide to 62.8% in amikacin. By selecting pyrazinamide as the primary node (CBP, 18.75 mg/liter), 72.1% of sputum culture conversions at month four could be predicted. As for treatment outcome, pyrazinamide (CBP, 37.5 mg/liter) was selected as the primary node to predict 89% of the treatment success, followed by ofloxacin (CBP, 3 mg/liter), improving the predictive capacity of the primary node by 10.6%. Adjusted by identified confounders, the CART-derived pyrazinamide CBP remained the strongest predictor in the model of treatment outcome. Our findings indicate that the critical breakpoints of some second-line drugs and PZA need to be reconsidered in order to better indicate MDR-TB treatment outcome.
Collapse
|
16
|
Jabeen K, Shakoor S, Hasan R. Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis 2016; 32:118-23. [PMID: 25809767 DOI: 10.1016/j.ijid.2015.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
Fluoroquinolones (FQ) play an essential role in the treatment and control of multidrug-resistant tuberculosis (MDR-TB). They are also being evaluated as part of newer regimens under development for drug-sensitive TB. As newer FQ-based regimens are explored, knowledge of FQ resistance data from high TB burden countries becomes essential. We examine available FQ resistance data from high TB burden countries and demonstrate the need for comprehensive surveys to evaluate FQ resistance in these countries. The factors driving FQ resistance in such conditions and the cost of such resistance to weak healthcare systems are discussed. The need for a comprehensive policy for addressing the issue of FQ resistance is highlighted.
Collapse
Affiliation(s)
- Kauser Jabeen
- Department of Pathology and Microbiology, Aga Khan University, Stadium Road, PO Box 3500, Karachi 74800, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Microbiology, Aga Khan University, Stadium Road, PO Box 3500, Karachi 74800, Pakistan
| | - Rumina Hasan
- Department of Pathology and Microbiology, Aga Khan University, Stadium Road, PO Box 3500, Karachi 74800, Pakistan.
| |
Collapse
|
17
|
Fox GJ, Oxlade O, Menzies D. Fluoroquinolone Therapy for the Prevention of Multidrug-Resistant Tuberculosis in Contacts. A Cost-Effectiveness Analysis. Am J Respir Crit Care Med 2015; 192:229-37. [DOI: 10.1164/rccm.201501-0069oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|