1
|
Ashraf MA, Raza MA, Imran A, Amjad MN. Next-generation vaccines for influenza B virus: advancements and challenges. Arch Virol 2025; 170:25. [PMID: 39762648 DOI: 10.1007/s00705-024-06210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 02/08/2025]
Abstract
To battle seasonal outbreaks of influenza B virus infection, which continue to pose a major threat to world health, new and improved vaccines are urgently needed. In this article, we discuss the current state of next-generation influenza B vaccine development, including both advancements and challenges. This review covers the shortcomings of existing influenza vaccines and stresses the need for more-effective and broadly protective vaccines and more-easily scalable manufacturing processes. New possibilities for vaccine development have emerged due to recent technical developments such as virus-like particle (VLP) platforms, recombinant DNA technologies, and reverse genetics. By using these methods, vaccines can be developed that elicit stronger and longer-lasting immune responses against various strains of influenza B virus. Vaccines may be more effective and immunogenic when adjuvants and new delivery mechanisms are used. Progress has been made in the development of influenza B vaccine mRNA vaccines, nanoparticle-based vaccines, and vector-based vaccines. However, there are still several obstacles to overcome before next-generation influenza B vaccines can be widely used, including the challenge of antigenic drift, the extinction of the B/Yamagata lineage, and difficulties in strain selection. There are also other challenges related to public acceptance, vaccine distribution, manufacturing complexity, and regulations. To overcome these challenges, scientists, politicians, and pharmaceutical firms must work together to expedite the development and licensing of vaccines and the establishment of immunization programs. The need for constant monitoring and quick adaptation of vaccines to match the currently circulating strains is further highlighted by the appearance of novel influenza B virus variants. To be ready for future pandemics and influenza B outbreaks, we need better vaccines and better monitoring systems.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Azka Imran
- University of Veterinary and Animal Sciences UVAS, Lahore, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Wang Y, Zhang X, Bi K, Diao H. Critical role of microRNAs in host and influenza A (H1N1) virus interactions. Life Sci 2021; 277:119484. [PMID: 33862119 DOI: 10.1016/j.lfs.2021.119484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 11/29/2022]
Abstract
As a type of non-coding RNA, microRNAs are considered to be a new regulator in viral infections. Influenza A (H1N1) virus infection is a serious threat to human health. There is growing evidence supporting that microRNAs play important roles in various cellular infection stages and host antiviral response during H1N1 infection. Some microRNAs defend against H1N1 invasion, while others may promote viral replication. MicroRNAs are implicated in the host-viral interactions and serve versatile functions in it. In this review, we focus on the innate immune response and virus replication regulated by microRNAs during H1N1 infection. MicroRNAs can influence H1N1 virus replication by directly binding to viral compositions and through host cellular pathways. Moreover, microRNAs are involved in multiple antiviral response, including production of interferons (IFNs), retinoic acid-inducible gene I (RIG-I) signaling pathway, immune cells development and secretion, activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). Furthermore, these regulatory effects of microRNAs suggest its potential clinical significance. In addition, another non-coding RNA, lncRNA, are also mentioned in the review, which can regulate innate immune response and influence virus replication during H1N1 infection as well.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
4
|
Zheng B, Zhou J, Wang H. Host microRNAs and exosomes that modulate influenza virus infection. Virus Res 2020; 279:197885. [PMID: 31981772 DOI: 10.1016/j.virusres.2020.197885] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate over half of human protein-coding genes and play a vital role in cellular development, proliferation, metabolism, and homeostasis. Exosomes are rounded or cup-like extracellular vesicles that carry proteins, mRNAs, miRNAs, and lipids for release and exchange messages between cells involved in various cellular processes. Influenza virus is a substantial public health challenge. The expression of host miRNAs is altered in response to stimulation by influenza virus. These dysregulated miRNAs directly or indirectly target viral genes to regulate viral replication and stimulate or suppress innate immune responses and cell apoptosis during viral infection. Exosomes released by infected cells are associated with the transfer of antigens and key molecules that activate and modulate immune function. Dysregulation of miRNAs and secretion of exosomes are associated with pathogenicity and immune regulation during influenza infection. This review provides a comprehensive summary of the information available regarding host miRNAs and exosomes that are involved in the modulation of influenza virus infection and will facilitate the development of preventative or therapeutic strategies against influenza virus.
Collapse
Affiliation(s)
- Baojia Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China
| | - Junmei Zhou
- Key Laboratory of Tropical Diseases Control, Ministry of Education, and Deparment of Medical Microbiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Hui Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Keshavarz M, Mirzaei H, Salemi M, Momeni F, Mousavi MJ, Sadeghalvad M, Arjeini Y, Solaymani-Mohammadi F, Sadri Nahand J, Namdari H, Mokhtari-Azad T, Rezaei F. Influenza vaccine: Where are we and where do we go? Rev Med Virol 2018; 29:e2014. [PMID: 30408280 DOI: 10.1002/rmv.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
The alarming rise of morbidity and mortality caused by influenza pandemics and epidemics has drawn attention worldwide since the last few decades. This life-threatening problem necessitates the development of a safe and effective vaccine to protect against incoming pandemics. The currently available flu vaccines rely on inactivated viral particles, M2e-based vaccine, live attenuated influenza vaccine (LAIV) and virus like particle (VLP). While inactivated vaccines can only induce systemic humoral responses, LAIV and VLP vaccines stimulate both humoral and cellular immune responses. Yet, these vaccines have limited protection against newly emerging viral strains. These strains, however, can be targeted by universal vaccines consisting of conserved viral proteins such as M2e and capable of inducing cross-reactive immune response. The lack of viral genome in VLP and M2e-based vaccines addresses safety concern associated with existing attenuated vaccines. With the emergence of new recombinant viral strains each year, additional effort towards developing improved universal vaccine is warranted. Besides various types of vaccines, microRNA and exosome-based vaccines have been emerged as new types of influenza vaccines which are associated with new and effective properties. Hence, development of a new generation of vaccines could contribute to better treatment of influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Momeni
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Sadeghalvad
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Solaymani-Mohammadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Dhungel B, Ramlogan-Steel CA, Steel JC. MicroRNA-Regulated Gene Delivery Systems for Research and Therapeutic Purposes. Molecules 2018; 23:E1500. [PMID: 29933586 PMCID: PMC6099389 DOI: 10.3390/molecules23071500] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted gene delivery relies on the ability to limit the expression of a transgene within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective regulators of gene expression that act by binding to a specific sequence present in the corresponding messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery platforms with a diverse range of applications. Here, we summarize studies that have utilized miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic purposes. Additionally, we identify criteria that are important for the effectiveness of a particular miRNA for such applications and we also discuss factors that have to be taken into consideration when designing miRNA-regulated expression cassettes.
Collapse
Affiliation(s)
- Bijay Dhungel
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, 102 Newdegate Street, Brisbane, QLD 4120, Australia.
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- Layton Vision Foundation, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Jason C Steel
- Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD 4006, Australia.
- OcuGene, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
7
|
Keshavarz M, Dianat-Moghadam H, Sofiani VH, Karimzadeh M, Zargar M, Moghoofei M, Biglari H, Ghorbani S, Nahand JS, Mirzaei H. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10:829-844. [DOI: 10.2217/epi-2017-0170] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Influenza A virus is known worldwide as a threat associated with human and livestock diseases. Hence, identification of physiological and molecular aspects of influenza A could contribute to better design of therapeutic approaches for reducing adverse effects associated with disease caused by this virus. miRNAs are epigenetic regulators playing important roles in many pathological processes that help in progression of influenza A. Besides miRNAs, exosomes have ememrged as other effective players in influenza A pathogenesis. Exosomes exert their effects via targeting their cargos (e.g., DNAs, mRNA, miRNAs and proteins) to recipient cells. Here, we summarized various roles of miRNAs and exosomes in influenza A pathogenesis. Moreover, we highlighted therapeutic applications of miRNAs and exosomes in influenza.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medicine Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering & Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts. J Virol 2018; 92:JVI.01741-17. [PMID: 29093096 DOI: 10.1128/jvi.01741-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs.IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. MicroRNAs were used previously to attenuate influenza A viruses. We propose the development of a novel platform to produce live attenuated vaccines that are highly customizable, efficacious across a broad species range, and exhibit enhanced safety over traditional vaccination methods. This strategy exploits a microRNA that is expressed abundantly in influenza virus-susceptible hosts. By eliminating this ubiquitous microRNA from a cell line, targeted viruses that are attenuated across susceptible strains can be generated. This approach greatly increases the plasticity of the microRNA targeting approach and enhances vaccine safety.
Collapse
|
9
|
Stenfeldt C, Arzt J, Smoliga G, LaRocco M, Gutkoska J, Lawrence P. Proof-of-concept study: profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virol J 2017; 14:71. [PMID: 28388926 PMCID: PMC5384155 DOI: 10.1186/s12985-017-0743-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Background Changes in the levels of circulating microRNAs (miRNAs) in the serum of humans and animals have been detected as a result of infection with a variety of viruses. However, to date, such a miRNA profiling study has not been conducted for foot-and-mouth disease virus (FMDV) infection. Methods The relative abundance of 169 miRNAs was measured in bovine serum collected at three different phases of FMDV infection in a proof-of-concept study using miRNA PCR array plates. Results Alterations in specific miRNA levels were detected in serum during acute, persistent, and convalescent phases of FMDV infection. Subclinical FMDV persistence produced a circulating miRNA profile distinct from cattle that had cleared infection. bta-miR-17-5p was highest expressed during acute infection, whereas bta-miR-31 was the highest during FMDV persistence. Interestingly, miR-1281was significantly down-regulated during both acute and persistent infection. Cattle that cleared infection resembled the baseline profile, adding support to applying serum miRNA profiling for identification of sub-clinically infected FMDV carriers. Significantly regulated miRNAs during acute or persistent infection were associated with cellular proliferation, apoptosis, modulation of the immune response, and lipid metabolism. Conclusions These findings suggest a role for non-coding regulatory RNAs in FMDV infection of cattle. Future studies will delineate the individual contributions of the reported miRNAs to FMDV replication, determine if this miRNA signature is applicable across all FMDV serotypes, and may facilitate development of novel diagnostic applications. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0743-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Jonathan Arzt
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - George Smoliga
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Michael LaRocco
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Joseph Gutkoska
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| | - Paul Lawrence
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA.
| |
Collapse
|
10
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|